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Abstract. In this work, we study differential algebraic equations with
constraints defined in a piecewise manner using a conditional statement.
Such models classically appear in systems where constraints can evolve
in a very small time frame compared to the observed time scale. The
use of conditional statements or hybrid automata are a powerful way
to describe such systems and are, in general, well suited to simulation
with event driven numerical schemes. However, such methods may fail
to efficiently simulate sliding motions and events accumulation. In con-
trast, the representation of such systems using differential inclusions and
the methods from nonsmooth dynamics are often closer to the physical
theory, but their solutions may be less intuitive or harder to interpret. As-
sociated event-capturing numerical methods have been extensively used
in mechanical modelling with success and then extended to other fields
such as electronics and system biology. In a similar manner to the pre-
vious application of nonsmooth methods to the simulation of piecewise
linear ODEs, we want to apply event-capturing numerical schemes to
piecewise linear DAEs. In this paper, we explore three concepts of solu-
tions for switching index-2 DAEs. To this aim, we first study in-depth the
well-posedness of an example of index-2 planar dynamical system with
a switching constraint, using a set-valued operators relaxation of the
constraint. Then, for the same example, we give an analysis of the time-
capturing implicit Euler scheme solutions and conjecture an improved
numerical scheme to tackle the observed problems. In a second part, we
propose three relaxations of switching constraints to obtain three con-
cepts of solutions to switching DAEs, inspired by concepts of solutions
for switching ODEs. We illustrate their properties and the possible ef-
fects on the well-posedness of switching DAEs through simple examples.

Keywords: Hybrid Systems, Switching DAE, Nonsmooth Dynamical
Systems, Linear Complementarity System, Time-stepping scheme, Euler
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1 Introduction

The aim of this work is to study discontinuous differential algebraic equations
(DAE), also known as hybrid DAE or switching DAE in the literature. They
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can be defined, for instance, as continuous-time dynamical systems with some
algebraic constraints switching with respect to the state variables. A very general
framework of discontinuous DAE may be given by

F (t,y, ẏ) = 0 (1)

where F : R × Rn × Rn → Rn is a discontinuous, possibly set-valued function,
with respect to its second and third arguments. Since it is very difficult to deal
with this too general setting, a first specialisation is{

ẋ = f(t,x, z)

0 = g(t,x, z)
(2)

where g : R × Rn × Rn → Rm is a discontinuous, possibly set-valued function,
with respect to its second and third arguments.

Such discontinuous (hybrid or switching) DAE systems are used in numerous
fields from electronics [1], mechanics [8] to chemical process engineering [25].
They are especially used in model-based design through the use of languages
like Modelica as in [13]. In such languages, one can build a model defined by a
finite number of dynamical systems whose switching is dictated by conditional
statements over the time or the state variables. In general, after the compilation,
models expressed in such languages results in the definition of so-called flat,
multi-mode or hybrid, DAEs such as the ones studied in [12] and [7] that are
particular cases of discontinuous DAEs (2). These discontinuous DAEs are then
simulated using event-based methods. However, few works focus on the study and
analysis of concept of solutions for such discontinuous DAEs, resulting in unclear
simulating behaviours at mode change, outside of some restricted context.

1.1 Piecewise linear DAEs with a unique vector field.

The framework in (2) is still relatively too general to be able to provide us with
useful insights on the concept of solutions. This is the reason why we focus our
attention in this article on piecewise linear DAEs, with a constant vector field,
that we wish to study from the point of view of nonsmooth dynamics [8], and
event-capturing time integration methods [2].

Let us define a piecewise linear DAE with a unique vector field.

Definition 1 (Piecewise linear DAE with a unique vector field). Let
n, n1, n2 be three integers such that n1 + n2 = n. Let x : R→ Rn1 be a function
of time t called the differential variable. Let z : R → Rn2 be a function of time
t called the algebraic variable. Let A ∈ Rn1×n1 , B ∈ Rn1×n2 be two constant
matrices, and Bi ∈ Rn1×n2 Ci ∈ Rn2×n1 , a family of matrices indexed by i. A
piecewise linear DAE with a unique vector field is defined by

ẋ(t) = Ax(t) + Bz(t) + b

0 = gi(x(t), z(t)) = Cix(t) + Diz(t) + qi

∀(x(t), z(t)) ∈ Xi ,
(3)
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where the sets Xi = {(x, z) ∈ Rn | hi(x, z) = Hix(t) + Fiz(t) + pi > 0} ⊂ Rn
define a partition of Rn such that:

–
⋃
i

X i = Rn,

– int(Xi) 6= ∅ , ∀i,
– for i 6= j, Xi ∩ Xj = ∅.

Using step-functions1, we can build in a similar fashion to [3] a generalised
constraint:

g(x, z) =
∑
i

∏
j 6=i

(1− s+(hj(x, z)))

 s+(hi(x, z))gi(x, z) = 0 , (4)

where s+(y) = 0 if y < 0 and s+(y) = 1 if y > 0. The behaviour at y = 0
is not stipulated yet, as it will depend on later relaxations: either using a mul-
tivalued step function relaxation or using a convex relaxation of the switching
constraint, as it is explained in Section 4. In particular, in the context of piece-
wise ODE, the work of [3] shows that methods for nonsmooth dynamics can be
efficiently applied using such a transformation. Then, depending on the concept
of solutions applied on the switching surfaces (using convexification as in [11], or
using multivalued functions as in [5]), the resulting solutions may differ. Here,
we study the extension of such concepts of solutions when applied to switching
constraints instead of switching ODE.

1.2 Related work

Various authors already studied the field of hybrid DAE. For example, DAE
including complementarity constraints are a subset of differential variational in-
equalities (DVI). DVIs are defined and studied in [19]. In particular, they anal-
yse the well-posedness of index-one and mixed index between 1 and 2 DVIs.
In a similar manner, the authors of [1] study switching DAEs in the context of
switching electrical systems. They show that such systems can be expressed as
Mixed Complementarity Systems2 (MCS), [1, Chapter 4], and efficiently simu-
lated with associated event-capturing numerical schemes. However, none of these
works study solutions to discontinuous switching DAEs given in the formalism
of Definition 1. Apart from variational inequalities, or complementarity systems
formalisms, Matrosov [15] proposes a concept of solutions, which is inspired from
the Filippov concept of solution for discontinuous ODEs [11], for discontinuous
DAEs (2). Let us consider the discontinuous constraints and a differential part
g(·), f(·) ∈ C(R × Rn1 \ S × Rn2), with S the set of discontinuities assumed as
a finite union of smooth hyper-surfaces in Rn1 of co-dimension larger or equal
to 1. Let us assume some function z(t) is given, and define F0 the set of vector

1 or using sign functions.
2 Let us remark that MCS are a particular case of DVI.
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fields that are solution in (t,x, z) as:

F0(t,x, z) =

y ∈ Rn1 such that

∃yk → y,∃tk → t,∃xk → x,∃zk → z

yk = f(tk,xk, zk)

0 = g(tk,xk, zk)

 , (5)

where xk /∈ S for all k. Then, one defines a concept of solution for discontin-
uous DAEs as an extension of Filippov concept of solution for discontinuous
ODEs: (x(t), z(t)) is a solution of (2) if x(t) is absolutely continuous in t, z(t)
is continuous in t everywhere, and if (x(t), z(t)) is a solution of the differential
inclusion:

ẋ(t) ∈ co(F0(t,x(t), z(t))) . (6)

Matrosov gives sufficient conditions for existence of such solutions in [15], and
sufficient conditions for uniqueness in [16].

Merhmann et al. [12,17] provide a study of well-posedness of hybrid DAE
structured as hybrid automata. In addition, a numerical implementation of slid-
ing modes for DAE systems is provided to avoid chattering when switching
occurs. To this aim, they propose a concept of sliding solutions defined by the
convex hull of the vector fields obtained by index reductions at the right and left
limit of the discontinuity. Furthermore, the work in [17] needs explicit transition
functions from one mode (DAE) to another, in addition to consistent reset con-
ditions. Trenn [26] defines solutions of hybrid DAE with exogenous switching.
In particular, he introduces a notion of distributional solutions which can also
be used to efficiently solve inconsistent initial conditions of classical DAE as an
exogenous switching at t = 0. Camlibel et al. [9] extend results of well-posedness
of differential inclusions with maximal monotone right-hand sides to differential
algebraic inclusions Pẋ ∈ −F(x) with a maximal monotone operator F(·) and
a singular matrix P. This work considers nonsmooth DAEs in the form of:

Eẏ(t) = Ay(t) + Bλ(t) + b

w(t) = Cy(t) + Dλ(t) + q

w(t) ∈ M(−λ(t)),

(7)

withM(·) a maximal monotone operator and singular matrix E. Then, assuming
some passivity conditions on the Weierstrass-Kronecker form of (7), sufficient
conditions for the well-posedness of (7) are given.

It is important to note that this formalism is the closest one to the example
studied in Sections 2 and 3, with the notable difference that in our case the
operator M(·) is not maximal monotone, but hypo-monotone. Stechlinski et al.
[25,6] and Khan [14] define from the Clarke Jacobian a notion of generalised
differential index and an associated index reduction procedure in the context of
nonsmooth DAE, with Lipschitz continuous constraints. Current implementation
and theory are limited to semi-explicit index-1 nonsmooth DAE. Finally, let us
cite another work for index reduction of hybrid DAE by Benveniste et al. [7]. This
work uses non-standard analysis to construct well-defined transitions from one
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mode to another in the context of hybrid DAE, even in the presence of varying
index. In particular, this work pairs well with [17], which needs the knowledge of
transition and re-initialisation maps when switching from one mode to another.

1.3 Outline

As we mentioned in the previous section, the case of index-1 discontinuous DAEs
has been well studied in the literature. This is the reason why we focus our
attention on index-2 problems where the switching surface depends, only, on the
state variables. Let us give a definition of the object of interest in this article.

Definition 2 (Single-Switching Index-2 Piecewise linear DAE with a
unique vector field). Let us consider a piecewise linear DAE with a unique
vector field as in Definition 1. When considering a single switching surface and
index-2 DAEs in each mode, (3) can be reduced to:

ẋ(t) = Ax(t) + Bz(t) + b

0 = g1(x(t)) = C1x(t) + q1 if x(t) ∈ X1

0 = g2(x(t)) = C2x(t) + q2 if x(t) ∈ X2 ,

(8)

with X1 = {x ∈ Rn1 | h1(x) = −h(x) = −Hx(t)− p > 0} ⊂ Rn1 and X2 = {x ∈
Rn1 | h2(x) = h(x) = Hx(t) + p > 0} ⊂ Rn1 . In addition, (8) is of differential
index 2 in each mode and it follows that the matrices CiB are non-singular for
all i ∈ {1, 2}.

Throughout the paper, a working example of (8) will be detailed to give some
insights on possible concepts of solutions and to large varieties of solutions we
can obtain. Along this paper, we may call “left-hand constraint”, the constraint
C1x(t) + q1 = 0 that is active if x ∈ X1 (or equivalently h(x) < 0). Similarly, we
may call “right-hand constraint”, the constraint C2x(t)+q2 = 0 that is active if
x ∈ X2 (or equivalently h(x) > 0). To study the solutions of systems in the form
of (8), we construct a relaxation of these two constraints along the switching
surface h(x, z) = 0 by “filling-in the gap” (see [18]). One way to construct such
relaxed constraint in h(x, z) = 0 is by considering the convex hull of the left
and right limit of g(x, z) when h(·) < 0 and h(·) > 0 respectively. We could
also consider multi-valued step functions in (4) in a similar fashion to [5] for
discontinuous ODEs. For the working example of Section 2, we consider the
convexification of the constraints along the switching surface.

As we have seen, most works consider either a high index hybrid DAE frame-
work with event-driven numerical methods and explicit transition functions, or
index-1 DAE with nonsmooth constraints aiming to rewrite the system as a dif-
ferential inclusion3 into a Lipschitz function, or a maximal monotone operator.
In this paper, we are looking to make a bridge between the state-dependent
switching DAE formalism, and the nonsmooth DAE formalism studied by DVI
[19] and MCS [1]. With this in mind, in Section 2 we first study in details the

3 A differential algebraic inclusion in the case of [9] state-dependent switching.
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well-posedness of nonsmooth DAEs obtained by a relaxation of the constraints on
a simple working example. In Section 3, we analyse how the classical nonsmooth
numerical methods perform in this context. We also propose some modification
to the numerical scheme to overcome issues observed in this context. Part of the
results presented in the Sections 2 and 3, were already briefly presented with-
out proofs in [21]. In Section 4, we study various relaxation methods to fill the
graph of the constraint by either a continuous extension of the left and right
constraints, a relaxation by multi-valued step functions, or finally a relaxation
by convexification. We also discuss their effect on the existence of solutions for
index-2 hybrid DAEs through another illustrative example. Conclusions end the
article in Section 5. Proofs and definitions are given in Appendix.

2 Analysis of a discontinuous DAE Example

Let us consider the following switching DAE:

ẋ1(t) = 1 + B1z(t)

ẋ2(t) = B2z(t)

if x1 < 0 then :

0 = −1− x1(t)− x2(t) ,

if x1 > 0 then :

0 = 1 + x1(t)− x2(t)

(9a)

(9b)

(9c)

which is a particular case of (8) with x = (x1, x2)T, A = 0, B = (B1,B2)T,
C1 = (−1,−1), C2 = (1,−1), H = (1, 0), b = (1, 0)T, (q1, q2, p) = (−1, 1, 0).
In x1 = 0, the system does not have continuous solutions whatever the active
constraint is, so we keep strict inequalities in (9).

