
HAL Id: hal-02384583
https://inria.hal.science/hal-02384583

Submitted on 28 Nov 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Wrangling in the Power of Code Pointers with ProxyCFI
Misiker Tadesse Aga, Colton Holoday, Todd Austin

To cite this version:
Misiker Tadesse Aga, Colton Holoday, Todd Austin. Wrangling in the Power of Code Pointers with
ProxyCFI. 33th IFIP Annual Conference on Data and Applications Security and Privacy (DBSec),
Jul 2019, Charleston, SC, United States. pp.317-337, �10.1007/978-3-030-22479-0_17�. �hal-02384583�

https://inria.hal.science/hal-02384583
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

Wrangling in the Power of Code Pointers
with ProxyCFI

Misiker Tadesse Aga, Colton Holoday, and Todd Austin

University of Michigan, Ann Arbor, USA
{misiker,choloday,austin}@umich.edu

Abstract. Despite being a more than 40-year-old dark art, control flow
attacks remain a significant and attractive means of penetrating appli-
cations. Control Flow Integrity (CFI) prevents control flow attacks by
forcing the execution path of a program to follow the control flow graph
(CFG). This is performed by inserting checks before indirect jumps to
ensure that the target is within a statically determined valid target set.
However, recent advanced control flow attacks have been shown to un-
dermine prior CFI techniques by swapping targets of an indirect jump
with another one from the valid set.
In this article, we present a novel approach to protect against advanced
control flow attacks called ProxyCFI. Instead of building protections
to stop code pointer abuse, we replace code pointers wholesale in the
program with a less powerful construct – pointer proxies. Pointer proxies
are random identifiers associated with legitimate control flow edges. All
indirect control transfers in the program are replaced with multi-way
branches that validate control transfers with pointer proxies. As pointer
proxies are uniquely associated with both the source and the target of
control-flow edges, swapping pointer proxies results in a violation even
if they have the same target, stopping advanced control flow attacks
that undermine prior CFI techniques. In all, ProxyCFI stops a broad
range of recently reported advanced control flow attacks on real-world
applications with only a 4% average slowdown.

Keywords: CFG mimicry attacks · CFI · Pointer proxy

1 Introduction

For more than four decades, control flow attacks, in which attackers force pro-
grams into executing code sequences not anticipated by the developer, have
played an important role in the infiltration of vulnerable systems. These attacks
are particularly attractive to attackers because they immediately give them the
agency necessary to deploy attack payloads, leak important information, em-
bed a rootkit, launch an additional attack such as privilege escalation, etc. As
such, there has been much attention paid to reducing a system’s vulnerability
to control flow attacks.

Early measures to stop control flow attacks include StackGuard [16], data
execution prevention (DEP) [2] [1] and address space layout randomization
(ASLR) [3]. However, subsequent attacks have skirted this defenses [35] [27] [34].
CFI [10] follows a principled approach to mitigating control flow attacks by en-
forcing the runtime execution path of a program to adhere to the statically deter-
mined CFG. It does these by checking if the target of an indirect jump is within

2 MT Aga et al.

a valid set of targets. However, prior proposed CFI solutions are either imprac-
tical or ineffective. Some, which strictly follow a program’s CFG [28], have high
overheads that render them impractical to production systems. Others attempt
to reduce overheads by approximating the CFG with limited classes of targets
(e.g., two classes for function pointers and return addresses) [41] [42] [6] [4],
but these do not protect against control flow attacks that swap targets while
remaining on the CFG [22] [14] [20] [33].

In this work, we make the key observation that many of the vulnerabilities
in control flow stem from the excessive power inherent in code pointers. To stop
the tide of control flow attacks, we propose a novel approach to control flow
integrity, called ProxyCFI, that replaces all code pointers in the program with
pointer proxies. A pointer proxy is a unique random identifier (64-bits in our
implementation), which represents a forward or backward control flow edge in
the program. Consequently, all indirect jumps in the program (e.g., returns and
jumps-through-register) are replaced with multi-way branches that implement a
direct jump to the address associated with the pointer proxy. As pointer proxies
are a function of both the source and the target of an edge, swapping pointer
proxies results in a violation even if they have the same target.

To ensure that all execution flows stay on the program CFG for even third-
party ProxyCFI compliant code, a binary-level program verifier first validates
at load-time that programs and libraries have CFGs that are fully discoverable,
use only pointer proxies, and avoid all indirect jumps/returns. Finally, to thwart
attacks based on binary analysis, the verifier re-randomizes pointer proxies at
load time. In addition, the loader marks code sections unreadable, to protect
from active-read attacks that gather pointer proxies using memory leaks.

Table 1: Comparison of Code Pointers to Pointer Proxies. Pointer proxies pre-
serve program control integrity by reducing their capabilities. This table lists the dif-
ferences in capabilities between code pointers and pointer proxies. Ultimately, it is the
powerful nature of code pointers that enable many control flow attacks.

Code Pointers Pointer Proxies
Arithmetic Allowed Yes No
Totally Ordered Yes No
Trivial Forgery Attacks Yes No
Permit Relative Distance Attacks Yes No

Replay Attacks on Returns and fptrs Yes
Only from the

same source address

More importantly, ProxyCFI has a number of powerful features to deter at-
tacks that mimic legitimate control flow (i.e., control flow attacks that seemingly
remain on legitimate control flow edges), such as control flow bending (CFB) [14].
These attacks exploits the fact that existing CFI techniques allow executions to
maliciously divert indirect branches if the target address is still in the valid set
of targets. ProxyCFI thwarts this as a pointer proxy is unique to a particular
source and target address which makes a pointer proxy used in one function
context invalid in another even if they share the same target addresses.

Table 1 lists the comparative capabilities of traditional code pointers versus
pointer proxies. As shown in the table, pointer proxies do not support arithmetic

ProxyCFI 3

manipulation; thus, relative-address based control flow attacks, such as ASLR
de-randomization attacks [34] would not be possible with pointer proxies. More-
over, pointer proxies are much more difficult to forge, since their assignment is
not in anyway related to other pointer proxies, whereas pointer values often re-
veal much information through relative address distances to other code objects,
facilitating relative address inspired attacks. Since pointer proxies are unique to a
given function, return address copy attacks, such as the return-into-libc [37] and
backward-edge active-set attacks [36], become more challenging, as the pointer
proxies of other functions (which are assigned at load-time) must be leaked and
then translated to the local function’s proxies (which have no correlation even
if the current function calls the intended target).

