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LONGEST PATHS IN DIGRAPHS

J. C. BERMOND, A. GERMA, M. C. HEYDEMANN
and
D. SOTTEAU

Laboratoire de Recherche en Informatique
ERA 452, Bat. 490, Université Paris Sud
91405 Orsay, France

) In this paper, we give a sufficient condition on the degrees of the vertices of a digraph io
insure the existence of a path of given length, and we characterize the extremal graphs.

Wotations

We use standard terminology ([1] or [4]). A digraph (1-graph) D=(X, U)
consists of a finite set of vertices X and a set U of ordered pairs (x,y) of vertices
called arcs. In what follows the digraphs considered are without loops or multiple
arcs, We denote by:

() = lyeX, (5 1)eU), d+() =|M+@)| (outdegree)
I'(x) = ylyeX, (nx)eU}, d~(x)=I|I'""(x)| (indegree)
d(x) = d*(x)+d~(x) (degree)

For ACX, dj (x)=[l*(x)NA]; dz (x)=|""(x)NA]|.

When we speak of paths (circuits) in digraphs, we always mean directed
path (circuits). The length of a path (circuit) is the number of arcs of this path
(circuit). A digraph is strong if for any two vertices x and y there exists a path
from x to y and a path from y to x. A digraph is connected if the underlying graph
is connected.

Tntroduction

The aim of the article is to obtain sufficient conditions on the degrees of
the vertices of a digraph in order to insure the existence of a path of length k (or
equivalently =k). For other results concerning sufficient conditions on the num-
ber of arcs or circuits see [2, 4, 6, 7, 10]. First let us recall two results in the undirected
case due to Dirac (stronger resulis have been obtained by many authors (see [3])).



Theorem 1 (Dirac). If G is a connected graph of minimum degree at least k, then G
contains a path of length min 2k, n—1).

This theorem is best possible and follows from an analogous theorem on cycles.

Theorem 1'. If G is a 2-connected graph of minimum degree at least k, then G contains
a cycle of length greater than or equal to min (2k, n).

Theorems 1 and 1’ cannot be extended to digraphs by considering only the (total)
degree. Indeed Ghouila-Houri [5] has shown that for any k, there exist strong
digraphs with minimum degree at least k and without paths of length 8. In this
case the best possible result is:

Theorem 2. If a digraph D of order n has the property that for any two non-adjacent
vertices x and y d(x)+d(y)=2n—2h—1, with O<h<n, then D contains a path

of length [—Z— —1. (Tx71 means the smallest integer greater than or equal to x,).

This theorem is in fact a corollary of results of Las Vergnas [9]. It is also an easy
consequence of Heydemann’s results [6, 7].

Theovem 2'. [6, 7]. Let D be a strong digraph of order n such that for any pair of
non-adjacent vertices x and y, d(x)-+d(y)=2n—2h+1, then D contains a circuit of

|+

length greater than or equal to

h

However we can impose conditions on the outdegrees or indegrees. A possible
generalisation of theorem 1’ was the following conjecture made some years ago
by Bermond and Thomassen (see [4]): let D be a strongly 2-connected digraph of
order » and minimum indegree and outdegree at least &, then D contains a circuit
of length greater than or equal to min (2k, n). Recently Thomassen (see [4 or 10]
for more details) showed that this conjecture was false by giving examples of strongly
2-connected digraphs with d+(x)=k, d~(x)=k for every vertex x and where the
longest circuits have length k+2. Another possible generalization of theorem 1/
is the following conjecture of Thomassen [10].

Conjecture ([10]). If a digraph D has minimum indegree and outdegree at least k and
if any two vertices of D are on a common circuit, then D contains a circuit of length
greater than or equal to min (2k, n).

This conjecture, if true, would imply our main theorem (in case ~=Fk) which extends
theorem 1.

Main Theorem. Let D be a connected digraph of order n such that for every vertex x,
dt(x)=k and d—(x)=h, then

A: D contains a path with min (n, h+k-+1) vertices.

B: If n=h+k+1, the only digraphs with no path with h+k-+2 vertices
are the union of Kii,, having exactly one vertex in common. (Note that this implies
in particular that h=k and n—1 is a multiple of k).

(Kt1 denotes the complete symmetric digraph on k-1 wvertices.)



Proofs

Proof of A. The proof given here follows ideas of C. Thomassen and is much more
shorter than the original proof we had.
First, suppose D is strong. If k-h+1=n, the theorem is a consequence

of Ghouila-Houri’s theorem [5] on hamiltonian paths. Thus we will suppose
n>=h+k-+1.

Let C be a longest circuit in D and c its length. Clearly we have
M ¢ = max (h, k)+1.
If C is hamiltonian, 4 is proved. Thus let us assume c<n.

Let P be a longest path in D—C (subgraph generated by the vertices of D
not belonging to C) with p vertices, p=1, say P=xy, X,, ..., X,. Let s be the
number of arcs from C to x; (s=dg (x,)) and r be the number of arcs from X,

to C (r=d (x,)). From the maximality of P we have

d7(x) = s+dg(x) and d¥(x,) =r+di(x,),

SO
p=h—s+1
@)
p=k—r+1
and then
3) r+s=h+k+2-2p.