The main objective of this article is to show that despite each DAE, considered
separately, possesses simple dynamics, the switching DAE in (9) has, on the
contrary, surprisingly complex dynamics. As exposed in the introduction, we
search to obtain absolutely continuous (AC) solutions on the switching surface
x1 = 0 by considering a set-valued relaxation of the constraint. It follows that
the switching constraints can be embedded into a set-valued constraint obtained
by convexification, or by filling-in the gap. Indeed, in a similar manner to the
regularisation of solution for switching ODE [3], we construct the nonsmooth
DAE system 

ẋ1(t) = 1 + B1z(t)

ẋ2(t) = B2z(t)

0 = λ(t)(1 + x1(t))− x2(t)

λ(t) ∈ sign(x1(t)) ,

(10a)

(10b)
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where the relaxed constraint is 0 ∈ λ(x1 + 1)− x2 with λ = sign(x1) and sign(·)
is the set-valued operator:

sign(x) =


{−1} if x < 0

[−1, 1] if x = 0

{1} if x > 0 .

(11)

The set-valued algebraic constraint in (10b) equals the ones of (9) when x1 < 0
(respectively x1 > 0), and is a convex relaxation of both in x1 = 0: that is

(x1, x2) ∈ co(

(
0
−1

)
,

(
0
1

)
) =

(
{0}

[−1, 1]

)
(see Figure 1). Let us remark that (10b)

is a particular case of (4) and will be further studied in Section 4.2 and 4.3.
If x1(t) ≤ 0 and (9b) is satisfied then we say that the nonsmooth DAE (10)

is in mode 1. In addition, if x1(t) < 0 and (9b) is satisfied then we say that (10)
is strictly in mode 1. Similarly, If x1(t) ≥ 0 and the constraint (9c) is satisfied
then we say that the nonsmooth DAE (10) is in mode 2, and strictly in mode
2 if x1(t) > 0. Finally, if x1(t) = 0 and x2(t) ∈ [−1, 1] then we say that the
nonsmooth DAE (10) is in mode 3, and strictly in mode 3 if x2(t) ∈ (−1, 1).

In Section 2.1, we first study existence of AC solutions x(t) to (10). Then, in
Section 2.2 we compare the solutions of (10) to the existing concept of solutions
applied to (9). In particular, we discuss the solutions proposed by [17] and the
conditions for the existence of a sliding motion on the switching surface x1 = 0.
Finally, in Section 2.3 we study the extension to solutions of bounded variations,
and the definition of a jump law when an AC solution cannot be continued.

Fig. 1: Phase-space representation of the constraint of (9) and (10)
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2.1 Analysis of Absolutely Continuous(AC) solutions

Let us study the conditions on the differential part (9a) of the DAE, and in
particular B1, B2 for the existence of a sliding mode along the switching surface
x1 = 0; in other words, the existence of an AC solution x1(t), x2(t) for some
arbitrary time interval and initial conditions to the following problem:

Problem 1. Let I ⊂ R a compact interval such that t0 = inf I. The problem
is to find an absolutely continuous(AC) function x(·) = (x1(·), x2(·)) on I, and
Lebesgue integrable (L1(I)) functions z(·), λ(·) such that for the nonsmooth DAE
(10) the differential part (10a) is satisfied almost everywhere, and the constraint
(10b) is satisfied everywhere, given the initial condition x(t0) = x0.

If it exists ε > 0 such that the solution exists on an interval I = [t0, t0 + ε),
the solution is called a local solution. If a local solution cannot be extended, it
is called a maximal solution. If the solution exists on I = [0, T ] for any T > t0,
then the solution is called a global solution.

Let us define the concept of feasible initial condition for Problem 1.

Definition 3 (Feasible initial condition). The initial condition x(t0) = x0

in Problem 1 is said to be feasible if it exists λ(t0) ∈ R such that{
λ(t0) ∈ sign(x1(t0))

−x2(t0) + λ(t0)x1(t0) + λ(t0) = 0.
(12)

Clearly, a feasible initial condition is a necessary condition to obtain a solu-
tion to Problem 1. The constraint (10b) in Problem 1 can be rewritten equiva-
lently as the following set-valued equation:

0 ∈ −x2(t) + |x1(t)|+ sign(x1(t))

⇔ x1(t) ∈ N [−1,1](−x2(t) + |x1(t)|) ,
(12’)

where the equivalence is obtained by using the inversion of subdifferentials of
convex lower-semicontinuous functions [22]. Thus, the original switching DAE
in (9), which is embedded in (3), is recast in a new formalism:{

ẋ(t) = Ax(t) + Bz(t) + b

0 ∈ F(x) ,
(13)

with F : Rn ⇒ R.

Proposition 1 (Local solutions to Problem 1). Let us state necessary and
sufficient conditions on B = (B1,B2)T such that Problem 1 has, at least, one
solution on [t0, t0 + ε), for some 0 < ε, and x(t0) = x0 is a feasible initial
condition.

– If (10) is strictly in mode 1 at t0, then there exists a local solution to Prob-
lem 1 if and only if

B1 + B2 6= 0 (14)
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– If (10) is strictly in mode 2 at t0, then there exists a local solution to Prob-
lem 1 if and only if

B1 − B2 6= 0 (15)

– If (10) is strictly in mode 3 at t0, then there exists a local solution to Prob-
lem 1 if and only if

B1 6= 0 (16)

– If x(t0) = (0,−1)T = A−, then there exists a local solution to Problem 1 if
and only if

B2

B1
≤ 0 (17)

– If x(t0) = (0, 1)T = A+, then there exists a local solution to Problem 1 for
all B ∈ R2.

Proof. Let us first consider the conditions of existence of solutions when strictly
in each mode: mode 1 (x1 < 0), mode 2 (x1 > 0), mode 3 (x1 = 0, x2 ∈ (−1, 1) ).
Then, we consider the conditions at the switching points A− = (0,−1)T and
A+ = (0, 1)T.

1. Assume x1(t0) < 0 for some t0 ≥ 0. Let us consider a local solution staying
in mode 1: x1(t) ≤ 0, λ(t) = −1 for all t ∈ [t0, t0 + ε] , Iε, with ε > 0. For
t ∈ Iε, an AC solution of (10) in mode 1 must satisfy almost everywhere:

−ẋ2(t)− ẋ1(t) = 0⇔ (B2 + B1)z(t) + 1 = 0

⇔ z(t) =
−1

B2 + B1
.

(18)

Therefore, z(·) is Lebesgue integrable if and only if (B2 + B1) 6= 0, and
then Problem 1 has a solution. On the contrary, we say that mode 1 is not
feasible if (B2 + B1) = 0. Let us notice (see (9) and (10)) that (B2 + B1) 6= 0
corresponds to non-singular C1B with C1 = (−1,−1). We deduce that there
exists an local AC solution in mode 1 if and only if (B2 + B1) 6= 0, and we
have

ẋ1(t) =
B2

B2 + B1
. (19)

Let us now examine the upper bound t1 such that a solution in mode 1
continues to exist. From (19), we obtain:
– If (B1 + B2)B2 ≤ 0 then ẋ1(t) ≤ 0, for all t ∈ [t0,+∞) , I∞: there is a

global solution in mode 1.
– If (B1 + B2)B2 > 0 then ẋ1(t) > 0, for t > t0. Then, for t1 =
−x1(t0)B1+B2

B2
+ t0 we have x(t1) = (0,−1) and the trajectory must

leave mode 1 in a right-neighbourhood of t by continuation in another
mode, if this is possible.

To conclude this case, a sufficient and necessary condition for existence of a
local solution of Problem 1 in mode 1 on [t0, T ] for T = t1 is:

B1 + B2 6= 0 . (20)
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2. Similarly, assume x1(t0) > 0. Let us consider a solution staying in mode 2:
x1(t) ≥ 0, λ(t) = 1 for all t ∈ Iε. Hence, for t ∈ Iε, a solution of (10) in
mode 2 must satisfy almost everywhere:

−ẋ2(t) + ẋ1(t) = 0⇔ − B2z(t) + B1z(t) + 1 = 0

⇔ z(t) =
−1

B1 − B2
,

(21)

and this mode is feasible if and only if (B1−B2) 6= 0. Similarly to the previous
case, this corresponds to non-singular C2B with C2 = (1,−1). We deduce
that there exists a local AC solution in mode 2 if and only if (B1 −B2) 6= 0,
and we have

ẋ1(t) =
−B2

B1 − B2
. (22)

Let us now examine the upper bound t1 such that a solution in mode 2
continues to exist. It follows that :

– If (B1 − B2)B2 ≤ 0 then ẋ1(t) ≥ 0, for all t ∈, I∞: there is a global
solution in mode 2.

– If (B1 − B2)B2 > 0 then ẋ1(t) < 0, for t > t0. Furthermore, for
t1 = x1(t0)B1−B2

B2
+ t0 we have x(t1) = (0, 1) and the solution can-

not be continued further in mode 2 and must leave mode 2 in a right-
neighbourhood of t by continuation in another mode, if this is possible.

To conclude this case, a sufficient and necessary condition for existence of a
local solution of Problem 1 in mode 2 on [t0, T ] for T = t1 is:

B1 − B2 6= 0 . (23)

3. Assume there exists t0 ≥ 0 such that x1(t0) = 0 and x2(t0) ∈ (−1, 1). Let us
consider a solution staying in mode 3, x1(t) = 0 and x2(t) ∈ [−1, 1], for all
t ∈ Iε. For t ∈ Iε, a solution in mode 3 must satisfies almost everywhere:

ẋ1(t) = 0⇔ B1z(t) = −1

ẋ2(t) =
−B2

B1
.

(24)

In addition, the constraint in (12) becomes λ(t) = x2(t) ∈ [−1, 1]. In a
similar way to modes 1 and 2, there exists a local solution in mode 3 if and
only if:

B1 6= 0 (25)

This corresponds to non-singular C3B with C3 = (1, 0). In addition, a so-
lution exists in mode 3 only if −1 ≤ x2(t) ≤ 1: if it reaches x2(t) = 1 or
−1 then it leaves mode 3 in a right-neighbourhood of t by continuation in
another mode, if this is possible. From (24), the solutions staying in mode 3
are either:

– Constant if B2 = 0, and there is a global solution in mode 3.
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– Going ‘downward’ if B2/B1 > 0 such that ẋ2 < 0. Then, there exists t1 ≥
t0 given by t1 = B1

B2
(1+x2(t0))+t0 such that x2(t1) = −1 and the solution

cannot stay in mode 3 in a right-neighbourhood of t1: continuation, if
any, must occur in mode 1.

– Going ‘upward’ if B2/B1 < 0 such that ẋ2 > 0. Then, there exists t1 ≥ t0
given by t1 = B1

B2
(x2(t0)− 1) + t0 such that x2(t1) = 1 and the solution

cannot stay in mode 3 in a right-neighbourhood of t1: continuation, if
any, must occur in mode 2.

4. Assume there exists t0 ≥ 0 such that x(t0) = A−. The point A− is both at
the border of mode 1, and at the border of mode 3 so there may exist a local
solution with continuation in either of these modes.
Let us first consider the case of a continuation with a local solution in mode 1,
which is equivalent to x1(t) ≤ 0 and λ(t) = −1, for all t ∈ Iε. As x1(t0) = 0,
we note from case 1 that there exists a local solution in mode 1 if and only
if ẋ1(t) ≤ 0 almost every where, and this is equivalent to

(B1 + B2)B2 ≤ 0 , (B1 + B2) 6= 0 . (26)

Let us now consider the case of a continuation with a local solution in mode
3, which is equivalent to x1(t) = 0 and x2(t) = [−1, 1], for all t ∈ Iε. As
x2(t0) = −1, we note from the ‘upward’ case 3 that there exists a local
solution in mode 3 if and only if ẋ2(t) ≥ 0 almost everywhere, and this is
equivalent to

B2

B1
≤ 0 , B1 6= 0. (27)

We can conclude that there is existence of local solution in x(t0) = A− if
and only if (26) or (27) are satisfied. Then, let us notice that any B ∈ R2

satisfying (26) also satisfies (27), and the union of these two conditions yields
(27).

5. Assume there exists t0 ≥ 0 such that x(t0) = A+. The point A+ is both at
the border of mode 2, and at the border of mode 3 so there may exist a local
solution with continuation in either of these modes.
Let us first consider the case of a local solution in mode 2, which is equivalent
to x1(t) ≥ 0 and λ(t) = 1, for all t ∈ Iε. As x1(t0) = 0, we note from case 2
that there exists a local solution in mode 2 if and only if ẋ2(t) ≥ 0 almost
every where, and this is equivalent to

(B1 − B2)B2 ≤ 0 , (B1 − B2) 6= 0 . (28)

Let us now consider the case of a local solution in mode 3, which is equivalent
to x1(t) = 0 and x2(t) = [−1, 1], for all t ∈ Iε. As x2(t0) = 1, we note from
the ‘downward’ case 3 that there exists a local solution in mode 3 if and only
if ẋ2(t) ≤ 0 almost every where, and this is equivalent to

B2

B1
≥ 0 B1 6= 0. (29)
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We can conclude that there is existence of a local solution in x(t0) = A+ if
and only if (28) or (29) are satisfied. The union of these two conditions is
satisfied for all B = (B1,B2)T ∈ R2. The proof is complete.

Let us remark that the conditions (14) and (15) in Proposition 1 are always
satisfied under the assumption that (9) respects Definition 2 and is of index-2 in
mode 1 and 2. In the remainder of this paper, we consider this is true, and we
assume that (14) and (15) are always satisfied.