1.1 Contributions of This Paper

In this paper, we introduce ProxyCFI, a novel control flow integrity technology
that thwarts recent advanced control flow attacks while incurring low perfor-
mance overhead. Specifically, this paper makes the following contributions:

– We present ProxyCFI that provides an efficient and practical protection against
advanced code reuse attacks, with a threat model notably more capable than
that of traditional CFI techniques which must protect a shadow stack [32] or
pointer encryption technologies which must protect encryption keys [17].

– We detail the implementation of ProxyCFI within the GNU GCC compiler
toolchain.

– We demonstrate the efficiency of the approach running a wide range of CPU-
centric and network-facing applications. In addition, we implement two compile-
time optimizations, which ultimately reduce the slowdown of this technology
to only 4% on average. In addition, our security analysis shows that the tech-
nology stops real-world advanced control flow attacks and demonstrates 100%
coverage for the RIPE x86-64 control flow attack suite [40].

2 Protecting Control Flow with ProxyCFI

In this section, we detail our threat model and the broad ProxyCFI concept,
then present how to build and verify programs (including shared libraries) with
pointer proxies.

2.1 Threat Model

In this work, we assume a very powerful attacker who wants to redirect control
flow to a code sequence that deviates from the programmer-specified CFG. In
accomplishing their control flow attack, the attacker has read and write access
to any data location, including globals, stack and heap variables, as well as data
storage locations holding pointer proxies. The code segment of the program is
assumed to be non-writable.

Given this powerful attacker, ProxyCFI works to prevent the attacker from
hijacking control from the programmer-specified CFG. In addition, ProxyCFI
also gives protection against non-gadget code reuse attacks (e.g., COOP where
the attack does not leave the CFG of the program, but instead enlists the code
in a CFG mimicry attack [33]).

4 MT Aga et al.

2.2 Pointer Proxies

To stop control flow attacks, we replace all code pointers with pointer proxies. A
pointer proxy is a random identifier (64-bits in our evaluated implementation),
where pointer proxy P represents an edge from a particular code exit point
to a code entry point. Wherever a code pointer would reside in the program
(e.g. in a jump table or on the stack as a return address), it is replaced by its
corresponding pointer proxy value P . Figure 1 illustrates a small code snippet
in which the code pointers have been replaced by pointer proxies. As seen in the
example, where code pointers would have been stored (e.g., on the stack for a
return address), they are replaced with pointer proxies (denoted by a $).

foo(void (*fptr)(int), int arg) {
if fptr == $7743d2ff

push $ae23afcc; jmp bar
else if fptr == $1f324a19

push $bc41c823; jmp baz
else

abort()
done:
}

void baz(int) {
// return;
add %rsp, $4
proxy = DWORD PTR[%rsp-4]
if proxy == $bc41c823

jmp done
else

abort()
}

foo(void (*fptr)(int), int arg) {
(*fptr)(arg);

}

void bar(int) {
return;

}

void baz(int) {
return;

}

void bar(int) {
// return;
add %rsp, $4
proxy = DWORD PTR[%rsp-4]
if proxy == $ae23afcc

jmp done
else

abort()
}

Vulnerable Code Pointer Proxy Instrumented Code

Fig. 1: Example Code Sequence using Pointer Proxies. Pointer proxies replace
code pointers in a program with random identifiers associated with legal control flow
edges. Multi-way direct branches translate pointer proxies into direct jumps.

At indirect jumps and returns, the pointer proxy is inspected, and then using
a multi-way direct branch, the appropriate code entry point associated with the
pointer proxy is jumped to. We call a multi-way direct branch, which matches a
pointer proxy and then directly jumps to the associated code target, a sled. Di-
rect jumps are not replaced with pointer proxies. Since our threat model assumes
that code cannot be written, any direct jump is inherently write-protected, and
thus no additional protections are required. Three multi-way branches can be
seen in the example in Figure 1. The indirect call to bar() and baz() in function
foo() is implemented with a multi-way branch that jumps to bar() if the proxy
$7743d2ff is encountered and jumps to baz when the pointer proxy is $1f324a19.
Additionally, both of the returns from functions bar() and baz() are implemented
with a multi-way branch.

Advanced control flow attacks such as control low bending [14] undermine
CFI by using a code pointer copied from one function context to jump to ad-
dresses in some other function without violating CFI constraints. Pointer proxies
are uniquely assigned to control flow edges (i.e., a function of source and desti-
nation), thus, the pointer proxies of function X are meaningless to function Y .
This powerful feature, which does not impact the usability of pointer proxies,
thwarts large number of advanced control flow attacks. This aspect is shown
in Figure 1 in the returns of functions bar() and baz(). While both functions
return to the same address (i.e., label done), they each use a distinctly different
pointer proxy. As such, if each of the functions were to disclose each other’s
pointer proxy and return upon it, it would not match any target in the return’s
multi-way branch, and would result in a violation. To stop the potential forgery

ProxyCFI 5

of pointer proxies, all pointer proxy values are defined per-function, and they are
re-randomized at program load time by the verifier as detailed in Section 2.4.

2.3 Building Code with Pointer Proxies

Building code to work with pointer proxies requires replacing every place in the
program that uses a code pointer with a pointer proxy.

Hardening indirection with pointer proxies: All indirect branches (e.g., switch
jump tables, indirect calls, and returns), are replaced with a multi-way direct
branch sleds. Of course, to know what targets must be tested for in a sled, we
must fully anticipate all of the targets of each indirect branch. For locally sourced
indirect jumps, such as a switch statement jump table, we can easily anticipate
in the current compilation module all of the indirect jump targets. Indirect calls
and returns require more analysis as the locations (and pointer proxy values) may
come from another application module (e.g., a shared library). Consequently, the
compilation framework must support whole-program CFG analysis (including
the call graph). In our prototype implementation in the GNU GCC toolchain,
we utilize a two-pass compilation strategy, to first build the whole program CFG
and then to compile programs with fully enumerated multi-way direct branch
sleds. Details of this compilation strategy are covered in Section 3.