If r=0 (resp. s=0) then I't(x))C¥(P) (resp. I'(x;)C V(P)) and D
contains an other circuit C’, vertex-disjoint from C, with ¢’ vertices where ¢’ =k-1
(resp. ¢’=h+1). In both cases, as D is strong, there is a path between C and C’
so that we get a path with c+¢’ vertices where

c¢+c” = max (h, k)+min(h, k)+2 = h+k+2.

It remains to consider the case r=1, s=1. From the maximality of C, if
there exists an arc (¢;, x;) then there is no arc (xp» ¢;1;) for 1=j=p and thus
we have:

“4) r+s=c—p+1.
Since r=1, we get a pafh with c¢+p vertices by (4)

ct+p=rts+2p—1
and by (3)

() chp=hiktl

If D is connected, but not strong let us consider the strong components of D. Let
a component be called component source (resp. sink) if every vertex of this com-
ponent is not the end (resp. origin) of an arc with origin (resp. end) in an other
component. As D is connected D contains at least a component source and a com-
ponent sink with a directed path between the two components, In the component
source d~(x)=h and there exists therefore a circuit of length =#/4-1 in it. Simi-
larly, there exists a circuit of length k-1 in the component sink, With the path
between we obtain a path with A-+k+2 vertices.



Proof of B. From the proof of 4, if D does not contain a path with A--k+2 vertices,
we have r=1, s=1 and equalities in (2), (3), (4), (5). That is

r=k—p+1
s=h—p+1
©®
r+s=h+k—2p+2=c—p+1
c+p=h+k+1

So df(x,)=p—1 dp(x;)=p—1, and in particular there is an arc (x,, x;) and
therefore a circuit C’=(x, ..., x,, %) in D—C.

B.1. — The subdigraph induced by {x;, %;, ..., x,} is a complete symmetric
digraph. Suppose there is no arc (x;, x;) for some i, j; consider the path P’ in
D—C: P'=x;, X541, -o0 Xy, X1, ..., Xj-1. By the maximality of P and (6) dg (x;)=
=s'=s+1 and dg(x;_;)=r’'=r. But the proof of 4 with P’ instead of P gives
a path with c+p=r'+s"+2p—1=h+k+2 vertices.

B.2. — Structure of the subdigraph induced by the vertices of PUC.

As the subdigraph induced by the vertices of P is complete and as by (6) and the
maximality of P, dd(x;)=r, dz (x;)=s, we can label the vertices of C in a con-
secutive order vy, ..., v, such that the arcs between P and C are

(x;,v)), for 1=i=p, for p+1=j=p+r
and
(@j,x), for 1=i=p, for ptr=j=c.

Now the same arguments applied with Cy=(xy, ..., X,, V11, ..., U, X;) instead of
Cand P;=vy, ..., v, instead of P show that the subdigraph induced by {v,, ..., v,}
is complete symmetric and that the arcs between P, an PU(C—P;) are the arcs

(0;,v;) for 1=i=p; p+l=j=p+r
(@;,v) for 1=i=p; p+r=j=c

B.3. — r=1.

Suppose r=>1. Let p+1=j=p+r—1. By B.2, there is no arc (v;,v) for v€P
or v€{vy, ..., v,}. There is no arc (v;,v) with v€D—P—C otherwise the path
Uiondeiis ey Ugs Uiy 5555 Vs Dty sy Upips Kty wng By Do vy Blgs B would have
h-+k+2 vertices. There is also no arc (v;,v;) with p+r+1=j'=c otherwise the
CIrCUIt (U, Ujry Vjrgay vees Ugy Dieeey Upy Dty vees Ujry Xpy uvs Xpo Upias ooes v;) would
be of length c+p contradicting the maximality of C. Thus d*(v)=r—1<k a
contradiction.

B.4. — Similarly s=1 and thus p=h=k by (6).

B.5. — Therefore the subdigraph induced by PUC consists of two com-
plete symmetric digraphs on k vertices K; and K, and a vertex x joined in the two
directions to all the vertices of K,UK,. Furthermore all the arcs between PUC
and the rest of the digraph have x as end vertex.

B.6. — End of the proof.

By B.4., A=k and by B.5. CUP has 2k-+1 wvertices, Let v be a vertex of
D—(PUC), as by B.5. it is joined at most to x in PUC, its outdegree in D—(PUC)
is at least k—1. Thus the subdigraph D—(PUC) has at least k vertices and, if



it has k vertices, it is a complete symmetric digraph, and all its vertices are joined
in the two directions to x. Therefore n=3k+1 and if n=3k+1, D consists of
three Kj',, having exactly one vertex in common. Theorem B is proved for 2k+1<
<n=3k+1. Suppose B is proved for n=gk-+1 and let gk+1l<n=(g+Dk+1
(with g=3). The digraph D—K, satisfies the hypothesis of theorem B and has
n—k vertices, where 2k+1<n—k=qk+1. By induction hypothesis D—K,; has
the structure given in B and D also. [
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