Let us denote C = {x ∈ R2 sol. of (12’)} and TC(x) the contingent cone of
C at the point x, see Definition 14. For our particular example, the contingent
cone is given in the following result.

Lemma 1. The computation of the contingent cone to C at the point x0, i.e.,
TC(x0), can be separated in 5 cases as follows:

– If x0 is such that 0 = x2,0 +x1,0 + 1 and x1,0 < 0, that is x0 strictly in mode
1, then:

TC(x0) = {x ∈ R2 | 0 = x2 + x1} (30)

– If x0 is such that 0 = −x2,0 + x1,0 + 1 and x1,0 > 0, that is x0 strictly in
mode 2, then:

TC(x0) = {x ∈ R2 | 0 = −x2 + x1} (31)

– If x0 is such that 0 = x1,0 and x2,0 ∈ (−1, 1), that is x0 strictly in mode 3,
then:

TC(x0) = {x ∈ R2 | 0 = −x1} (32)

– If x0 = A−, then TC(x0), is constituted of two half lines:

TC(x0) = {x ∈ R2 | x1 = 0, x2 ≥ 0} ∪ {x ∈ R2 | x2 = −x1, x1 ≤ 0} , (33)

– If x0 = A+, then TC(x0), is constituted of two half lines:

TC(x0) = {x ∈ R2 | x1 = 0, x2 ≤ 0} ∪ {x ∈ R2 | x2 = x1, x1 ≥ 0} (34)

Proposition 2. Let x(t0) = x0 be a feasible initial condition. A necessary and
sufficient condition for a local solution to Problem 1 is:{

x0 ∈ C .
∃ z(t+0 ) ∈ R such that (1, 0)T + Bz(t+0 ) ∈ TC(x0) .

(35)

It follows that a necessary and sufficient condition for local solutions to Problem 1
is

(x(t0), ẋ(t+0 )) ∈ C × TC(x(t0)) . (36)
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Proof. Let us consider the computation of TC(x) in Lemma 1. One notices that
outside of the points A− and A+, the contingent cone is the tangent space to the
manifold associated with the constraint in (9b), (9c) or x1 = 0. Then, considering
the classical conditions for solutions of differential equations on manifold [20,
Theorem 6.2] we can assert that for an initial condition x0 ∈ C \ {A−, A+}, a
necessary and sufficient condition for the existence of a local solution to Problem
1 is: {

x0 ∈ C .
ẋ(t+0 ) ∈ TC(x0) ,

(37)

that is solution of (35).
Let us assume that x0 = A− and ẋ(t+0 ) ∈ TC(x0), with TC(x0) given in (33),

it follows that: 
ẋ1(t+0 ) = 0 , ẋ2(t+0 ) ≥ 0

or

ẋ2(t+0 ) = −ẋ1(t+0 ) , ẋ1(t+0 ) ≤ 0 .

(38a)

(38b)

If ẋ(t+0 ) satisfies (38a), then from (24), it is equivalent to B2/B1 ≤ 0 and from
(27) it is equivalent to the existence of a local solution in A− that can be contin-
ued in mode 3. Similarly, if ẋ(t+0 ) satisfies (38b), then from (19) it is equivalent
to (B1 + B2)B2 ≤ 0, (B1 + B2) 6= 0, which is equivalent, by (26), to a local
solution in A− that can be continued in mode 1. One can proceed in a similar
manner with x0 = A+ and prove that ẋ(t+0 ) ∈ TC(x0), with TC(x0) given in
(34), is a necessary and sufficient condition for the existence of local solutions
to Problem 1 with x(t0) = A+. This concludes the proof.

Remark 1. Let us notice that the condition (36) on the initialisation x(t0), and
ẋ(t+0 ) the right limit of the derivatives, is close to the one stated, for example,
in [20] for the existence of solutions to smooth DAEs where the state variables
must be initialised on a manifoldM, and the derivative4 must be in the tangent
space of M in x0. In the context of smooth DAE, such initialisation is called
consistent initialisation.

Now, let us state some additional results on the existence of global solutions
to Problem 1 for any feasible initial condition. Such solutions are especially
interesting in some modelling purposes as they characterise the possibility to
initialize the system in any mode while keeping global solutions.

Proposition 3. Problem 1 has, at least, one solution on [t0, T ), for some
T ≤ +∞, and for any feasible initial condition x0, if and only if B1, B2 satisfy:

B1 6=0

B2

B1
≤0

(B1 + B2) 6=0.

(39)

4 When considering index 2 smooth DAEs with constraint of the form g(x) = 0 similar
to our framework.
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Furthermore, the algebraic variables z(t) is function of bounded variation and
λ(t) is AC.

Proof. This proposition corresponds to conditions on (B1,B2)T such that there
is existence of local solutions in any point of the constraint set C. Then, the
resulting condition is simply provided by the intersection of all the conditions
for local solutions given in Proposition 1. We can also prove that λ(t) is AC by
referring to the case 3 of Proposition 1’s proof: if a transition occurs at t? from
mode 2 to mode 3 then x2(t?) = 1 and λ(t?) = 1. Similarly, if a transition occurs
at t? from mode 1 to mode 3 then x2(t?) = −1 and λ(t?) = −1, ensuring that
λ(t) is AC. Finally, as seen in the study of the local solutions, z(·) is constant
in each mode, and is defined to be right-continuous at mode switch. As it can
be notice that the number of events is finite, we can conclude that z(·) is of
bounded variations.

Remark 2. The above study does not prove the uniqueness of the global solu-
tions. Indeed, if x(t0) = (0,−1) there also exist two global AC solutions, one
continuing in mode 1 and one continuing in mode 3, for vectors B such that
(B1 + B2)B2 < 0 and B2/B1 ≤ 0. For example, let us consider B = (−1, 0.5)T

and x(t0) = (0,−1)T: then, there exists two global AC solutions, one continu-
ing in mode 1, with ẋ(t+0 ) = (−1, 1)T, and another continuing in mode 3 with
ẋ(t+0 ) = (0, 0.5)T.

Proposition 4 (Uniqueness of a solution to Proposition 3). Problem 1
has a unique AC global solution (x(·), λ(·)), and a unique global right-continuous
solution z(·), for any t > t0, and for any feasible initial condition x0, if and
only if B1, B2 satisfy: 

B1 6=0

(B1 + B2)B2 ≥0

(B1 + B2) 6=0.

(40)

Proof. Let us first notice that there is a unique solution if B2 = 0,B1 6= 0,
resulting in ẋ(t) = 0, and λ(t), z(t) unique and constant. Apart from the constant
case, there is a unique solution everywhere outside A− and A+. The condition
(B1 + B2)B2 > 0 is equivalent to ẋ1(t) ≥ 0 in every mode, and there is a unique
solution for x(t) in A− switching from mode 1 to mode 3, and a unique solution
in A+ switching from mode 3 to mode 2. Then, λ(t) is unique as it is AC,
unique in mode 1 and 2, and equal to x2(t) in mode 3. Finally, let us remark
that z(t) is of bounded variations and has a unique right-continuous solution at
the switching time t1 determined at t+1 by the switch from mode 1 to mode 3
described in the case 4 of the proof of Proposition 1, or by the switch from mode
3 to mode 2 described in the case 5 of the proof of Proposition 1.

Remark 3. From Remark 2 and Proposition 4 we can distinguish three categories
of solutions in Proposition 3:
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– If B2 = 0 one obtains the constant solutions, unique w.r.t. a given feasible
initial condition.

– If (B1 + B2)B2 > 0 one obtains “sliding-crossing” solutions that will cross
the switching constraint if x1(t0) < 0 by sliding on the switching surface
x1 = 0, and unique w.r.t. a given initial condition.

– If (B1+B2)B2 < 0 one obtains “sliding-repulsive” solutions that are repulsive
w.r.t to the switching surface if x1(t0) < 0 or x1(t0) > 0, but that will slide
on the switching surface if x1(t0) = 0. In particular there exist two solutions
for the initial condition x(t0) = (0,−1)T.

In Figure 2, we summarise the conditions of Proposition 3 for existence of a
global AC solution for any feasible initial condition. In addition, we illustrate
the three categories of solutions in Figures 2a and the associated conditions on
the parameters (B1,B2) are in Figure 2b.

In Proposition 3, conditions on B are given such that it exists global AC
solutions to Problem 1, for all feasible initial conditions. For the other possible
choices of B, there may exist local solutions to Problem 1, but only for a subset
of the feasible initial conditions.

Proposition 5. Let us state, the sets of feasible initial conditions x(t0) = x0

such that there exists a local solution to Problem 1 when conditions (39) are not
satisfied. In particular, we can divide this study in two groups of values for B:
{B | B1 = 0}, and {B | B2/B1 > 0,B1 6= B2,B1 6= 0}.

• Assume B1 = 0: x(t0) = x0 is a feasible initial condition such that there
exists a local solution to Problem 1 if x0 ∈ S1 with:

S1 =
{

(x1, x2) ∈ R∗− × {−x1 − 1}
}
∪ {(x1, x2) ∈ R+ × {x1 + 1}} (41)

• Assume B2/B1 > 0, B1 6= B2, and B1 6= 0. Then, x(t0) = x0 is a feasible
initial condition such that there exists a local solution to Problem 1 if x0 ∈ S2

with:
S2 = {(x1, x2) ∈ R2\{(0,−1)} | x2 ∈ |x1|+ sign(x1)} , (42)

Proof. Let us notice that the first case corresponds to a singularity of the DAE
in mode 3. It follows that initial conditions outside, or at the border, of this
mode are necessary for the existence of local solutions to Problem 1. Then,
noticing that ẋ1(t) ≥ 0 whatever the choice of B2, we remove the initial condition
x(t0) = (0,−1) which leads to the definition of S1. In the second case B2/B1 > 0,
B1 6= B2, and B1 6= 0, we deduce from the proof of Proposition 1 that any point
on the constraint set, with the exception of A− = (0,−1), is a valid feasible
initial condition for existence of local solution to Problem 1. From this, we can
define the set S2, and the proof is complete.

2.2 Comparison with existing concepts of solutions.

Let us first notice that the concept of solutions to discontinuous DAEs
proposed in [15], and which we recalled in Section 1.2, yields no sliding
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(a) In red (dashed line) the “sliding-repulsive” solutions, and in green (full line) the
“sliding-crossing”solutions as defined in Remark 3

.

(b) As defined in Remark 3, the red cones (B2(B1 +B2) < 0) are the sets of parameter-
ization (B1,B2)T leading to “sliding-repulsive” solutions. For example, B = (−1, 0.5)
is such parameterization. The green cones (B2(B1 + B2) > 0) are the sets of parame-
terization (B1,B2)T leading to “sliding-crossing” solutions. For example, B = (−0.5, 1)
is such parameterization.

Fig. 2: The conditions for existence of AC solutions given in Proposition 3 are
given by the union of the the red and green cones.
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solution to our problem as there is no continuous z(·) solution to (6) for
our particular system (9) in case of switching. Now, let us compare the
sliding mode solutions from mode 3 with the Filippov solutions [11] of the
discontinuous ODE obtained by index reduction of the DAE in each mode:
(9b) in mode 1 (x1 < 0) and (9c) in mode 2 (x1 > 0). The construction
of such reduced solutions for discontinuous DAEs is close to the one de-
fined in [17]. After the index reduction, the “left-hand” vector field f1(·)
(for x1 < 0) and “right-hand” vector field f2(·) (for x1 > 0) are given by:

f1(t,x(t)) =

(
B2

B1+B2
−B2

B1+B2

)
(43) f2(t,x(t)) =

(
−B2

B1−B2
−B2

B1−B2

)
(44)

Let us observe from the analysis in cases 1 and 2 in the proof of Proposition
1 that ż(t) = 0 in mode 2 and mode 1. The variable z(t) changes its value only
after switching.

In the “sliding-repulsive” solutions case (see Remark 3), the switching ODE
resulting from the index reduction yields the same sliding mode (using Filippov
concept of solutions) than the one we obtain in the case 3 of Section 2.1. Indeed,
in every point of the switching surface x1 = 0, there exists a sliding solution
associated with the vector field f0(x) = co({f1(x), f2(x)}) ∩ {x ∈ R2|x1 = 0}. It
follows that the solutions obtained by [17] correspond to the same solutions we
obtain by our relaxation of the switching constraint with a generalised equation.
A particular example with B=(-1,0.5) is shown in Figure 3b.

In the particular case of “sliding-crossing” solutions (see Remark 3), the
index reduced system does not lead to any sliding motion as co({f1(x), f2(x)})
does not intersect the switching surface. The solutions do not stay on the surface
x1 = 0, and due to the index reduction, the constraint in x1 > 0 is not satisfied
anymore if x1(t0) < 0. In particular, we need an explicit transition function
(re-initialization rule) for the continuation of the solution as in [17] following
the guidelines for sliding mode detection. The sliding solution, which we obtain
using our relaxation, is not retrieved by the concept of solutions from [17]. A
particular example with B = (−0.5, 1) is shown in Figure 3a.

Let us note that the approach of convexifying the “left-hand” and “right-
hand” reduced DAEs has already been shown problematic for some cases in [16].

2.3 Analysis of solutions with jumps

Let us study the existence of discontinuous solutions when no continuation with
an AC solution exists after some time tj . For example, this is the case if the
trajectory reaches the point A− in Figure 2a with B2/B1 > 0. Solutions with
discontinuities make sense in a context where quite different time-scales exist in
the same system. In particular, this may be found in mechanical systems with
impacts [8], or in circuits with ideal diodes or set-valued electronic components
[1].
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(a) Example of solution with B = (−0.5, 1) which corresponds to solutions crossing the
switching surface. The vector field of the reduced system is in black, and its convex
hull is given in red.