At indirect calls, the type of the target function is noted, and when the whole
program CFG is constructed, an indirect function call is assumed to possibly
happen to only same-typed function and has had its address taken. Similarly,
the return address sleds target the instruction after all actual and potential calls
to the returning function, where a potential call directly targets the function
or indirectly targets the function through a compatible function pointer. This
approach works quite well until a program declares a void * indirect function
call, which could potentially call any function in the program. Fortunately, our
optimizations detailed in Section 3.2 perform well to reduce the overall impact of
these generic indirect function calls. To ensure that there is a valid sled entry for
code pointers used across modules, ProxyCFI performs whole program analysis
including shared libraries to ensure indirect calls from a shared library into
the executable have a corresponding sled entry to handle callback functions. A
similar analysis is performed for callbacks passed into shared libraries.

When good code pointers go bad: ProxyCFI doesn’t support dangerous code
pointer operations such as code pointer arithmetic, which are characteristics of
a buggy program [29]. For example, we could manufacture a code pointer to
a private function in x86-64 GCC by simply adding the size of the preceding
function (in bytes) to its code pointer. In our prototype GNU GCC C/C++
implementation of ProxyCFI, we issue a security warning for these operations at
compile time and terminate the program if executed at runtime. While we were
able to create these problems in test programs, none of our benchmark programs
suffered from dangerous code pointer manipulations.

setjump() and longjmp() require special handling in the compiler because
these functions implement a unique user-directed program control flow transi-
tion. Together, these functions implement a superset of function pointer behav-
ior, such that a call to setjmp() can be the target of any other longjmp() in the

6 MT Aga et al.

program. Both function pointers and longjmp() share an indirect jump, but a
longjmp should generate a multi-way direct branch including all of the pointer
proxies assigned to the instruction immediately after each call to setjmp(). Thus,
any tampering in the setjmp() control context cannot pull execution off the CFG.

2.4 Load-time Program Verifier

Load-time Program Verifier ensures no legal control flow results in a violation
and no deviation from the CFG is missed. It maintains this by verifying that
programs utilize only pointer proxies for indirect branches via multi-way direct
branches that are fully enumerated by the programmer-specified CFG. If an
unexpected pointer proxy is encountered, the program is terminated.

Fig. 2: ProxyCFI Program Loader. This figure illustrates the process of loading a
ProxyCFI compliant program for execution.

Figure 2 shows how a binary or shared library is loaded and validated. The
verifier ensures that only pointer proxies are used for control transitions. If a
code object passes verification, the verifier generates load-time assigned pointer
proxies, such that an attacker cannot anticipate any pointer proxy values even
with an active read attack on the program.

The psuedocode for the ProxyCFI code verifier is shown in Algorithm 1.
The verifier performs reachability analysis on the code object’s CFG to validate
that it is i) free of indirect control transfers and ii) all control transfers point
to a valid instruction within the current code object or the entry point of an-
other code object for calls. To this end, it performs a depth-first traversal of the
CFG of the code object, inspecting all control transfer instructions. If indirect
call/jump or return instructions are encountered in the code object, it immedi-
ately fails verification. For direct control transfer (i.e., direct call, direct jump,
loop instructions), it analyzes the target address for any possible violations.

For direct jump instructions, the verifier checks that the target address points
to a valid instruction within the current code object. For direct function calls,
the verifier validates that the target is a valid code object entry point. Finally,
for multi-way branch sleds replacing an indirect call/jump and return, the ver-
ifier ensures that all targets are valid according to the CFG. Once the verifier
completes reachability analysis of the CFG without failure, the code is safe to
load and execute.

ProxyCFI 7

Algorithm 1 Load-time Program Verifier. The algorithm performs a reachabil-
ity analysis of the CFG to identify any illegal jumps or uses of indirection.

1: procedure Verify(obj)
2: for all f in obj do
3: ep←f.entry point
4: while ep 6= ∅ do
5: e← ep.pop()
6: if e.checked == True then
7: continue
8: else
9: br ←scan for next branch(e)

10: switch br do
11: case Indirect(br) or Invalid(br.target)
12: return Fail
13: case Direct Branch
14: ep.push({br.target, e.next})
15: case sled
16: inspect ({sled.proxies})
17: ep.push({sled.targets})
18: return Success

2.5 Deterring CFG Mimicry Attacks

A mimicry attack [38] on the CFG is one that implements attacker-directed
control without leaving the programmer-specified CFG. With the introduction
of powerful control flow integrity mechanisms, such as CFI [10] these non-gadget
code reuse-based attacks have quickly grown in number, including counterfeit
OOP [33], control flow bending [14], and active-set backward-edge attacks [36].
ProxyCFI can provide protection against these attacks through per-function
pointer proxy namespaces and load-time pointer proxy assignment.

Per-function pointer proxy namespaces: Traditional full-fledged code pointers
represent a code location that is sharable with any other part of the program. It is
this property that allows an adversary to copy a code pointer from one function
and replay it in another, an approach that Counterfeit OOP [33] utilizes to
implement method-level code reuse that does not leave the CFG. Pointer proxies
deter CFG mimicry attacks by defining unique pointer proxy namespaces for each
function. Thus, if a function copies the pointer proxy from another function, for
example, by searching for pointer proxies up the stack, any attempt to use it will
always result in a violation when the multi-way branch sled executes. In Figure
1 although bar() and baz() both return to the same location, they each have
their own proxy namespace which have different proxy-to-edge mappings (i.e.,
$ae23afcc and $bc41c823).

Load-time assignment of pointer proxies: Pointer proxies are re-randomized
at load time to further deter mimicry attacks. This prevents offline analysis of
code to generate a translation table from pointer proxies to source and target
code addresses. Enforcing a non-readable code section and load-time assignment
of proxies significantly complicates CFG mimicry attacks.

2.6 Shared Libraries with Pointer Proxies

Shared libraries are an attractive target for control flow attacks as they are used
among multiple applications. Attacks that target libc, for example, can be reused

8 MT Aga et al.

on any application that links to it. The classic attack is return-into-libc [37],
wherein the adversary overwrites the return address so that the program returns
to an exploitable libc function such as system(). In addition, most shared libraries
contain large enough codebases that leaves an attacker with wide selection of
gadgets for all classes of code reuse attacks, such as ROP [18], JOP [12], LOP [25]
and their variants [13] [21].

