Y. Zhang, Y. Xiao, K. Ghaboosi, J. Zhang, and H. Deng, A survey of cyber crimes, vol.5, pp.422-437, 2012.

J. Felix and C. Hauck, System security: a hacker's perspective, Interex Proceedings, vol.1, pp.6-6, 1987.

. Apwg, Phishing attack trends report -3q, 2018.

A. Niakanlahiji, B. Chu, and E. Al-shaer, Phishmon: A machine learning framework for detecting phishing webpages, Intelligence and Security Informatics, pp.220-225, 2018.

J. Jiang, J. Chen, K. Choo, C. Liu, K. Liu et al., A deep learning based online malicious url and dns detection scheme, Security and Privacy in Communication Systems, pp.438-448, 2017.

M. Pereira, S. Coleman, and B. Yu, Martine DeCock, and Anderson Nascimento. Dictionary extraction and detection of algorithmically generated domain names in passive dns traffic, Research in Attacks, Intrusions, and Defenses, pp.295-314, 2018.

H. Shirazi, B. Bezawada, and I. Ray, kn0w thy doma1n name": Unbiased phishing detection using domain name based features, Access Control Models and Technologies, pp.69-75, 2018.

Y. Li, Z. Yang, X. Chen, H. Yuan, and W. Liu, A stacking model using url and html features for phishing webpage detection, Future Generation Computer Systems, vol.94, pp.27-39, 2019.

N. Dalvi, P. Domingos, S. Sanghai, and D. Verma, Adversarial classification, international conference on Knowledge discovery and data mining, pp.99-108, 2004.

, ISTR Internet Security Threat Report, vol.23

E. Ozgur-koray-sahingoz, O. Buber, B. Demir, and . Diri, Machine learning based phishing detection from urls, Expert Systems with Applications, vol.117, pp.345-357, 2019.

R. Verma and K. Dyer, On the character of phishing urls: Accurate and robust statistical learning classifiers, Data and Application Security and Privacy, pp.111-122, 2015.

K. Tian, T. K. Steve, H. Jan, D. Hu, G. Yao et al., Needle in a haystack: Tracking down elite phishing domains in the wild, Internet Measurement Conference, pp.429-442, 2018.

L. Huang, D. Anthony, B. Joseph, . Nelson, J. D. Benjamin-ip-rubinstein et al., Adversarial machine learning, ACM workshop on Security and artificial intelligence, pp.43-58, 2011.

H. Xiao, B. Biggio, G. Brown, G. Fumera, C. Eckert et al., Is feature selection secure against training data poisoning?, International Conference on Machine Learning, pp.1689-1698, 2015.

B. Biggio, G. Fumera, and F. Roli, Security evaluation of pattern classifiers under attack, IEEE transactions on knowledge and data engineering, vol.26, pp.984-996, 2014.

A. Demontis, M. Melis, B. Biggio, D. Maiorca, D. Arp et al., Yes, machine learning can be more secure! a case study on android malware detection, 2017.

Y. Wang, S. Jha, and K. Chaudhuri, Analyzing the robustness of nearest neighbors to adversarial examples, International Conference on Machine Learning, pp.5120-5129, 2018.

N. Papernot, I. Goodfellow, R. Sheatsley, R. Feinman, and P. Mcdaniel, , vol.10, 2016.

B. Biggio and F. Roli, Wild patterns: Ten years after the rise of adversarial machine learning, 2017.

M. Rami, F. Mohammad, L. Thabtah, and . Mccluskey, An assessment of features related to phishing websites using an automated technique, Internet Technology And Secured Transactions, pp.492-497, 2012.

D. Dheeru and . Efi-karra-taniskidou, UCI machine learning repository, 2017.

N. Abdelhamid, A. Ayesh, and F. Thabtah, Phishing detection based associative classification data mining, Expert Systems with Applications, vol.41, issue.13, pp.5948-5959, 2014.

. Choon-lin-tan, Phishing dataset for machine learning: Feature evaluation, 2018.

V. Bulakh and M. Gupta, Countering phishing from brands' vantage point, International Workshop on Security And Privacy Analytics, pp.17-24, 2016.