(b) Example of solution with B = (−1, 0.5) which corresponds to repulsive solutions
along the switching surface. The vector field of the reduced system is in black, and its
convex hull is given in green.

Fig. 3: Both figures are examples of “Filippov convexification” applied to the
“reduced” DAE. The top figure represents the case of crossing-solutions and the
bottom figure represents the case of repulsive-solutions (see Remark 3).
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2.3.1 Analysis of jump dynamics

The analysis of the dynamics with state jumps requires specific mathematical
tools to describe the continuous time dynamics. First, the state x will be assumed
to be of bounded variations (BV), see Definition 9. This functional setting is often
well justified from a modelling point of view. The time derivative of a function of
bounded variations is not defined in the usual sense at the discontinuity point.
However, BV functions have a countable set of jump points. To give a correct
meaning to the derivative, we resort to differential measures [2,18], that is a
specification of the derivative in the distributional sense of a BV function. Let
us denote dx the differential measure associated with the BV function x(t).
Using the Lebesgue decomposition of measures on the real line, a differential
measure can be decomposed as

dx = ẋ(t)dt+
∑
i

(x(t+i )− x(t−i ))δti + dxc (45)

where dt is the usual Lebesgue measure, ẋ(t) is the usual time derivative of x
existing dt-almost-everywhere, δti the Dirac measure supported at t = ti, and
dxc is the measure such that ẋ(t)dt + dxc is the absolutely continuous part of
the decomposition of dx.

We first introduce the problem in terms of measure differential inclusions
(MDI) (46) associated with (10) (see [18] for theoretical aspects of MDIs).

Problem 2. Let I = [t0, T ] be a time interval such that T > t0. The problem is
to find a BV function x(t) = (x1(t), x2(t)) on I, and a differential measure dΛz
such that 

dx1 = dt+ B1dΛz

dx2 = B2dΛz

0 ∈ − x2(t) + |x1(t)|+ sign(x1(t)) ,

(46a)

(46b)

is satisfied, in the sense of measures, given the initial condition x(t−0 ) = x0.
In addition, we wish to construct solutions x(t) that jump at some time tj if
and only if there is no continuous solution in x(t−j ): i.e., there is no solution to

Problem 1 in x(t−j ). From Proposition 2 this is can be expressed by the additional
condition:

@ z(t+j ) ∈ R , s.t. (1, 0)T + Bz(t+j ) ∈ TC(x(t−j )) . (47)

The continuous and the discrete parts of the measure dΛz are identical to
those of dx. We can also write a Lebesgue decomposition

dΛz = z(t)dt+
∑
i

σz,iδti + dzc , (48)

with σz,i the jump amplitude at time ti. For the sake of readability, we simply
denote σz,i = σz. From the decomposition, we get a smooth dynamics that is
equivalent to (10) dt-almost everywhere, and an algebraic problem that partly
defines the jump at impact time tj , that is defined by the following problem:
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Problem 3 (Jump algebraic problem). Let us consider the dynamics from (46).
Let us assume that the left limit x(t−j ) is given and satisfies the constraints:

0 ∈ λ(t−j ) + |x1(t−j )| − x2(t−j ), λ(t−j ) ∈ sign(x1(t−j )). (49)

The jump algebraic problem is to solve the generalized equation with unknown
x(t+j ), λ(t+j ), and σz:

x1(t+j )− x1(t−j ) = B1σz

x2(t+j )− x2(t−j ) = B2σz

0 ∈ λ(t+j ) + |x1(t+j )| − x2(t+j )

λ(t+j ) ∈ sign(x1(t+j )).

(50)

It is noteworthy that writing a set-valued constraint with right-limits is a
quite natural thing to do if we assume that the solutions are right-continuous at
jumps5, and it also allows us to study continuation after the jumps (see Section
2.3.3).

Multiplying the first and second lines of (50) by B2 and B1, respectively, one
can eliminate σz in (50) which can be rewritten as:

B2

(
x1(t+j )− x1(t−j )

)
= B1

(
x2(t+j )− x2(t−j )

)
0 ∈ λ(t+j ) + |x1(t+j )| − x2(t+j )

λ(t+j ) ∈ sign(x1(t+j )) .

, (51)

Note that for now we do not enforce conditions for existence of a continuous solu-
tion at t+j immediately after the jump: we only define jump solutions respecting

both formulation with the measures, and the index-2 constraint at t+j .

2.3.2 Solvability of the jump algebraic problem

Let us give a first result on the solvability of Problem 3.

Proposition 6 (Solvability of Problem 3). Let tj be a any instant and let
x(t−j ) be a given value that satisfies the condition (49) at t−j . The solutions

(x(t+j ), λ(t+j ), σz) of Problem 3 can be characterised as follows:

1. If B1 6= 0:
(a) if B2/B1 < −1 there is a unique solution,
(b) if B2/B1 ≥ −1 there are either one or several solutions depending on

x(t−j ).
2. If B1 = 0

(a) if x1(t−j ) = 0, there are infinitely many solutions,

(b) if x1(t−j ) 6= 0, there is only one solution.

5 A property which is satisfied in jumping systems with solutions of bounded variations
[18].
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See Appendix A.2 for the proof.

Remark 4. Let us remark that if there is a unique solution then this solution sat-
isfies x(t+j ) = x(t−j ) and σz = 0 (cf. the proof of Proposition 6 in Appendix A.2).
However, such result hides various behaviours in terms of solution to Problem
2. For example, if B2/B1 ∈ (−1, 1) and x(t−j ) = (0,−1)T then there is a unique

solution solution to the algebraic jump Problem 3 and x(t+j ) = x(t−j ) (cf. case
(b) of the proof of Proposition 6 in Appendix A.2). This can be further separated
into two sub-cases. If B2/B1 ∈ (−1, 0], then from Proposition 1 there exists an
AC solution in this point x(tj) = (0,−1)T, and the solution σz = 0 to the jump
algebraic problem (50) is not a hinder to obtain a solution to the Problem 2.
However, if B2/B1 ∈ (0, 1), then there no AC solution in x = (0,−1) to Problem
1 as it is shown in Proposition 5: in this case the unique solution σz = 0 to
the jump dynamic implies there is no solution to the Problem 2, even though in
Problem 2 we consider an extension to solutions x(t) of bounded variations.

In the next Section 2.3.3, we search to provide an additional condition on
the jump dynamics (50) to ensure the existence of an AC solution after a jump.
In addition, it will restrain Problem 3 solutions, in particular when σz = 0, to
the ones allowing the existence of a solution to Problem 2.

2.3.3 Analysis of consistent jumps

Let us now study what are the possible jumps such that an AC solution exists
in the right-neighbourhood of tj , after the jump has occurred. They are called
consistent jumps. Let us define them more formally.

Definition 4 (Consistent jumps). A consistent jump at time t+j is defined as

a solution (x(t+j ), λ(t+j ), σz) of Problem 3 such that a local solution of Problem 1

exists for the initial condition x(t+j ).

In Proposition 5, we expose the set of feasible initial conditions where there
there exists a solution to Problem 1. Then, we give the set of consistent jumps
as defined in Definition 4 as the set of reachable point in Proposition 5 given the
jump dynamics from Problem 3.

Proposition 7. Let us consider x(t−j ) that satisfies (49). The set of points x(t−j )
such that there is no continuation to the right with an AC solution, is equal to
P = P1 ∪ P2 with:

P1 =
{
x ∈ R2 | x1 = 0, x2 ∈ [−1, 1)

}
, if B1 = 0 , (52)

and

P2 =
{
x ∈ R2 | x = (0,−1)T = A−

}
, if

B2

B1
> 0, B1 6= 0 . (53)

Then, it follows that:

a). If x(t−j ) ∈ P1 and B1 = 0, then x(t+j ) = A+ is the only consistent jump.
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b). If x(t−j ) ∈ P2, B2/B1 > 0, B1 6= 0, and B2 − B1 ≤ 0, then there is no
consistent jump.

c). If x(t−j ) ∈ P2, B2/B1 > 0, B1 6= 0, and B2 − B1 > 0, then x(t+j ) =(
2B1

(B2−B1)
, (B1+B2)
(B2−B1)

)T
is the only consistent jump.

Proof. Let us first notice that the sets P1 and P2 can be easily obtained as the
complementary sets in C = {x ∈ R2 sol. of (12’)} to, respectively, S1 and S2 in
Proposition 5.
a). Assume B1 = 0 and consider x(t−j ) ∈ P1. From Proposition 5, there is a

consistent jump if x(t+j ) ∈ S1 in (41). From (51), if x1(t−j ) = 0 and B1 = 0, it

follows that x1(t+j ) = 0 and the only only solution in S1 is x(t+j ) = A+.

b) and c). Assume B2/B1 > 0, B1 6= 0 and x(t−j ) ∈ P2. Under this
assumption, Equation (51) is:

0 ∈ sign
(
x1(t+j )

)
+ |x1(t+j )| − B2

B1

(
x1(t+j )

)
+ 1 . (54)

Then, the solutions of (54), which are the possible jumps from x(t−j ) ∈ P2, are
simply the intersections between the constraint c(x1) = |x1|+ sign(x1) (in blue
in Figure 4) and the real line l(x1) = (B2/B1)x1 − 1 (in black in Figure 4).

b). If (B2−B1) ≤ 0, then there is a unique jump solution (x1(t+j ), x2(t+j )) =

(0,−1)T = A− which is not in S2 in (42): there is no consistent jump.
c). If (B2 − B1) > 0, then there are two jump solutions: one in

(x1(t+j ), x2(t+j )) = A− that is not consistent, and a consistent one in S2, with

(x1(t+j ), x2(t+j ))T =
(

2B1

(B2−B1)
, (B1+B2)
(B2−B1)

)T
. The proof is now complete.

The next result is a consequence of Proposition 7.

Corollary 1. There is no local solution to Problem 2 if and only if:

x(t−0 ) = A−, B2/B1 > 0,B1 6= 0, (B2 − B1) ≤ 0. (55)

Now, let us provide necessary and sufficient conditions for the existence of a
consistent jump using the contingent cone condition from Proposition 2.

Proposition 8. A necessary and sufficient condition for the solution
(x(t+j ), λ(t+j ), σz) of Problem 3 to be a consistent jump is: there exists γ ∈ R,
such that 

x(t+j )− x(t−j ) = Bσz(
1
0

)
+ Bγ ∈ TC(x(t+j ))

0 ∈ λ(t+j ) + |x1(t+j )| − x2(t+j )

λ(t+j ) ∈ sign(x1(t+j )) ,

(56)

with TC(x(t+j )) as defined in Lemma 1.
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Fig. 4: Solutions of the GE (54) associated with jumps from x(t−j ) = (0,−1)T

for various choices of B = (B1,B2)T.

Proof. Let us observe from Proposition 2, that (x(t+j ), (1, 0)T + Bγ) ∈ C ×
TC(x(t+j )) is a necessary and sufficient condition for the existence of a local

solution to Problem 1 in x(t+j ), which concludes the proof.

3 Analysis of an event-capturing backward Euler scheme

Backward (implicit) Euler schemes have proved to be efficient schemes for the
simulation of nonsmooth dynamical systems [1,2]. Therefore, let us now consider
the backward Euler discretization of the system (10) as follows:

x1,k+1 − x1,k = h(1 + B1zk+1)

x2,k+1 − x2,k = hB2zk+1

0 ∈ sign(x1,k+1) + |x1,k+1| − x2,k+1 ,

(57)

with h > 0 the time step. For the sake of simplicity, we choose a fixed time step,
h = T

N , where [0, T ] is the interval of integration and N the number of fixed
steps.

3.1 Well-posedness of the backward Euler discretization

One sees that (57) has a structure quite close to (46), which puts the backward
scheme in a favourable perspective for the computation of solutions with jumps.
This is the aim of the further analysis.
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Using the same method as in the previous section, we can eliminate zk+1,
and we obtain the GE:{

B2(x1,k+1 − x1,k) = hB2 + B1(x2,k+1 − x2,k)

0 ∈ sign(x1,k+1) + |x1,k+1| − x2,k+1 .
(58)

Proposition 9 (Well-posedness of the Backward Euler one-step prob-
lem (58)). Let us characterise the existence and uniqueness of solutions to the
Backward Euler one-step problem (58) for various values of the parameteriza-
tion6 B = (B1,B2)T.

1. If B1 6= 0:
(a) if B2/B1 < −1, there is a unique solution to (58) whatever the size of

the time step h > 0.
(b) if B2/B1 ∈ (−1, 0], there are either one, or several solutions depending

on xk and h.
(c) if B2/B1 ∈ (0, 1), there are either none, one, or several solutions de-

pending on xk and h.
(d) if B2/B1 > 1, there are either one, or several solutions depending on xk

and h.
2. If B1 = 0:

(a) if x1,k = −h, there are infinitely many solutions.
(b) if x1,k 6= −h, there is only one solution

The complete proof can be found in Appendix A.3. From Proposition 9 and its
proof, we deduce a relation in-between the lack of solution of the Euler one-step
problem (58) for any h > 0, and the non-existence of local solution to Problem
2 (see Corollary 1). This result is given in Corollary 2.

Corollary 2. If there is no solutions to the backward Euler one-step problem
(58) for all h > 0, then B2/B1 ∈ (0, 1) and xk = A−, and there is no solution
to Problem 2 in xk.