Connections into and out of shared libraries must be managed by unshared
data or code that is generated dynamically. Returns and indirect calls are natural
solutions to entering and exiting shared libraries because they draw on unshared
data in the stack and the global offset table, respectively. As such, shared libraries
require special handling with ProxyCFI which works to remove indirection. One
solution to securing shared libraries is to forbid them – Intel chose this with
SGX [23]. However, we want to retain their advantages: modularity, reduced
page swapping, and simplified version management.

ProxyCFI compliant shared libraries use unshared code to manage control
flow in and out because indirection must be replaced with multi-way branches.
While calling a shared library function still goes through the procedure linkage
table (PLT), the indirect call within the PLT is dynamically replaced with a
pointer proxy sled. At load time, extra space in the caller’s address space is
mmap’ed for the code that channels control flow on return. Shared library func-
tions have their returns statically replaced with a relative jump down to the
unshared multi-way branches.

Fig. 3: Shared Library Control Flow. ProxyCFI allocates linkage tables using
pointer proxies in the caller’s address space, which permit safe entry and exit from
a compliant shared library.

Our approach to deploying shared libraries with ProxyCFI is illustrated in
Figure 3. We split the process of returning from a shared library into two stages,
which are associated with the selection linkage table (SLT) and the return linkage
table (RLT), respectively. Two pointer proxies are used to return from a shared

ProxyCFI 9

library, one for the SLT and one for the RLT. For each PLT entry to a shared
library function there is an RLT entry that contains a multi-way branch leading
back to each call site in the code object. If shared library function foo() is
called from multiple code objects, then each code object would have a separate
RLT entry for foo() in its own address space. While the RLT specifies how to
return within a code object, the SLT specifies which code object to return to.
To accomplish this, SLT entries contain a multi-way branch of absolute jumps
directed at RLT entries. Since the size of SLT entries varies based on the code
objects that use the shared library, a trampoline table facilitates static generation
of the relative jumps by forwarding control onto the appropriate SLT entry.

Using load-time assignment, it is possible to assign proxies for the tendrils
into a shared library in a way that creates pointer proxies when the library is
first loaded. Moreover, our approach allows the pointer proxies used to enter and
exit the shared library function to be unique to each address space that utilizes
the shared library. This ensures that an attacker cannot gather pointer proxy
information from their own address space and use it to attack a program using
the same shared library.

3 ProxyCFI in GNU GCC

In this section, we detail the implementation of ProxyCFI in the GNU GCC
C/C++ toolchain. We present the overall compilation flow, and then dive into
the details of the optimizations implemented.

GCC
Frontend

Linker

Pointer Proxy Converter

CFG Discovery

Branch Enumeration

Hardened BinaryProfiler

Loader

Verifier

Run

INVALID

source

Fig. 4: Compilation Flow. The compilation occurs in two passes. In the first pass,
the entire CFG of the program is discovered. In the second pass, all legal program
entrypoints are assigned randomly selected pointer proxy identifiers, and all indirect
jumps, indirect calls, and returns are replaced with fully enumerated multi-way direct
branches. The linker resolves all jumps using compiler-generated global identifiers for
all entry points. The profiler instruments the code to count the most frequent targets of
multi-way branches, which is used for optimization. Finally, all code is passed through
the pointer proxy verifier, assigned load-time random pointer proxies and loaded into
execute-only pages before execution begins.

3.1 Compilation Flow

ProxyCFI instrumentation is done with a two-pass transformation on assem-
bly generated mid-compilation by the existing GCC infrastructure. All sites of
indirection are replaced with fully enumerated multi-way direct branches that
validate CFG transitions with pointer proxies. Figure 4 describes the overall flow
of ProxyCFI compilation.

10 MT Aga et al.

– Pass 1. CFG Discovery: Assembly files are parsed for function labels, (di-
rect or indirect) call sites, and return sites. Return edges are constructed by
observing the target set for each direct and indirect call. Indirect call tar-
get sets include only functions that have had their addresses taken and have
a matching type signature. Type information on function pointer calls are
passed from the GCC frontend to the ProxyCFI compiler core.

– Pass 2. Branch Enumeration: Since the CFG contains all transitions be-
tween functions, multi-way branch targets are fully enumerated before the
second pass begins. For return sites, pointer proxies are chosen in the context
of the called function and shared with the calling function’s indirect call sled.
Pointer proxies are generated in this way to deter CFG mimicry attacks (see
Section 2.5 for details).

After generating a binary, runtime analytics, which are generated by the
profiler, are passed back to the branch enumeration phase, at which point the
multi-way branch sleds are rewritten with optimizations. Load time invocation
of the verifier rewrites all pointer proxies before executing the program.

3.2 ProxyCFI Optimizations

Indirect jump and return sleds can become very long, especially for frequently
called functions. To address these potential concerns, we implemented two opti-
mizations: profile-guided sled sorting, and function cloning.

Profile-guided sled sorting. The main source of performance degradation with
ProxyCFI is the overhead incurred by the repeated comparisons used to imple-
ment multi-way direct branch sleds. The number of checks required is directly
proportional to the number of legitimate targets for the corresponding indirect
control transfer instruction. Yet, we observed that these sleds were highly biased
to only a few of the branch targets. Our sled sorting optimization takes advan-
tage of the biased distribution of multi-way branch targets by sorting the entries
in descending order of profiled execution count. As shown in Section 4, this op-
timization significantly reduces the average depth a program must traverse into
a sled before finding the pointer proxy target.

Function Cloning. While profile-guided sorting of the sleds significantly reduces
performance degradation associated with multi-way branch sleds, the improve-
ments are limited for functions with more uniformly distributed sled profiles.
To combat this, we adapted function cloning [15] – an optimization that creates
specialized copies of functions – as a means to reduce overall sled lengths. For
sleds with more uniform distributions, this optimization significantly reduces the
performance overhead incurred by executing sleds. Figure 5 illustrates function
cloning. A function with near uniform sled distribution is cloned (e.g., function
f2 becomes identical functions f2 and f2 c1). Then, half of the call sites to the
cloned function are redirected to the cloned function.

This optimization also significantly reduces the attacker’s agency in selecting
CFG edges to exploit for CFG mimicry attacks [14] [20] [33].

