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1. Mach zero vs low Mach flows.

2. The artificial compressibility method for the simulation

of Mach zero reacting flows.

3. The MIAU pressure based approach for the simulation

of low Mach flows.
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1. Mach zero vs low Mach flows
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Compressible Euler equations for a polytropic ideal gas: dimensionless form

(Müller, 1999):
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From now on, we shall drop the superscript * for denoting the dimensionless
variables and it is assumed that the low Mach number asymptotic analysis
can be considered as a regular perturbation.
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 inject these expansions into the governing equations 
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Methodology :

M.

(i) ˆSo each independent variables is expanded in terms of a series ( )

ˆwhere  is the small parameter, for instance:

M

M
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The reference Mach number is chosen as the small parameter
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One-scale expansion at low Mach: the hydrodynamic limit
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So =  is the time scale, the dimensionless

system reads now as:
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One-scale expansion at low Mach: the hydrodynamic limit
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One-scale expansion at low Mach: the hydrodynamic limit



With periodic boundary conditions, the kinetic energy defined

by: 

remains constant in time
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One-scale expansion at low Mach: the hydrodynamic limit



One-scale expansion at low Mach: the acoustic limit
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One-scale expansion at low Mach: the acoustic limit



With periodic boundary conditions, the acoustic energy

defined by: 

remains constant in time. Here, the tilde denotes an averaged

value over a region of characteristic length of 1/  𝑀
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One-scale expansion at low Mach: the acoustic limit



How to get a flavor of the interaction between acoustics and 
hydrodynamics at low Mach:            Two-time-scale expansion 
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   See the seminal paper by Klein (1995) 

for a detailed analysis of the two-space-scale expansion.

leading order of the heat release rate.
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2. Simulation of Mach zero reacting flows: the artificial

compressibility method.
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Basic idea: introducing a finite artificial sound speed in the system

Continuity equation equation for the pressure

• Proposed by Chorin (1967) for inert flows

• Unsteady inert flows (Soh et al. 1988, McHugh et al. 2005)

• Extended to steady zero Mach number reacting flows by Bruel et al.

(1996).

• Extended to unsteady zero Mach number reacting flows by Corvellec et

al. (1999).

• Combined with an hybrid-mesh finite volume formulation by Dourado et

al. (2004)

• Combined with discontinuous Galerkin finite element method by Bassi

et al. (2006)

It is well suited to transform a compressible density based code into a code

able to deal with zero Mach inert or reacting flows.
19

Artificial compressibility approach
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Physical unsteady term: treated as a source 
term during the convergence loop in 

pseudo-time.

Artificial compressibility factor: controls the magnitude of the artificial
sound speed that distributes the pressure throughout the computational
domain

Pseudo-time term: is brought to zero
between two physical time steps 
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Artificial compressibility a concrete example: 

A simple 1D turbulent premixed flame

With a quenched mean reaction rate, the turbulent flame speed is

unique and the flame structure can be determined semi-analytically

(Sabel’nikov et al., 1998)
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Initial profile at t=0

20 physical time 

steps between two 

consecutive curves

Flame propagation in 

case 1
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Cases 1 and 2

Case 2

Case 

1

Time
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Pressure 

gradient 

through the 

mean flame 

brush

AC method

Results from 

the calculation 
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trajectories in 

the phase space
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3. Simulation of low Mach flows: the MIAU pressure based

approach
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Important features of low Mach flows

Any low Mach flow solution results a priori from the

superimposition/interaction of a slow component

(with a quasi-like Mach zero behavior) and a fast

component (acoustic waves).

The density may vary significantly in relation with

the exact nature of the flow at hand (contact

dicontinuities, reacting flow).

28
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Turbulent premixed reaction zone stabilized

by a dump (Nguyen et al., 2009)

Low Mach flows: illustration of a reacting flows featuring 
turbulence and coherent motion related with thermoacoustic

coupling
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Low Mach flows simulations: what are the choices ?

Density-based approach: preconditioning techniques,

modification of the diffusion matrix of the flux scheme.

Pressure-based approach: this approach originally

developed to cope with Mach zero flows must be adapted:

the energy equation plays a key role (Klein, 1995) and so

will be used for establishing the pressure correction

equation.
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Together with proper initial and boundary conditions

The continuous system of PDE’s at hand: the Euler 

equations with a co-located formulation
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Proposition for a pressure-based algorithm for 

simulating non reacting flows  

(Moguen et al., 2019)

Predictor step (pressure frozen): solving the

continuity and the momentum equations.

Corrector step (density frozen): solving the energy

equation to get the pressure correction with input from

the momentum equation.
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Momentum interpolation method: dual mesh equation

33
Pascal Bruel - NLPDFP  Workshop  - 23 September 2019 – Borovoe (Burabay) - Kazakhstan 

In both steps, the face values on the primal mesh are derived by the

MIAU flux scheme to provide the transporting velocity and the face

pressure.



The predictor step
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The correction step
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Updates

with

A few (~ 5) k-iterations are sufficient to converge the loop. 
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Low Mach flow configuration: nozzle flow
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Low Mach flow configuration: acoustic pulse (2D)
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Low Mach flow configuration: stationnary contact discontinuity
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Low Mach flow configuration: moving discontinuity
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Final conclusion

The versatility of pressure based approaches has been
demonstrated: able to cope with zero Mach as well as with low
Mach flow systems. The MIAU based scheme works also well
for high Mach flows (not shown here).

Future work will concentrate on:

Artificial compressibility: increasing the convergence rate by
working on the pseudo waves amplitude system at the
boundaries.

MIAU like pressure based approach: extending it to reacting
flows.
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