3.2 Minimal implicit Euler discretization

As we have seen in Section 3.1, the classical implicit Euler discretization may
output multiple solutions, for h > 0 as small as wanted. One needs to improve the
implicit Euler discretization to select the discrete solution close the continuous-
time solution. To this aim, we propose a minimisation over the results of the
backward Euler scheme.

Definition 5. Let us consider a non-smooth DAE system (10). The minimal
norm backward Euler scheme is to find at each time step xk+1, solution of:

xk+1 := argminx ‖x− xk‖ ,
s.t. x1 − x1,k = h(1 + B1z)

x2 − x2,k = hB2z

0 ∈ sign(x1) + |x1| − x2 .

(59)

6 Let us recall that we assume B1 + B2 6= 0 and B1 − B2 6= 0.
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Although the implicit Euler scheme outputs multiple solutions, as long as
one of the solutions is still on the same constraint as xk, we know this solution
is an O(h) approximation. Now, let us prove this always occurs if xk is a AC
consistent initial condition for our particular example.

Proposition 10 (Consistency of the Minimal Backward Euler scheme
for Problem 1.). Consider the non-smooth DAE system from (10). If there
exists a solution x(t) that is AC on an interval [t0, t0 + ε], then there exists
a time step h > 0 such that the minimal norm backward Euler scheme (59)
provides a consistent discrete solution to (10). This means that given xk = x(tk)
then

∥∥xk+1 − x(tk + h)
∥∥→ 0 when h→ 0.

The complete proof can be found in Appendix A.4.

Remark 5 (Necessary conditions of optimality). The optimisation problem
solved in Definition 5 is a mathematical program with equilibrium constraints
(MPEC). Under the assumption of a mixed linear complementarity problem
(MLCP) representation of the generalised equation in (59), necessary conditions
of optimality depend on some constraint qualifications. We refer to [27] as a
reference on this question. In the simulations presented in Section 3.3, we ad-
dress this problem in a naive way by simply enumerating all the solutions and
selecting the one of minimal norm, since the aim is to show the experimental
convergence of such method for this problem.

3.3 Implementation and numerical results

In this section, we expose some simulation results of the minimal implicit Euler
scheme (59) on the example studied in the previous sections. In particular, we
show through experiments on the example associated with (10) that if there
exists at least one continuous solution, then (59) converges in O(h) to one of
these solutions. Furthermore, if the discretization (57) yields a unique solution
for any step size, then it converges in O(h) to the unique solutions of (10).

Implementation has been performed using Siconos 4.2.0 [4], a platform for
numerical simulation of non-smooth dynamical systems. The code of these simu-
lations can be found in the github repository associated with the Siconos exam-
ples7. In this section, performance results are not discussed as the optimisation
problem in (59) is currently solved by enumeration of all8 the solutions of the
generalised equation associated with the classical implicit Euler scheme (57). A
way to implement this problem is to use a Linear Complementarity Problem
(LCP) formulation (see Definition 19) to represent the non-smooth component
of the constraint (12). Then, the constraint (12) can be expressed as an LCP
with an additional equality constraint, that is, a Mixed Linear Complementarity

7 https://github.com/siconos/siconos-tutorials/tree/master/.sandbox/code IFAC
8 In the considered cases limited to three solutions.
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Problem (MLCP) as follows:
0 = − x2 + |x1|+ α

0 ≤ |x1|+ x1 ⊥ |x1| − x1 ≥ 0

0 ≤ x−1 ⊥ α ≥ −1

α ≤ 1 ⊥ x+1 ≥ 0 ,

(60)

with α ∈ sign(x1). This yields a Mixed Linear Complementarity System
(MLCS)9: 

1 0 0
0 1 0
0 0 0

ẋ1(t)
ẋ2(t)
ż(t)

 =

 1 + B1z(t)
B2z(t)

x1 − x2 + 1 + λ1(t)− λ2(t)


0 ≤ 2x1(t) + λ1(t) ⊥ λ1(t) ≥ 0

0 ≤ λ3(t) + x1(t) ⊥ λ2(t) ≥ 0

0 ≤ 2− λ2(t) ⊥ λ3(t) ≥ 0

(61)

with λ = (λ1, λ2, λ3) =
(
|x1| − x1, 1− α, x−1

)
.

Some numerical results can be found in Figure 5 and Figure 6. In these figures,
we consider the particular case of sliding-crossing solutions (here B = (−0.5, 1)T)
where uniqueness of AC solutions and discrete solutions is guaranteed. We notice
that the resulting solutions in x(t) are Lipschitz continuous, and run through all
the modes (the initial condition is taken with x1(t0) < 0). In Figure 7, the error
term ‖x(T )− xN‖ is depicted as a function of the step size h. The term xN is
the numerical approximation of x(T ) by the minimal implicit Euler numerical
scheme (59) when the interval [t0, T ] is subdivided in N steps of size h. In the case
of sliding-crossing solutions, we choose B = (−0.5, 1)T, x0 = x(t0) = (−5, 4),
and T = 10. In the case of sliding-repulsive solutions, we choose B = (−1, 0.5)T,
x0 = x(t0) = (0, 0), and T = 10. Time step sizes are taken equally spaced in
log-scale. We observe the first order convergence of the implicit Euler scheme
when there is uniqueness of the numerical solutions. In addition, we also observe
a first order convergence of the minimal implicit Euler scheme when there is
non-uniqueness of the discrete solution (for any time step) as it is shown in Fig
7 on the curve associated with the sliding-repulsive case. Finally, we also test a
variant of the studied example where the dynamic ẋ(t) = Bz(t) + b is replaced
by ẋ(t) = Ax(t) + Bz(t) + b, with

A =

(
0 1
−1 0

)
, B =

(
−1
0.5

)
. (62)

Some results are exposed in Figures 8, 9, and convergence on some experiments
is also in O(h) as it can be seen in Figure 7.

9 Please note that this LCP formulation is not unique as it depends of the naming
convention for the λi variables.
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Fig. 5: Phase space plot in (x1, x2) of the numerical solutions for the sliding
crossing case, B = (−0.5, 1)T, and h = 0.9, h = 0.3, or h = 0.003. Initial
condition is x0 = (−5, 4)T.

Fig. 6: Time plots of the sliding-crossing solutions x1(t) and x2(t) for B =
(−0.5, 1)T and h = 0.9, h = 0.3, or h = 0.003. Initial condition is x0 = (−5, 4).
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Fig. 7: Error ‖x(t)− xN‖ with respect to time step h. We consider the two kind
of AC solutions: the sliding-crossing solutions and the sliding-repulsive solutions.

4 Relaxation of switching linear equality constraints

In this section, we analyse three relaxation strategies applied to switching equal-
ity constraints in order to generate a new constraint whose associated solution
set is path-connected (see Definition 18 in Appendix A.1). In Section 4.1, the
possibilities of a simple continuous bond of both sides of the switching con-
straint is formalised by the switching constraint connected (SCC) relaxation; in
Section 4.2, we study the so-called multivalued step operator (MSO) relaxation
(which is (4) with set-valued step functions); in Section 4.3, a closed convex hull
(CCH) relaxation (which can be seen as an extension of Filippov’s regularisa-
tion of switching ODEs to switching constraints) is analyzed. In particular, in
every section we discuss a few examples stemming from the piecewise-linear DAE
(see Definition 1), and the generalisation of the example in Section 2, that is, a
piecewise-linear DAE with switching equality constraints, defined by switching
hyperplanes.

Referring to Definition 2, we restrict ourselves to piecewise-linear DAEs with
a single switching. A particular example of such piecewise DAEs was studied in
Section 2. In this section, we mainly discuss properties of various relaxations of{

0 = g1(x) = C1x + p1 , if h(x) = Hx + q < 0

0 = g2(x) = C2x + p2 , if h(x) > 0 ,

(63a)

(63b)

where x ∈ Rn1 , CT
i=1,2 and HT ∈ Rn1 , pi=1,2 and q ∈ R. Let us define Ng1 , Ng2 ,

and Nh, the solution sets associated with the constraints (63a), (63b), and the
switching surface h(x) = 0:

Ng1 = {x ∈ Rn1 | g1(x) = C1x + p1 = 0} , (64)
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Fig. 8: Phase space plot in (x1, x2) of the numerical solutions for B = (−1, 0.5),
A given in (62), and h = 0.9 or h = 0.3. Initial condition is x0 = (0, 0).

Fig. 9: Time plots of the solutions x1(t) and x2(t) for B = (−1, 0.5), A given in
(62), and h = 0.9 or h = 0.3. Initial condition is x0 = (0, 0).
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Ng2 = {x ∈ Rn1 | g2(x) = C2x + p2 = 0} , (65)

Nh = {x ∈ Rn1 | h(x) = Hx + q = 0} . (66)

Let us remark that Ng1 , Ng2 , and Nh are the zero spaces associated with the
functions g1(·), g2(·), and h(·), respectively.

We wish to study relaxation strategies in order to transform the switching
surface into a sliding mode, and to enable the existence of paths in-between the
“left-hand” constraint (63a) and the “right-hand” constraint (63b). To this aim,
let us assume that both (64) and (65) intersect, not necessary at the same points,
the switching surface (66):

Ng1 ∩Nh 6= ∅ and Ng2 ∩Nh 6= ∅ . (67)

Finally, let us define the solution set of the switching constraint (63), G by

G = {x ∈ Rn1 that solves (63)}. (68)

4.1 Switching Constraint Connected (SCC) relaxation

The objective of the first relaxation is to define the extended constraint of the
form : {

0 = C1x + p1 , if Hx + q ≤ 0

0 = C2x + p2 , if Hx + q ≥ 0 ,
(69)

We do not enter in the details of the state-dependent switching DAE as in Defi-
nition 1, and only consider its switching constraint. However, let us remark that
the path connectivity of the constraint solution set is a necessary condition (as-
suming (67)) for the existence of continuous solutions, in the sense of Proposition
3, to state-dependent switching DAE with constraints such as in (63).

Proposition 11 (Switching Constraint Connected (SCC) relaxation).
Let S be the set of solutions to the linear system:

S = {x ∈ Rn1 | 0 = C1x + p1; 0 = C2x + p2; 0 = Hx + q} . (70)

If S is non-empty, we define the Switching Constraint Connected (SCC) relax-
ation by the union of the switching constraint solution set G with S, such that

He = G ∪ S = {x ∈ Rn1 that solves (69)} (71)

Then, He is path-connected.

Proof. Let xs be any point in S. Let α be any point satisfying (63a), meaning
0 = g1(α) and h(α) < 0. Similarly, let β be any point satisfying (63b), meaning
0 = g2(β) and h(β) > 0. Then, there is a path from α to xs since Ng1 is a
hyperplane and S is not empty. The same is true from xs to β. Finally, by
transitivity we can build a path from α to β, which proves that the solution set
of (69) is path-connected.
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We will now provide some illustrating examples of switching constraints.

Example 1.a. First, let us consider the trivial switching constraint:{
0 = x2 , if x1 < 0

0 = x2 , if x1 > 0 .
⇐⇒ x ∈ G . (72)

In this example, C1 = (0, 1), C2 = (0, 1), H = (1, 0), and (p1,p2, q) = (0, 0, 0).
The set G can be obviously extended in x1 = 0 by x2 = 0 as given by the solution
of (70) applied to this example to obtain

He =

{
(x1, x2)T ∈ R2,

{
0 = x2 , if x1 ≤ 0

0 = x2 , if x1 ≥ 0

}
= xs = (0, 0)T .

(73)

This is depicted in Figure 10. Although this example seems trivial, as both
constraints are the same on either side of the discontinuity, some unexpected
results arise when applying the formula from (4), as we will see Section 4.2. �

Example 2.a. Let us now consider the switching constraint associated with the
example (9) from Section 2:{

0 = − 1− x1 − x2 , if x1 < 0

0 = 1 + x1 − x2 , if x1 > 0 .
(74)

In this example, C1 = (−1,−1), C2 = (1,−1), H = (1 0), and (p1,p2, q) =
(−1, 1, 0). The problem (70) has no solution, and the set G cannot be extended
by a SCC relaxation in the sense of Proposition 11 to a path connected set He.
This is depicted in Figure 11. �

Example 3.a. Finally, let us consider the next switching constraint for x ∈ R3:{
0 = 1 + x1 + x2 , if x3 < 0

0 = − 1− x1 + x2 , if x3 > 0 .
(75)

In this example, C1 = (1, 1, 0), C2 = (−1, 1, 0), H = (0, 0, 1), and (p1,p2, q) =
(1,−1, 0). For this example, the problem (70) has a unique solution xs =
(−1, 0, 0) and the graph of the constraint can be extended to give

He =

{
(x1, x2, x3)T ∈ R3 ,

{
0 = 1 + x1 + x2 , if x3 ≤ 0

0 = − 1− x1 + x2 , if x3 ≥ 0

}
. (76)

This is depicted in Figure 12. �
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Fig. 10: This figure depicts the various relaxations applied to Example 1.a. In
red, the point xs is obtain by the continuous extension, the CCH relaxation as
well as the MSO relaxation with the choice of normal C1. In green, we notice
the MSO relaxation with the choice of normal C′1.

Fig. 11: This figure depicts the various relaxations applied to Example 2.a. In red,
the CCH relaxation as well as the MSO relaxation with the choice of normal C1

is represented. In green, we notice the MSO relaxation with the choice of normal
C′1.