ProxyCFI 11

Fig. 5: Function Cloning. Function cloning cuts the number of legitimate edges by
a factor of the number of clones. Legitimate edges 6 and 8 from f2 sled are no longer
legitimate after cloning.

4 Evaluation

In this section, we examine the performance and security of ProxyCFI. First,
the performance impact of ProxyCFI is assessed by examining the slowdown in-
curred for many CPU-centric and network-facing benchmarks, with and without
ProxyCFI optimizations. To gauge the security benefits, we performed penetra-
tion testing with the RIPE control flow attack suite [40] and recent advanced
control flow attacks on real-world applications.

4.1 Evaluation Framework

ProxyCFI build framework. Our ProxyCFI compiler framework was built on
GCC version 6.1.0. In our evaluations, we used Ubuntu 16.04 on x86-64. Us-
ing x86-64 is essential in our implementation because our shared libraries rely
heavily on relative jumps to preserve code page sharing, which is significantly
more efficient in 64-bit x86. We customized GLIBC's loader to handle Proxy-
CFI compliant shared libraries and mark code pages execute-only. Many modern
processors have hardware support for execute-only memory. For example, recent
Intel CPUs support unreadable code pages using the Memory Protection Keys
(MPK) feature.1 In our prototype implementation, we used this feature to make
the code section execute-only (i.e., disabled read/write access).

Benchmarks analyzed. We evaluated the performance and space overhead in-
curred by ProxyCFI using the SPEC CPU 2006 benchmarks. In addition, we
evaluated the overhead on the network-facing application redis-server , run-
ning it with the standard redis-benchmark with 50 parallel clients and a 3-byte
payload. To isolate the performance overhead incurred by ProxyCFI-hardened
shared objects, we also ran microbenchmarks for varying shared library sled
depths. To evaluate the security guarantees provided by ProxyCFI, we analyzed

1 Execute-only memory is also supported on ARMv8 and above.

12 MT Aga et al.

applications from all the major categories commonly targeted by control flow hi-
jacking attacks including multimedia processing, Javascript engines, document
rendering, network infrastructure and VM interpreters. Specifically, we analyzed
the following commonly attacked applications (detailed in section 4.3):
MuPDF is a light weight PDF XPS and EPUB parsing and rendering engine.
MuPDF versions V1.3 and prior have a stack-based buffer overflow vulnerabil-
ity (CVE-2014-2013) [8] that results in remote code execution via a maliciously
crafted XPS document.
bladeenc is a cross-platform MP3 encoder which is also used as a daemon for
encoding in distributed MP3 encoders/CDDB servers like abcde. bladeenc has
several vulnerabilities that lead to CFG mimicry attacks that could be exploited
remotely (CVE-2017-14648) [7].
dnsmasq is a DNS forwarder designed to provide DNS services to a small-scale
networks, and it is included in most Linux distributions. Versions of dnsmasq
prior to 2.78 have a stack-overflow vulnerability which enables a remote attacker
to send a maliciously crafted DHCPv6 request to hijack control flow on the tar-
get system (CVE-2017-14493) [5].
Gravity is a dynamically typed concurrent scripting language written in C. The
Gravity runtime contains a stack-based buffer overflow that leads to remote code
execution (CVE-2017-1000437) [9].

4.2 Performance Analysis

We ran the SPEC CPU 2006 benchmarks performance analysis experiments
on an Intel Xeon Gold 6126 Processor with 24 cores and 32GB RAM running
Ubuntu 16.04 LTS Xenial Xerus

Figure 6 shows the performance overhead incurred by ProxyCFI instrumen-
tation. For compute-intensive applications, the näive implementation’s perfor-
mance overheads are non-trivial, since these programs have high average sled
depth. Average sled depth is a measure of how many pointer proxy tests are
required in a sled, on average, before a direct branch is taken. Ideally, we would
like this value to be close to 1 to lower the performance overhead for ProxyCFI.
For applications with heavy use of function calls such as perlbench, gobmk and
sjeng, the performance degradation for the unoptimized implementation is more
pronounced, having a average return sled depth of 27 for perlbench.

With optimizations, the average sled depth drops dramatically, as do the per-
formance overheads. For example, perlbench benefits significantly from profile-
guided sled sorting optimization. h264ref also benefits significantly from op-
timizations, as it makes heavy use of generic function pointers with indirect
functional call sleds having up to 855 entries, of which only two are frequently
targeted. gcc, on the other hand, makes considerable use of both function calls
(average sled depth of 32) and generic function pointer (with an average sled
depth of 26 for indirect calls). The performance benefit of the function cloning op-
timization is more visible on gcc, as the probability distribution of taken branches
falls off slower than the other applications. For network-facing applications, the
performance overhead is insignificant due to their I/O-bound nature. The aver-
age performance overhead for redis-server is 0.25% and an average overhead of
0.93% for all of network-facing applications we evaluated.

Figure 7 shows the percentage increase in the binary size as a result of pointer
proxy instrumentation, both with and without optimizations. On average the

ProxyCFI 13

code size grows by 49% for our benchmarks with the worst case of 121% for
h264ref, due to the large amount of instrumentation required for its generic
function pointers. Finally, Figure 8 shows the impact of ProxyCFI verification
and load-time proxy randomization on program load times. As shown in the
graph, it has approximately linear relationship with code size, the longest being
1200ms, consistent with previous works that perform load-time randomization
[39] [30].

0

5

10

15

20

25

30

%
 p

e
rf

o
rm

an
ce

 o
ve

rh
e

ad

Unoptimized Pointer Proxy (prof.) Pointer Proxy (prof. + clon.)

65 57 44 51 110 39

Fig. 6: Performance Overhead of ProxyCFI. Unoptimized shows the performance
overhead without any optimization, while ProxyCFI (prof.) and ProxyCFI (prof. +
clon.) show performance with profile-guided sled sorting (prof.) and function cloning
(clon.) optimizations.

Shared library performance. We measured the cost of our shared library support
infrastructure by microbenchmarking entries and exits to shared libraries and
comparing it against unprotected shared library calls. The average percent slow-
down for a shared library calls using optimized ProxyCFI compilation is 1.48%
and 2.31% respectively for the best and worst-case average sled hit depths ob-
served in our benchmark experiments.