On discontinuous DAE: concept of solutions and a case study well-posedness 33

Fig. 12: This figure depicts the various relaxations applied to Example 3.a. Only
the section on the switching surface x3 = 0 is represented. It follows that the
symbol

⊙
indicates that the x3 axe is oriented toward the reader. The SCC

relaxation is given by the point xs = (−1, 0, 0)T in black. The red cones are the
the MSO relaxation with the choice of normal vector C1 (see Example 2.b). The
green cone are the MSO relaxation with the choice of normal vector C′1. The
CCH relaxation is the whole surface x3 = 0 and is not represented.
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4.2 Multivalued Step Operator (MSO) relaxation

Let us now define a new kind of relaxation in the context of this section, the
relaxation of switching constraints (4) where s(·) is the set-valued step operator.

Definition 6 (Multivalued Step Operator (MSO) relaxation). The Mul-
tivalued Step Operator (MSO) relaxation of a switching constraint (63) is given
by the roots of the GE:

0 = (1− λ)g1(x) + λg2(x) , (77)

where λ ∈ s(h(x)) and s(·) is the multivalued step function:

s(x) =


{0} if x < 0

[0, 1] if x = 0

{1} if x > 0

(78)

The MSO relaxation defines the set Hs associated with the constraints by

Hs = {x ∈ Rn1 | 0 = (1− λ)g1(x) + λg2(x), λ ∈ s(h(x))} . (79)

In Definition 6, we relax the constraint on the switching surface by the set
Hs defined as the intersection of points satisfying (77) and the switching surface
included in the zero space Nh defined by (66).

The MSO relaxation is the one intuitively built to combine two functions,
and a similar approach has already been taken in the context of switching ODEs
to combine two vector fields along a switching surface. In [24], the authors apply
a similar relaxation to exogenous switching DAEs by using smooth step, or sign
functions approximation (respectively the sigmoid or the hyperbolic tangent)
instead of a multivalued operator. However, the results of such relaxation in
term of dimension and path-connectivity of Hs are hard to predict. In particu-
lar, in Examples 1.b, 2.b and 3.b, we show that for each problem two possible
relaxations can be defined by simply considering equivalent formulations10 of the
switching constraints. Furthermore, we note that in the Example 2.b, associated
with the constraint of Section 2’s example, an equivalent switching constraint
can be considered whose relaxation in not path-connected.

Remark 6. We can also remark that solutions xs of (70) are included in the ones
of (77) as it can be trivially observed that if 0 = g1(x) and 0 = g2(x) then
0 = (1− λ)g1(x) + λg2(x) for all λ.

Example 1.b. Let us consider the switching constraint from Example 1.a. The
GE built by the MSO relaxation is:

0 = (1− λ)x2 + λx2 , λ ∈ s(x1) . (80)

10 With respect to the solution set of the constraint.
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This equation can trivially be reduced to x2 = 0 and we retrieve the real line, as
with the continuous extension from Example 1.a. In x1 = 0, the set of solutions
is {λ ∈ [0, 1], x2 = 0} which is of dimension 0 in the plane (x1, x2). Let us now
consider the equivalent switching constraint:{

0 = −x2 , if x1 < 0

0 = x2 , if x1 > 0 .

(81a)

(81b)

In (81a), the equality constraint x2 = 0, has been replaced by the equivalent
−x2 = 0. This corresponds to the change of normal vector from C1 to C′1 =
(0,−1) as shown in Figure 10. The GE that corresponds to the relaxation of
(81) yields:

Hs = {x ∈ R2, 0 ∈ x2(2λ− 1) , λ ∈ s(x1)} . (82)

The set of solutions in x1 = 0 is {λ = 1/2, x2 ∈ R} ∪ {λ ∈ [0, 1/2], x2 = 0},
which is larger than the one of (80), and is of dimension 1 in the plane (x1, x2).
This is exposed in green in Figure 10. Although the solutions set of (82) is still
path-connected, the fact that x2 ∈ R is solution in x1 = 0 may allow multiple
solutions to a DAE in this point. �

Example 2.b. Let us now consider the switching constraint from Example 2.a,
which is the same as the one studied in Section 2. As seen in (10) and Figure
1, the graph of the relaxation is path connected. In fact, for this example and
Example 1.a, on the switching surface, the graph of the relaxation is the closure
of the convex hull of the extended left and right constraints. However, we will
see in Examples 3.b and 3.c that this may not always be the case. In Figure
11, we represent the switching constraint (74) in blue with the relaxation in
x1 = 0 in red. Again, in a similar way to the previous example, we now consider
an equivalent switching constraint where one of the equality constraints is re-
written with the opposite normal C′1 = (1 1) instead of C1 = (−1 − 1), that
is {

0 =x1 + x2 + 1 , if x1 < 0

0 = x1 − x2 + 1 , if x1 > 0 .
(83)

The MSO relaxation associated with (83) is:

Hs = {x ∈ R2, 0 ∈ x1 + x2 + 1− 2λx2 , λ ∈ s(x1)} . (84)

Let us now study the behaviour in x1 = 0. Let us assume that x2 ≥ 0. Then, as
λ ∈ [0, 1] this yields the inclusion 0 ∈ [−x2+1, x2+1] and this implies that x2 ≥ 1.
Similarly, let us assume that x2 ≤ 0, then it follows that: 0 ∈ [x2 + 1,−x2 + 1]
and x2 ≤ −1 is necessary. As a conclusion, the set Hs is not path-connected, it
is represented in green in Figure 11. This prevents the existence of AC solutions
switching from one mode to the other one. �

Example 3.b. Finally, let us consider the MSO relaxation on the switching
constraint of Example 3.a. This example is a bit more complex since dim(x) = 3,



36 A. Rocca, V. Acary, B. Brogliato

with a switching surface orthogonal to each mode’s hyperplane. The resulting
GE yields:

Hs = {x ∈ R3, 0 ∈ 1 + x1 + x2 − 2λ(x1 + 1) , λ ∈ s(x3)} . (85)

If x1 + 1 ≥ 0 and x3 = 0, we obtain the enclosure:

0 ∈ [x2 − x1 − 1, 1 + x1 + x2] . (86)

This implies that solutions in the switching surface for (x1 + 1) ≥ 0 are such
that x2 ≤ x1 + 1 and x2 ≥ −(x1 + 1). This is the right red cone in Figure 12.
Similarly, if x1 + 1 ≤ 0, we then obtain:

0 ∈ [1 + x1 + x2, x2 − x1 − 1] . (87)

The solutions are such that x2 ≥ x1 + 1 and x2 ≤ −(x1 + 1). This is the left red
cone in Figure 12. The graph of the relaxation on the switching surface x3 = 0 is
composed of two cones. The setHs is still path connected, and is larger compared
to the SCC relaxation, He from Proposition 11. As in the Examples 1.b and 2.b
we can consider the equivalent switching constraint:{

0 =− x2 − x1 − 1 , if x3 < 0

0 = x2 − x1 − 1 , if x3 > 0 .
(88)

The relaxation yields:

Hs = {x ∈ R3, 0 ∈ −x2 − x1 − 1 + 2λx2 , λ ∈ s(x3)} . (89)

Similarly, the set of solutions is composed of two cones. If x2 ≥ 0, then x2 ≥
−x1 − 1 and x2 ≥ x1 + 1 the top green cone in Figure 12. If x2 ≤ 0, then
x2 ≤ −x1− 1 and x2 ≤ x1 + 1 that is the bottom green cone. In this example, it
is even harder to select a “correct representation” between equivalent switching
constraints as both relaxations are path connected and very similar in shape.
Moreover, none of the relaxation defines a convex set on the switching surface
unlike what we observed on the simpler planar examples. �

Remark 7. Let us observe that the MSO relaxation proposed in (77) appears to
be the limit of the smooth singularly perturbed relaxation:

0 = (1− λ(α,x))g1(x) + λ(α,x)g2(x) , (90)

where λ(α,x) is a smooth approximation of the multivalued step operator s(·)
that converges to s(·) as α → ∞. In Figures 13 and 14, we plot the singularly
perturbed versions of the Example 2.b and the Figure 11.
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Fig. 13: Example 2.b smooth version of (12).

Fig. 14: Example 2.b smooth version of (84).
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4.3 Closed Convex Hull (CCH) relaxation

In Section 4.2, we have seen that although the relaxation (77) seems to be the
limit of the singularly perturbed relaxation (90) and has been used in previous
works for switching ODEs, it may be hazardous to use it without further argu-
ments. Indeed, two equivalent switching constraints may be relaxed differently.
In the example in Section 2, we noticed that the relaxation (77) yields the same
graph as a convex relaxation of the “left-hand” and “right-hand” constraints on
the switching surface (in a similar manner to a Filippov relaxation in switching
ODEs). In this section, we study and discuss this convex relaxation.

Definition 7 (Closed Convex Hull (CCH) relaxation). Let us consider S−
the set of solutions associated with the intersection of the continuous extension
of the left constraint and the switching hyperplane:

S− = {0 = C1x + p1 = g1(x) and 0 = Hx + q = h(x) } . (91)

Similarly, let us consider S+ the set of solutions associated with the intersection
of the continuous extension of the right constraint and the switching hyperplane:

S+ = {0 = C2x + p2 = g2(x) and 0 = Hx + q} . (92)

We define the Closed Convex Hull (CCH) relaxation of the switching constraint
as : 

{x ∈ Rn1 | 0 = g1(x)} , if h(x) < 0

x ∈ co(S−,S+) , if h(x) = 0

{x ∈ Rn1 | 0 = g2(x)} , if h(x) > 0 .

(93)

which defines the set Hc as

Hc = {x ∈ Rn1 that solves (93)} . (94)

Proposition 12. The set Hc from Definition 7 is path-connected.

Proof. This is can be easily verified since the convex set co(S−,S+) is path-
connected and one can use a transitivity argument of the path-connectivity sim-
ilar to the one in the proof of Proposition 11 to obtain the path-connectivity of
Hc.

Again, this relaxation can be applied to the various examples from Section
4.1 and Section 4.2.

Example 1.c. Let us first consider the switching constraint (72) from Example
1.a and its equivalent alternative (81) in Example 1.b. The sets S− and S+
are the same point xs = (0, 0), and the convex hull is the singleton {xs}. The
CCH relaxation has the benefit to be independent of the choice of the constraint
normal vectors C1 and C2. �
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Remark 8. While in Section 4.2 the relaxation is the zero space of a convex
combination of two affine applications, which does not have a clear structure,
in the CCH relaxation, we construct a convex combination of the zero spaces of
two affine applications. This definition is independent of the choice of the affine
application as long as their zero spaces are the same. In particular in Example
1.c, f : x 7→ x2 and f ′ : x 7→ −x2 have the same zero space, and changing the
representation of the “left-hand” constraint does not influence the relaxation.

Example 2.c. For the example considered in Section 2, the switching surface
given by the CCH relaxation is the set {x1 = 0, x2 ∈ [−1, 1]}, whatever the
choice of the normal vectors, unlike in Example 2.b. �

Example 3.c. Let us emphasize, in this example, that the CCH relaxation is
not necessarily included in one of the possible solutions of the MSO relaxation
from Definition 6. Indeed, when applying the CCH relaxation of Definition 7
to the switching constraints from Examples 3.a and 3.b, we obtain consistently
the whole hyperplane {(x1, x2, x3) ∈ R3 | x3 = 0}. In this particular case, the
solution set of the MSO relaxed constraint are included in the CCH relaxation.�

As seen in these examples, the CCH relaxation provides a consistent way to
fill-in the graph of the constraint. However, unlike the automatic representation
by a generalised equation in Definition 6, we need additional work to rewrite the
solution set as the solution of an closed-form generalised equation.

4.4 Discussion

In the Section 4.1, 4.2, and 4.3 we have presented three different relaxation
methods that may be used to obtain a path-connected constraint. Let us now
discuss the effect of each relaxation on the actual solutions of state-dependent
switching DAE. In the foregoing examples, only the examples 3.a, 3.b, and 3.c,
yield different solution sets for each relaxation. Consequently, in order to put
more emphasis on the differences between these relaxations, let us consider the
switching constraint (75).

Example 3.d. Let us consider the switching constraint (75) from Example 3.a
in the context of a state-dependent switching DAE. For the purpose of comparing
the three possible relaxations, let us define the state-dependent switching DAE:

ẋ1 = 1− 2z

ẋ2 = z

ẋ3 = 1− 0.5z

0 = 1 + x1 + x2 , if x3 < 0

0 = − 1− x1 + x2 , if x3 > 0 .

(95a)

(95b)

(95c)

Unlike Section 2, we will not detail all the possible solutions for each relaxation,
but we will only highlight a particular case where each successive relaxation
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allows a greater set of solutions. Let us assume that x3(0) < 0, it follows from
(95a) and (95b) that z(0) = 1. On the “left-hand” constraint (95b), the solutions
x(t) are given by: 

x1(t) = − t+ x1(0)

x2(t) = t+ x2(0)

x3(t) = 0.5t+ x3(0) .

(96)

Since we are interested in the differences for each solution at the switching on
the sliding surface, we study the set of initial conditions in x(·) such that there
exists a sliding motion on the surface x3 = 0. Let us notice that ẋ3(t) > 0 in (96):
if there is no sliding solution, then there is no AC solution x(t) after t′ > 0 with
x3(t′) = 0. Let us first recall from Example 3.a that there exists on the switching
surface a set S = {(−1, 0, 0)} that is solution of (70). From Proposition 11, we
can build an SCC relaxation Hs, and an associated relaxed DAE.

ẋ1 = 1− 2z

ẋ2 = z

ẋ3 = 1− 0.5z{
0 = 1 + x1 + x2 , if x3 ≤ 0

0 = − 1− x1 + x2 , if x3 ≥ 0 .

(97)

It can be immediately noticed that there exists an AC solution x(·) reaching the
switching surface at t′ > t0 only if (x1(t′), x2(t′)) = (−1, 0) when x3(t′) = 0.
From (96) we notice this is possible if and only if the initial conditions are on
the half-line:

Ia =

x ∈ R3 | x =

 1
−1
−0.5

u+

−1
0
0

 , u ≥ 0

 . (98)

For any other initial conditions, under the assumption x3(0) < 0, there is no
solution for t′ > 0 such that x3(t′) = 0.

Let us now consider the MSO relaxation (77) applied to this problem. As
seen in Example 3.b, the choice of the constraint normal vector in the switching
constraint representation is critical, as the graph of the relaxation may change
on the switching surface (see Figure 12). There exists a sliding solution on
the switching surface x3(t) = 0 if and only if z(t) = 2, and it follows that
(ẋ1(t), ẋ2(t)) = (−3, 2). It appears that apart from the initial conditions inside
Ia in (98), we can extend the set of initial conditions to obtain a sliding mo-
tion. However, this is only in the case for the switching constraint (88) where
C ′1 = (−1,−1, 0). Using the relaxed constraint (89) we obtain the switching
DAE: 

ẋ1 = 1− 2z

ẋ2 = z

ẋ3 = 1− 0.5z

0 ∈ − x2 − x1 − 1 + 2λx2 , λ ∈ s(x3) .

(99)
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Then, the set of initial conditions such that there exists a sliding motion can be
extended to Ib in (100) and solutions can slide temporarily in the cone x2 ≤ 0,
x2 ≤ −x1 − 1, and x2 ≤ x1 + 1 (bottom green cone in Figure 12).

Ib =
{
x ∈ R3 | x3 < 0 , x2 ≤ 2x3 , x2 = −x1 − 1

}
. (100)

It is interesting to note that for the dynamics given in (99) the solutions slide a
finite amount of time on the surface x3(t) = 0, and inevitably reach the “right-
hand” constraint (95c) and continue on it.

Finally, let us consider the CCH relaxation in (93), i.e.,


ẋ1 = 1− 2z

ẋ2 = z

ẋ3 = 1− 0.5z

x ∈ H′c ,

(101)

H′c = {x ∈ R3 | x = (1− λ) (A1u + b1) + λ (A2u
′ + b2) , λ ∈ s(x3)} , (102)

where u′,u ∈ R2, A1 =

 1 0
−1 0
0 1

, A2 =

1 0
1 0
0 1

, b1 = b2 = (−1, 0, 0)T. As stated

in Example 3.c, the solution set of this relaxation on the switching surface is the
whole plane x3 = 0. Then, the whole “left-hand” constraint (95b) defines the set
initial values Ic in (103) such that there exists sliding motion. However, some
solutions may never leave the sliding surface as they may not intersect the right
constraint.

Ic =
{
x ∈ R3 | x3 < 0 , x2 = −x1 − 1

}
. (103)

Overall, for this example the CCH relaxation (93) is the less constraining, but
may define too large a set if the goal is to reach the right constraint as this may
be intended for modelling purpose. �

To summarise, this example demonstrates that each relaxation has pros and
cons. The simplest SCC relaxation from Proposition 11 is independent of the
representation of the constraint, but also has the smallest set of valid initial
conditions for the existence of continuous solutions. Furthermore, the SCC re-
laxation may not always have solutions (see Example 2.a). The MSO relaxation
(Definition 6) is dependent on the choice of the constraint representation. How-
ever, assuming the correct representation, this relaxation produces a transitory
sliding surface while keeping the uniqueness of the solutions. Finally, on this
particular example the CCH relaxation from Definition 7 ensures the existence
of solutions, and is independent from the constraint representation. However,
the uniqueness of the solutions is lost and some solutions may never leave the
sliding surface.



42 A. Rocca, V. Acary, B. Brogliato

5 Summary and Conclusion

5.1 Summary

Throughout this article, we propose a concept of (AC) solutions for state-
dependent switching DAEs. We define solutions by considering a path-connected
relaxation on the switching surface of the “left-hand” and “right-hand” algebraic
constraints. In particular, three different strategies are introduced to obtain such
relaxation. The CCH relaxation from Section 4.3 can be understood as a Filippov
relaxation of the constraints on the switching surface. The MSO relaxation from
Section 4.2 can be understood as a Filippov in the narrow-sense (or Aizerman-
Pyatnitskiy) relaxation of the constraints on the switching surface. And, the SSC
relaxation from Section 4.1 can be related to a Caratheodory extension of the
constraints on the switching surface.

In the Section 2, we first consider a simple example of state-dependent switch-
ing DAE where the discontinuous constraint has been relaxed using the CCH
relaxation, or the MSO relaxation. Using this example we show, in Section 2.1,
that we can now construct AC solutions crossing the switching surface, and
obtain a sliding motion. In addition, we also show that in this context the con-
tingent cone can be used to obtain necessary and sufficient condition for the
existence of local AC solutions. Furthermore, in this example, the contingent
cone acts similarly to the tangent space in the concept of solutions for smooth
DAEs. Using our concept of solution based on the constraints relaxation, we
obtain well-posed solutions named “sliding-crossing” solutions.

In Section 2.3, we extend the study to solutions of bounded variations in order
to discuss the problem of jumping solutions, or re-initialisation, when there is no
possible continuation with an AC solution in some point of the relaxed constraint.
In order to analyse this re-initialisation problem, we first study in Section 2.3.1,
the jump dynamic boiling down from the measure representation of the state-
dependent switching DAE. Then, we study in Section 2.3.3 the consistent jumps
that define valid re-initialisation points, and we introduce an associated jump
law using the contingent cone to the solution set of the relaxed constraint.

In the Section 3.1, we study the solutions of the implicit Euler numerical
scheme for the simulation of our newly defined solutions. This event-capturing
scheme has proven to be an efficient method for the simulation of non-smooth dy-
namical system such as Linear complementary system (LCS), but is also widely
use for the simulation of index-2 linear DAE. We show that the implicit Euler
scheme cannot be used as reliable method for the simulation of such system.
In Section 3.2, we provided a refinement of the Euler scheme to address the
observed problems. Further properties of this numerical scheme are provided
through additional simulations in Section 3.3.

In the Section 4, we expose three concepts of solutions associated with three
strategies to relax the constraint on the switching surface. We show in Section
4.2, that the intuitive MSO relaxation, that is the convex combination of the
“left-hand” and “right-hand” constraints, may not necessarily result in a path-
connected relaxation. On the other hand in Section 4.3, the CCH relaxation,
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that is a “Filippov-like” relaxation of the constraints, always provides a path-
connected relaxation. Finally, we discuss the variety of different solutions as well
as the pros and cons of each concept of solutions in Section 4.4.

5.2 Conclusion

Overall, in this paper we explored, through various examples, new concepts of
solutions for state-dependent switching DAEs of index-2. We show that these new
methods may help to provide additional well-posed solutions to such system,
which can be studied using classical mathematical tools, and simulated using
some improvement of the well-known implicit Euler scheme. However, we also
show that providing general results on such solutions will be a difficult problem
as these new constraints cannot always be expressed in a reliable mathematical
framework, where well-posedness can be more easily studied, such as MLCS or
differential inclusion. In order to further extend the results, various paths are
possible. The first one is to study when a relaxed constraint is equivalent to an
MLCP, or an inclusion into a maximal monotone operator such as in [9]. For
example, one can investigate whether or not the constraint can be rewritten in
absolute normal form (ANF) [23]. Then, an MLCP conversion exists and can
be studied. Another research path is to look further into the role played by the
contingent cone, which seems similar to the tangent space for classical DAEs.
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A Appendix

A.1 Notations and Definitions

Vectors of real variables x = (x1, . . . , xi, . . . , xn)T in Rn are noted in bold. In
the context of algebraic differential systems, the variables x and y will denote
differential variables, while z will denote algebraic variables. In the context of
non-smooth expressions, we will in general denote as λ the Lagrange multipliers.
Finally, for a given function f : R → Rn we denote f(t+) the right limit of f(·)
at t:

f(t+) = lim
τ→t
τ>t

f(τ) .

Definition 8 (Absolute Continuity). Given a compact interval I = [t1, t2] ⊆
R, a function f : I → R is absolutely continuous (also noted AC) on I if and
only if the following property holds: f has a derivative ḟ a.e. (almost everywhere),
the derivative is Lebesgue integrable, and

f(t) = f(t1) +

∫ t

t1

ḟ(τ)dτ ,

for all t in[t1, t2].

Definition 9 (Bounded Variation). Let us consider an interval I 6= ∅, I ⊂ R.
Let P denotes the set of finite partitions of I, each partition PN associated with
nodes t0 < t1 < · · · < tN . The variation of a function x : I → X on a partition
PN of I is defined by:

var(x, I) = sup
PN∈P

N∑
i=1

‖x(ti)− x(ti−1)‖ , (104)

The function x(·) is of bounded variations (BV) on I if and only if var(u, I) <
+∞

We now introduce important tools of convex analysis we will use in the study
of variational equations:

Definition 10 (Normal cone). Let K ⊆ Rn be a closed non-empty convex set.
The normal cone to K at x ∈ K is the convex set:

NK(x) = {d ∈ Rn|〈d,y − x〉 , ∀y ∈ K}
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Definition 11 (Subdifferential). A vector γ ∈ Rn is said to be a subgradient
of a proper lower semi-continuous convex function f(·) at a point x if it satisfies:

f(y)− f(x) ≥ γT(y − x) ,

for all y ∈ Rn. The set of all subgradients of f(·) at x is the subdifferential of
f(·) at x and is noted ∂f(x).

Definition 12 (Conjugate Function). Let us consider f : Rn → (−∞,+∞].
The conjugate of f is f∗ : Rn → [−∞,+∞] such that:

f∗(y) = sup
x∈Rn

(〈x,y〉 − f(x)) ,∀y ∈ Rn . (105)

Definition 13 (Indicator function). The indicator function of a set K ⊆ Rn,
ψK : Rn → R ∪ {+∞}, is defined by :

ψK(x) =

{
0 , if x ∈ K

+∞ , if x /∈ K

If K is a closed, non-empty convex set, then ψK(x) is convex proper lower
semi-continuous and ∂ψK = NK(x).

Definition 14 (Contingent Cone). The contingent cone or Bouligand tan-
gent cone to a set K ⊂ X is given by:

TK(x0) = {x ∈ X | ∃{tn} ∈ R, {xn} ⊂ X, with tn ↓ 0 , (tn > 0),

and xn → x, s.t. x0 + tnxn ∈ K, ∀n ∈ N}
(106)

Definition 15 (Consistency11 of a numerical method). Given a numerical
method of the form:

yk+1 = yk + hkf(tk,yk, hk) for all k ≥ 0, t0 = 0, tk+1 = tk + hk (107)

This numerical method is said to be consistent for a DAE with y(0) = y0, if for
any solution of this DAE the consistency error

N−1∑
k=0

‖y(tk+1)− y(tk)− hkf(tk.y(tk), hk)‖ (108)

tends to 0 when h = max
0≤k≤N

hk tends to 0.

Definition 16 (Connected Sets). A topological space C is said to be discon-
nected if it is the union of two disjoint non-empty open sets. Otherwise, C is
said to be connected.

11 Please note the difference with the notion of consistent initial conditions.
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Definition 17 (Path). Let us assume that C is a non-empty subset of Rn and
that x and y ∈ C. Then a continuous function f : [0, 1]→ C where f(0) = x and
f(1) = y is called a path in C from x to y.

Remark 9. For two points x, y ∈ C, let us denote x ∼ y the relation: there exists
a path between x and y. Then, the relation ∼ is an equivalence relation on C:

– x ∼ x
– If x ∼ y then y ∼ x
– If x ∼ z and z ∼ y then x ∼ y.

Definition 18 (Path-Connected Sets). A subset C of Rn is said to be path-
connected if and only if, for all x, y ∈ C, there is a path in C from x to y: there
exists a continuous function f : [0, 1]→ C where f(0) = x and f(1) = y.

Definition 19 (Linear Complementarity Problem). A Linear Comple-
mentarity Problem (LCP) is a set of equations:

w = Mλ+ q

0 ≤ w ⊥ λ ≥ 0 ,
(109)

where the complementarity equation 0 ≤ w ⊥ λ ≥ 0 means 〈w, λ〉 = 0, for all
w, λ ≥ 0. Let us remark that an LCP (109) has a unique solution if and only if
M is a P-matrix (i.e., all its principal minor are positive).

A.2 Proof of Proposition 6

Proof.
• Assume B1 6= 0, then (51) can be further reduced into:

0 ∈ sign
(
x1(t+j )

)
+ |x1(t+j )| − B2

B1

(
x1(t+j )− x1(t−j )

)
− x2(t−j ) , (110)

which is a generalised equation (GE) of the form:

0 ∈ f(x) + F(x) , (111)

where F : R ⇒ R is the maximal monotone operator sign(·), f : R → R is a
continuous function, and x = x1(t+j ). In particular, here we have:

f(x) = ax+ b|x|+ c , (112)

with a = −B2

B1
, b = 1, and c = B2

B1
x1(t−j ) − x2(t−j ). We can first notice that

by assumption, x(t−j ) is solution of (110), and it follows that in this particular
context of jump dynamics there is always existence of solutions. However, we
will give a more in-depth study of the solutions of (112) in a general context, as
it will prove to be useful for the study of numerical solutions in Appendix A.3.
Let us now study the conditions for existence and/or uniqueness of solutions to
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such GE. For the sake of briefness, proofs will be given in a succinct manner
using Figure 15 as a support.

Assume a− b 6= 0 and a+ b 6= 012. Then, depending on the signs of a− b and
a+ b, we define an associated continuous piecewise-linear function h(y).