4.3 Security Analysis

To assess the security strength of ProxyCFI, we first examine its ability to stop
control flow attacks in the RIPE attack suite, then we examine to what ex-
tent ProxyCFI can stop real-world control flow attacks including CFG mimicry
attacks.

Penetration testing with RIPE: RIPE is a control flow attack testbed that
generates attacks by permuting five dimensions of attack: location (e.g., stack,
heap, ...), target (e.g., return address, function pointers, ...), overflow technique
(e.g., direct/indirect), and function of abuse (e.g., memcpy, ...) [40]. Native RIPE
targets 32-bit x86 code, thus, with the help of a recently implemented low-
fat pointer extension [19], we ported the RIPE test suite to x86-64. Our port
supports the following five dimensions: location, target (including setjmp() and
longjmp()), method, and overflow type. Permuting all RIPE dimensions totals

14 MT Aga et al.

Fig. 7: Increase in Code Size. This graph shows the impact of ProxyCFI on code
size. The blue bars (left) represent unoptimized ProxyCFI programs, while the green
bar (right) represents optimized ProxyCFI programs.

0 100 200 300 400 500 600 700 800 900 1000 1100
0

500

1,000

Size [KB]

L
o
a
d
-

ti
m

e
[m

s]

Fig. 8: Load-time overhead vs. code size This graph shows the impact of pointer
proxy randomization on load-time.

up to 850 unique tests. With ProxyCFI protections, 100% of the RIPE
attacks are stopped. In addition, ProxyCFI was able to detect the exact point
at which attacks escape the CFG.

Real-world vulnerabilities. To evaluate the effectiveness of ProxyCFI against
attacks on real-world applications, we included recent attacks reported on the
National Vulnerability Database (NVD) in our evaluation.

With ProxyCFI, we were able to stop all of the following real-world
attacks including CFG mimicry attacks.

In testing, we found that the declared violations enabled us to quickly identify
the root cause of the vulnerability. We analyzed four attacks.

MuPDF has a stack-based buffer overflow vulnerability in the xps parse color()
function which performs an unchecked strcpy() of a user supplied (via XPS in-
put) array to a fixed size buffer [8]. The exploit uses this bug to overwrite the
return address and jump to an ROP gadget. With ProxyCFI we were able to
detect the stack pivot based on the corrupted pointer proxy.

ProxyCFI 15

Bladeenc's command line parser uses unchecked calls to strcpy() to copy
parameters to a 256-byte buffer that are exploited for arbitrary code execution
by using a carefully crafted command line arguments [7]. The exploit corrupts
a function pointer to jump to another function which is also in its legal target
set to hijack control flow via a CFG mimicry attack. We were able to detect the
exploit when trying to jump using a forged pointer proxy (which was interpreted
as invalid pointer proxy from the source address).

Dnsmasq has a vulnerability caused by an unchecked use of memcpy() in
the dhcp6 maybe relay() function to a 16-byte field of the variable state. This
bug allows an attacker to perform inter-object overflow to perform ROP attack.
Using ProxyCFI we were able to detect all of the exploits.

Gravity contains a stack-based buffer overflow in the function operator string
add() which can be used to write past the end of a fixed-sized static buffer to

achieve code execution. The exploit uses this vulnerability to overwrite a return
address using a malicious Gravity script. For the ProxyCFI hardened version
the attack was detected when the exploit tried to make an indirect jump based
on forged pointer proxy.

5 Related Work

Memory safety. Memory corruption attacks have been often used to hijack con-
trol flow, either by injecting code or reusing existing code. Data execution pre-
vention [1] [2] is sidestepped entirely as reuse attacks need not inject code. Com-
prehensive memory safety techniques such as Softbound [31] can completely
eradicate memory exploitation, but they suffer from high overhead or compati-
bility issues, deeming them as yet impractical for widespread adoption.

Control flow integrity: A new wave of practical defenses emerged with a
focus on validating that execution adheres to a static, programmer specified
CFG. Control flow integrity (CFI) [10] was the first of these CFG defenses. The
defense inserts checks before indirect branches to make sure that all indirect
control transfers are within the statically discovered CFG. Various coarse-gained
variants have relaxed CFI constraints to achieve practical solutions through both
software and hardware approaches [41] [42] [6] [4].

CCFIR [41] uses a load-time randomized springboard section to redirect
all indirect control flow transfers, which has been bypassed by a successive
work [22]. Intel CET [6] provides rudimentary hardware protection for forward
edges through its indirect branch tracking. Microsoft CFG enforces a weak form
of CFI by restricting indirect function calls to function entry points [4]. While
these techniques are valuable against straightforward code reuse techniques,
CFG mimicry attacks effectively bypass this CFI techniques. Unlike these coarse
grained CFI techniques, ProxyCFI provides fine grained protection, and also af-
fords protection against CFG mimicry attacks. CCFI [28] is a fine-grained CFI
technology that protects code pointers by storing hash based message authentica-
tion code (MAC) alongside code pointers and checking the MAC before indirect
branches. While CCFI can protect against CFG mimicry attacks, its high per-
formance overhead (52% for SPEC’06) will undoubtedly limit its applicability
in production environments. Like CCFI, ProxyCFI provides fine-grained control
flow protection, while incurring significantly lower overheads (only 5.9% average
slowdown for SPEC’06).

16 MT Aga et al.

Other control flow integrity works have proposed to completely remove in-
structions employed for control flow hijacking attacks. Return-less kernels [26]
avoid use of ret instruction by replacing them with a lookup into a static return
table which provides protection solely against return-based attacks. Control-data
isolation (CDI) [11] rewrites both forward and backward edges with exclusively
direct branches. CDI would conceivably constrain execution to the programmer-
specified CFG, if it were to verify that all binaries adhered to CDI compilation
requirements. But since the approach still uses code pointers to identify pro-
gram pointers, the approach is readily attackable with control flow attacks that
do not leave the CFG, such as Counterfeit OOP [33]. Moreover, ProxyCFI ad-
dresses CFG mimicry attacks by replacing code pointers with pointer proxies
that utilize per-function namespaces, which are assigned at program load-time
to an execute-only memory.

Code-Pointer Integrity (CPI) [24] provides memory safety for code pointers
by storing them in a safe region. CPI requires allocation of a safe data region
inaccessible to an attacker. ProxyCFI does not require any special data region
protections.

6 Conclusion

While significant effort has been spent to shut down control flow attacks, their
existence and value persists today, even 40 years after the first buffer overflow at-
tack. With ProxyCFI, we take the novel approach of replacing all of a program’s
code pointers with the much less powerful pointer proxy. A pointer proxy is a
random identifier representing a specific program entry point from the context of
a specific function. A control transfer with a pointer proxy utilizes a multi-way
direct branch which fully anticipates all of the potential jump targets. As such,
ProxyCFI provides much resistance to advanced control flow attacks because it
is difficult to forge/swap pointer proxies to mimic a legitimate CFG transition.
Our implementation of ProxyCFI is built into the GNU GCC C/C++ compiler
toolchain, such that all code pointers are replaced with pointer proxies including
those contained within shared libraries. Analysis of our pointer proxy imple-
mentation reveals that they introduce minimal slowdown when pointer-proxy
specific optimizations are applied, only an average 4% slowdown across a wide
range of benchmarks. Moreover, security analysis of ProxyCFI shows that it
stops all of the control flow attacks we tested, including 100% of the attacks in
the RIPE x86-64 attack suite and a wide range of real-world attacks including
CFG mimicry attacks.

Looking ahead we see a number of avenues for growing the capabilities of
ProxyCFI. In particular, we would like to implement support for reassigning
pointer proxy values at runtime, and we would like to explore the use of pointer
proxies for a limited set of data pointers.

Acknowledgement

This work was supported by DARPA under Contract HR0011-18-C-0019. Any
opinions, findings and conclusions or recommendations expressed in this material
are those of the authors and do not necessarily reflect the views of DARPA.

ProxyCFI 17

References

1. Data execution prevention, 2003. Accessed: 2018-02-29.
2. Linux kernel 2.6.8, 2004. Accessed: 2018-02-29.
3. Windows isv software security defenses, 2010. Accessed: 2018-02-29.
4. Control flow guard (windows) - msdn - microsoft. https://msdn.microsoft.com/en-

us/library/dn919635.aspx, 2015. Accessed: 2018-04-13.
5. Cve-2017-14493. https://www.cvedetails.com/cve/

CVE -2017-14493/, 2017. Accessed: 2018-02-12.
6. Intel control-flow enforcement technology (cet).

https://software.intel.com/sites/default/files/managed /4d/2a/control-flow-
enforcement-technology-preview.pdf, 2017. Accessed: 2018-04-13.

7. Bladeenc: Vulnerability statistics. https://www.cvedetails.com/product/2851/Bladeenc-
Bladeenc.html, 2018. Accessed: 2018-01-05.

8. Cve-2014-2013. https://www.cvedetails.com/cve/
CVE-2014-2013/, 2018. Accessed: 2018-04-13.

9. Cve-2017-1000437. https://www.cvedetails.com/cve/
CVE-2017-1000437/, 2018. Accessed: 2018-01-05.

10. Mart́ın Abadi, Mihai Budiu, Ulfar Erlingsson, and Jay Ligatti. Control-flow in-
tegrity. In Proceedings of the 12th ACM conference on Computer and communica-
tions security, pages 340–353. ACM, 2005.

11. William Arthur, Ben Mehne, Reetuparna Das, and Todd Austin. Getting in con-
trol of your control flow with control-data isolation. In Proceedings of the 13th
Annual IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, pages 79–90. IEEE Computer Society, 2015.

12. Tyler Bletsch, Xuxian Jiang, Vince W Freeh, and Zhenkai Liang. Jump-oriented
programming: a new class of code-reuse attack. In Proceedings of the 6th ACM
Symposium on Information, Computer and Communications Security, pages 30–40.
ACM, 2011.

13. Erik Buchanan, Ryan Roemer, Hovav Shacham, and Stefan Savage. When good
instructions go bad: Generalizing return-oriented programming to risc. In Pro-
ceedings of the 15th ACM conference on Computer and communications security,
pages 27–38. ACM, 2008.

14. Nicholas Carlini, Antonio Barresi, Mathias Payer, David Wagner, and Thomas R.
Gross. Control-flow bending: On the effectiveness of control-flow integrity. In 24th
USENIX Security Symposium (USENIX Security 15), pages 161–176, Washington,
D.C., 2015. USENIX Association.

15. Keith D Cooper, Mary W Hall, and Ken Kennedy. A methodology for procedure
cloning. Computer Languages, 19(2):105–117, 1993.

16. Crispan Cowan, Calton Pu, Dave Maier, Jonathan Walpole, Peat Bakke, Steve
Beattie, Aaron Grier, Perry Wagle, Qian Zhang, and Heather Hinton. Stack-
guard: Automatic adaptive detection and prevention of buffer-overflow attacks.
In USENIX Security Symposium, volume 98, pages 63–78. San Antonio, TX, 1998.

17. Crispin Cowan, Steve Beattie, John Johansen, and Perry Wagle. Pointguard tm:
protecting pointers from buffer overflow vulnerabilities. In Proceedings of the 12th
conference on USENIX Security Symposium, volume 12, pages 91–104, 2003.

18. Dino Dai Zovi. Practical return-oriented programming. SOURCE Boston, 2010.
19. Gregory J Duck, Roland HC Yap, and Lorenzo Cavallaro. Stack bounds protection

with low fat pointers. 2017.
20. Isaac Evans, Fan Long, Ulziibayar Otgonbaatar, Howard Shrobe, Martin Rinard,

Hamed Okhravi, and Stelios Sidiroglou-Douskos. Control jujutsu: On the weak-
nesses of fine-grained control flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 901–913.
ACM, 2015.

18 MT Aga et al.

21. Enes Göktaş, Elias Athanasopoulos, Michalis Polychronakis, Herbert Bos, and
Georgios Portokalidis. Size does matter: Why using gadget-chain length to pre-
vent code-reuse attacks is hard. In Proceedings of the 23rd USENIX conference on
Security Symposium, pages 417–432. USENIX Association, 2014.

22. E. Gktas, E. Athanasopoulos, H. Bos, and G. Portokalidis. Out of control: Over-
coming control-flow integrity. In 2014 IEEE Symposium on Security and Privacy,
pages 575–589, May 2014.