(a) Let us first consider a− b > 0 and a+ b > 0, which is equivalent to B2/B1 <
−1, and define h(y) = f−1(x) with h(y) = (y − c)/(a − b) if y ≤ c and
h(y) = (y − c)/(a + b) if y ≥ c. As we will see, an important point is that
under this assumption, h(·) is a continuous function with domain R.
We note that sign(x) = ∂|x|, and the conjugate of g(x) = |x| is g∗(x) =
ψ[−1,1](y) (see Definition 12 and 13). It follows [22] that the inverse of sign(x)
is N [−1,1](y) = ∂ψ[−1,1](y) (see Definition 10). Consequently, the solutions
of the GE (111) can be obtained by solving the inverse problem:

0 ∈ h(y) +N [−1,1](y) , (113)

with N [−1,1](y) the normal cone to [−1, 1] at y. This is the canonical form
of a generalised equation as analysed in [10]. Finally, h(·) is continuous on
R and as [−1, 1] is a compact set in R, it follows from [10, Corollary 2.2.5]
that there is always existence of solutions to the GE (113) (and equivalently
(110)).
Additionally, [10, Theorem 2.3.3] provides sufficient conditions for unique-
ness: if h(·) is strictly monotone on [−1, 1] then equation (113) has at most
one solution. Strict monotonicity of h(·) holds if and only if a + b > 0 and
a− b > 0, as it can be seen using the green lines in Figure 15. Furthermore,
we already know that the trivial solution x(t+j ) = x(t−j ) always exists: if

there is a unique solution then this solution is x(t+j ) = x(t−j ), and σz = 0.
We have proved that a − b > 0 and a + b > 0 are sufficient conditions for
existence and uniqueness of solutions to (112). In addition, these sufficient
conditions do not depend on c and consequently do not depends on x(t−j ).
However, they are not necessary conditions.

(b) Indeed, let us now consider the case where a− b < 0 and a+ b > 0, which is
equivalent to B2/B1 ∈ (−1, 1). Then, we can try to build another “piecewise
linear function” h(y) by inverting the equation y = ax+b|x|+c for all x ∈ R.
If x ≤ 0, y = (a − b)x − c that is x = (y − c)/(a − b) if y ≥ c. Similarly,
if x ≥ 0 then y = (a + b)x + c and x = y−c

a+b if y ≥ c. It follows that h(·)
is a multi-valued operator defined on [c,+∞): it corresponds to the red line
(a − b) < 0 and the green line (a + b) > 0 in Figure 15. Consequently, if
c > 1 there are no solutions as the domains of h(·) and N [−1,1](·) do not
intersect. If c ≤ 1, there is either a unique solution for c = 1, or multiple
solutions if c < 1 as (y − c)/(a − b) intersects the normal cone both in
y = −1 and y = c. As x(t−j ) satisfies (49), and consequently σz = 0 is always
a solution, we know by construction that c ≤ 1. However, it also possible

12 The case a− b = 0 (respectively a+ b = 0) corresponds to parameterization in mode
1 (respectively mode 2) where the DAE is not regular and C1B (respectively C2B)
is singular.
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to prove it by computing c for all the values of x1(t−j ). From the definition

of c, from (49), and B2/B1 ∈ (−1, 1), we obtain c ∈ (0, 2x1(t−j ) + 1), and

c ≤ 1 if x1(t−j ) < 0. Similarly, if x1(t−j ) = 0, we compute c ∈ [−1, 1]. If

x1(t−j ) > 0 then c ∈ (−2x1(t−j ) − 1, 0). It follows that the case where there

is the uniqueness of solution for c = 1 corresponds to x(t−j ) = (0,−1)T.
Finally, a similar reasoning can be done for the case with a − b > 0 and
a+ b < 0. However, we notice this last case is not possible if b = 1 as in the
particular example (110).

(c) In the case where a− b < 0 and a+ b < 0 (which is equivalent to B2/B1 >
1), the associated piecewise-linear function h(y) is continuous over R (this
corresponds to the red lines in Figure 15), and again using [10, Corollary
2.2.5] we can prove there is always existence of solutions, independently of
c. Under these assumptions on a − b and a + b, it can be proved using
the respective graphs of the functions h(·) and −N [−1,1](·) that there is
uniqueness if and only if c > 1 (intersection of (y − c)/(a + b) with the
normal cone in y = −1) or c < 1 (intersection of (y − c)/(a − b) with the
normal cone in y = 1). Again, these conditions for uniqueness of solutions
translate into x1(t−j ) < −2/(1 + B2/B1) < 0 or x1(t−j ) > 2/(B2/B1−1) > 0.

Fig. 15: Solutions of the the GE (113) for various signs of (a+ b) and (a− b). In
green an example of case (a) from the proof of Proposition 6 is depicted. In red,
an example of case (b). Case (c) is constituted of a mix between the top and the
bottom of the red and green graphs.

• Assume B1 = 0, then from (50) it follows that:
x1(t+j ) = x1(t−j )

x2(t+j ) = x2(t−j ) + B2σz

x2(t+j ) ∈ |x1(t−j )|+ sign(x1(t−j )) .

(114)
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We note that if x1(t−j ) 6= 0 there is a unique solution, since |x1(t−j )|+sign(x1(t−j ))

is uniquely defined on R\{0}. If x1(t−j ) = 0, then there are multiple solutions

(infinitely many) with x2(t+j ) ∈ [−1, 1]. The proof is complete.

A.3 Proof of Proposition 9

Proof.
• If B1 6= 0, then we obtain the GE:

0 ∈ −B2

B1
x1,k+1 + |x1,k+1|+

(
−x2,k +

B2

B1
(x1,k + h)

)
+ sign(x1,k+1) . (115)

Sufficient conditions for uniqueness are the same as in Appendix A.2, identifying:

f(x1,k+1) = −B2

B1
x1,k+1 + |x1,k+1|+

(
−x2,k +

B2

B1
(x1,k + h)

)
, (116)

with a = −B2

B1
, b = 1, and c = (−x2,k + (B2/B1)(x1,k + h)).

(a) Let us first consider the case a − b = −(1 + B2/B1) > 0 and a + b = 1 −
B2/B1 > 0, which is equivalent to the set of vectors B such that B2/B1 < −1.
This also corresponds to case (a) in Appendix A.2. In this case, there is
existence and uniqueness to the GE (115), as we can use the same arguments
we used in the case (a) of Appendix A.2. Furthermore, the condition a−b > 0
excludes the constant solutions with B2 = 0 where there is not necessarily
uniqueness of the solution.

(b) Let us now consider the case (a − b) < 0 and (a + b) > 0, that is B2/B1 ∈
(−1, 1). The study of this case is itself separated in two part: B2/B1 ∈ (−1, 0]
and B2/B1 ∈ (0, 1).

If B2/B1 ∈ (−1, 0], there is always existence of a discrete solution, as it can be
proven that c ∈ [−1, 1] for all xk satisfying (12) and any h > 0. Furthermore,
there is uniqueness if c = 1, for some h big enough, respectively small enough,
depending of the sign of x1,k. However, it is also possible to have multiple
solutions whatever the choice of h ≥ 0, in which case the implicit Euler
scheme is not consistent with solutions of Problem 1 (see Definition 15) and
this is illustrated in Figure 16.

If B2/B1 ∈ (0, 1), we have seen in Appendix A.2 case (b) that there is either
non-existence, existence, or existence and uniqueness. There is non-existence
of solution to the implicit Euler scheme when c > 1: this corresponds to a
time step size h such that there is no maximal solution to Problem 2 in
x(t−0 ) = xk for the interval [t0, t0 + h]. In particular, in xk = A− there is no
solution for all h > 0 and this corresponds to the case B2 < B1 in Figure
4. There is existence of solutions (but not uniqueness) for c < 1. Finally,
uniqueness occurs when c = 1 which happens for some values of h and xk
suitably chosen.
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(c) If a− b < 0 and a+ b < 0, which correspond to B2/B1 > 1, there is always
existence of solutions to the discrete scheme, and it can be proven using
arguments similar to Appendix A.2 case (c). In particular, there is a unique
solution in two cases: c > 1 or c < −1. The case c > 1 corresponds to h > 0
(or x1,k > 0) sufficiently large, and the case c < −1 corresponds to h > 0 (or
x1,k < 0) sufficiently small. As noted above, outside these cases where there
are unique solutions, there is existence but uniqueness fails. In particular, as
it can be seen in Proposition 5, in the case where B2/B1 > 1, there exists a
local AC solution to Problem 1 everywhere except in A− = (0,−1)T.

Fig. 16: Example of non consistent Euler scheme with multiple solutions whatever
the choice of h ≥ 0.

• If B1 = 0, we obtain the system:


x1,k+1 = h+ x1,k

hB2z = x2,k+1 − x2,k
x2,k+1 ∈ sign(h+ x1,k) + |h+ x1,k| .

Then, for all x1,k 6= −h there is a unique solution corresponding to either the
continuous (Problem 1) or the discontinuous one with a jump (Problem 2).
If x1,k = −h, there is a non unique solution x2,k+1 ∈ [−1, 1]. The proof is
complete.
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A.4 Proof of Proposition 10

Proof. In this proof, we show that the solution of the Backward Euler scheme of
the linear DAE in each mode is a solution of (57) if a local AC solution exists to
Problem 1. The consistency of the minimal Euler (59) follows from the fact that
this foregoing solution associated with a single mode is consistent and bounds
the solution of the minimal Euler Scheme.

Case 1. Let us assume that x(tk) = xk is in mode 1, and that is exists an
AC solution in mode 1. The existence of an AC solution in mode 1 implies
B1 + B2 6= 0, and if x1,k = 0, it implies, furthermore, that (B1 + B2)B2 ≤ 0. Let
us consider the following solution of the Backward Euler Scheme for the DAE
in mode 1: 

x1,k+1 = x1,k + h
B2

B1 + B2

x2,k+1 = x2,k − h
B2

B1 + B2

zk+1 =
−1

B1 + B2

(117)

If x1,k < 0, then x1,k+1 < 0 for sufficiently small h, and (x1,k+1, x2,k+1, zk+1)
is a solution of (57) since the generalised equation reduces to 0 = −1−x1,k+1−
x2,k+1. If x1,k = 0, then x1,k+1 < 0 for sufficiently small h if (B1 + B2)B2 < 0.
This latter condition is ensured by the existence of an AC solution that continues
strictly in mode 1, and again, (x1,k+1, x2,k+1, zk+1) is a solution of (57). Finally, if
B2 = 0, (x1,k+1, x2,k+1, zk+1) provides us with a trivial constant solution of (57).

Case 2. Let us assume that x(tk) = xk is in mode 2, and that is exists an
AC solution in mode 2. The existence of an AC solution in mode 2 implies
B1 −B2 6= 0, and if x1,k = 0, it implies, furthermore, that (B1 −B2)B2 ≤ 0. Let
us consider the solution of the Backward Euler Scheme applied to the DAE in
mode 2: 

x1,k+1 = x1,k − h
B2

B1 − B2

x2,k+1 = x2,k − h
B2

B1 − B2

zk+1 =
−1

B1 − B2

(118)

If x1,k > 0, then x1,k+1 > 0 for sufficiently small h, and (x1,k+1, x2,k+1, zk+1)
is a solution of (57). If x1,k = 0, then x1,k+1 > 0 for sufficiently small h if
(B1 − B2)B2 < 0. This latter condition is ensured by the existence of a solution
that continues strictly in mode 2. In this case, (x1,k+1, x2,k+1, zk+1) is a solu-
tion of (57). Finally, if B2 = 0, (x1,k+1, x2,k+1, zk+1) provides us with a trivial
constant solution of (57).

Case 3. Let us assume that x(tk) = xk is in mode 3, and that is exists an AC
solution in mode 3. The existence of an AC solution in mode 3 implies B1 6= 0.
Furthermore, it implies that B2/B1 ≤ 0 if x2,k = −1 or B2/B1 ≥ 0 if x2,k = 1.
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Let us consider the following solution of the Backward Euler Scheme for the
DAE in mode 3: 

x1,k+1 = 0

x2,k+1 = x2,k − h
B2

B1

zk+1 =
−1

B1

(119)

If x2,k ∈ (−1, 1), then we have x2,k+1 ∈ (−1, 1) for sufficiently small h. The gen-
eralised equation in (57) reduces to x1,k+1 = 0, and then (x1,k+1, x2,k+1, zk+1)
is a solution of (57). If x2,k = −1, then we have x2,k+1 > −1 if B2/B1 < 0,
and this is ensured by the existence of an AC solution in mode 3. Again,
(x1,k+1, x2,k+1, zk+1) is a solution of (57). The same reasoning applies for
x2,k = 1. Finally, if B2 = 0, (x1,k+1, x2,k+1, zk+1) provides us with a trivial
constant solution of (57).

Summary In all the cases, we found a solution of the Backward Euler Scheme,
such that z̄k+1 is bounded provided that there exists a local AC solution starting
from x(tk). We can then conclude that

‖xk+1 − xk‖ = h‖
(

1
0

)
+Bzk+1‖ = O(h) (120)

and from

‖xk+1 − x(tk + h)‖ ≤ ‖xk+1 − x̄k‖+ ‖xk − x(tk + h)‖ (121)

that limh→0 ‖xk+1 − x(tk)‖ = 0 if the solution is AC. To conclude the proof, we
note that

‖xk+1 − x(tk + h)‖ ≤ ‖xk+1 − x(tk + h)‖ (122)

by the definition of xk+1 as the minimal solution in (59).
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