23. Intel. Dynamic libraries, 2015. Accessed 2018-02-29.
24. Volodymyr Kuznetsov, Laszlo Szekeres, Mathias Payer, George Candea, R. Sekar,

and Dawn Song. Code-pointer integrity. In 11th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 14), pages 147–163, Broomfield, CO,
2014. USENIX Association.

25. Bingchen Lan, Yan Li, Hao Sun, Chao Su, Yao Liu, and Qingkai Zeng. Loop-
oriented programming: a new code reuse attack to bypass modern defenses. In
Trustcom/BigDataSE/ISPA, 2015 IEEE, volume 1, pages 190–197. IEEE, 2015.

26. Jinku Li, Zhi Wang, Xuxian Jiang, Michael Grace, and Sina Bahram. Defeating
return-oriented rootkits with return-less kernels. In Proceedings of the 5th European
conference on Computer systems, pages 195–208. ACM, 2010.

27. Limin Liu, Jin Han, Debin Gao, Jiwu Jing, and Daren Zha. Launching return-
oriented programming attacks against randomized relocatable executables. In
Trust, Security and Privacy in Computing and Communications (TrustCom), 2011
IEEE 10th International Conference on, pages 37–44. IEEE, 2011.

28. Ali Jose Mashtizadeh, Andrea Bittau, Dan Boneh, and David Mazières. Ccfi:
cryptographically enforced control flow integrity. In Proceedings of the 22nd ACM
SIGSAC Conference on Computer and Communications Security, pages 941–951.
ACM, 2015.

29. C+ MISRA. Guidelines for the use of the c/c++ language in critical systems.
MIRA Limited. Warwickshire, UK, 2012.

30. Vishwath Mohan, Per Larsen, Stefan Brunthaler, Kevin W Hamlen, and Michael
Franz. Opaque control-flow integrity. In NDSS, volume 26, pages 27–30, 2015.

31. Santosh Nagarakatte, Jianzhou Zhao, Milo MK Martin, and Steve Zdancewic. Soft-
bound: Highly compatible and complete spatial memory safety for C. ACM Sigplan
Notices, 44(6):245–258, 2009.

32. Manish Prasad and Tzi-cker Chiueh. A binary rewriting defense against stack
based buffer overflow attacks. In USENIX Annual Technical Conference, General
Track, pages 211–224, 2003.

33. Felix Schuster, Thomas Tendyck, Christopher Liebchen, Lucas Davi, Ahmad-Reza
Sadeghi, and Thorsten Holz. Counterfeit object-oriented programming: On the
difficulty of preventing code reuse attacks in C++ applications. In Security and
Privacy (SP), 2015 IEEE Symposium on, pages 745–762. IEEE, 2015.

34. Hovav Shacham, Matthew Page, Ben Pfaff, Eu-Jin Goh, Nagendra Modadugu, and
Dan Boneh. On the effectiveness of address-space randomization. In Proceedings
of the 11th ACM conference on Computer and communications security, pages
298–307. ACM, 2004.

35. Raoul Strackx, Yves Younan, Pieter Philippaerts, Frank Piessens, Sven Lachmund,
and Thomas Walter. Breaking the memory secrecy assumption. In Proceedings of
the Second European Workshop on System Security, pages 1–8. ACM, 2009.

36. Michael Theodorides and David Wagner. Breaking active-set backward-edge CFI.
In Hardware Oriented Security and Trust (HOST), 2017 IEEE International Sym-
posium on, pages 85–89. IEEE, 2017.

37. Minh Tran, Mark Etheridge, Tyler Bletsch, Xuxian Jiang, Vincent Freeh, and
Peng Ning. On the expressiveness of return-into-libc attacks. In Recent Advances
in Intrusion Detection, pages 121–141. Springer, 2011.

ProxyCFI 19

38. David Wagner and Paolo Soto. Mimicry attacks on host-based intrusion detection
systems. In Proceedings of the 9th ACM Conference on Computer and Communi-
cations Security, pages 255–264. ACM, 2002.

39. Richard Wartell, Vishwath Mohan, Kevin W Hamlen, and Zhiqiang Lin. Binary
stirring: Self-randomizing instruction addresses of legacy x86 binary code. In Pro-
ceedings of the 2012 ACM conference on Computer and communications security,
pages 157–168. ACM, 2012.

40. John Wilander, Nick Nikiforakis, Yves Younan, Mariam Kamkar, and Wouter
Joosen. RIPE: Runtime intrusion prevention evaluator. In In Proceedings of the
27th Annual Computer Security Applications Conference, ACSAC. ACM, 2011.

41. Chao Zhang, Tao Wei, Zhaofeng Chen, Lei Duan, Laszlo Szekeres, Stephen McCa-
mant, Dawn Song, and Wei Zou. Practical control flow integrity and randomization
for binary executables. In Security and Privacy (SP), 2013 IEEE Symposium on,
pages 559–573. IEEE, 2013.

42. Mingwei Zhang and R Sekar. Control flow integrity for cots binaries. In USENIX
Security Symposium, pages 337–352, 2013.

A Redis-benchmark Results Breakdown

Table 2 shows the results of running redis-server with the standard redis-benchmark
using 50 parallel clients and a 3-byte payload.

Table 2: Results of running redis-benchmark ProxyCFI compliant redis-server versus
unhardened baseline

Command
Baseline ProxyCFI

(request/sec) (request/sec)

PING INLINE 12 320.9 12 115.34
PING BULK 12 881.67 12 926.58
SET 12 469.83 12 158.05
GET 12 941.73 13 010.67
INCR 10 514.14 11 189.44
LPUSH 12 227.93 12 997.47
RPUSH 11 592.86 11 828.72
LPOP 12 659.83 12 255.46
RPOP 12 804.1 12 604.8
SADD 12 218.96 12 055.46
HSET 12 023.57 11 872.7
SPOP 11 855.36 11 552.39
LPUSH (needed to benchmark LRANGE) 12 968.49 12 600.12
LRANGE 100 (first 100 elements) 6506.82 6325.19
LRANGE 300 (first 300 elements) 2788.99 2690.05
LRANGE 500 (first 450 elements) 2403.4 2211.26
LRANGE 600 (first 600 elements) 1730.2 1652.59
MSET (10 keys) 10 409.08 9959.79

