A. Agrachev, Is it possible to recognize local controllability in a finite number of differentiations?, Open Problems in Mathematical Systems and Control Theory, pp.15-18, 1999.

A. Agrachev, U. Boscain, J. Gauthier, and M. Sigalotti, A Note on Time-Zero Controllability and Density of Orbits for Quantum Systems, Proceedings of the 56th IEEE Conference on Decision and Control, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01877665

A. Agrachev and T. Chambrion, An estimation of the controllability time for singleinput systems on compact Lie groups, ESAIM Control Optim. Calc. Var, vol.12, pp.409-441, 2006.

N. Anantharaman, Eigenfunctions of the Laplacian on negatively curved manifolds: a semiclassical approach, Homogeneous flows, moduli spaces and arithmetic, vol.10, pp.389-438, 2010.

J. M. Ball, J. E. Marsden, and M. Slemrod, Controllability for distributed bilinear systems, SIAM J. Control Optim, vol.20, pp.575-597, 1982.

S. Bates and A. Weinstein, Lectures on the geometry of quantization, vol.8, 1997.

K. Beauchard, J. Coron, and H. Teismann, Minimal time for the bilinear control of Schrödinger equations, Systems Control Lett, vol.71, pp.1-6, 2014.

, Minimal time for the approximate bilinear control of Schrödinger equations, Math. Methods Appl. Sci, vol.41, pp.1831-1844, 2018.

U. Boscain, M. Caponigro, T. Chambrion, and M. Sigalotti, A weak spectral condition for the controllability of the bilinear Schrödinger equation with application to the control of a rotating planar molecule, Comm. Math. Phys, pp.423-455, 2012.

N. Boussaïd, M. Caponigro, and T. Chambrion, Small time reachable set of bilinear quantum systems, Proceedings on the 51st IEEE Conference on Decision and Control, 2012.

T. Chambrion, P. Mason, M. Sigalotti, and U. Boscain, Controllability of the discrete-spectrum Schrödinger equation driven by an external field, Ann. Inst. H. Poincaré Anal. Non Linéaire, vol.26, pp.329-349, 2009.

J. Coron, of Mathematical Surveys and Monographs, Control and nonlinearity, vol.136, 2007.

M. Giaquinta and S. Hildebrandt, Grundlehren der Mathematischen Wissenschaften, vol.II, 1996.

S. J. Glaser, U. Boscain, T. Calarco, C. P. Koch, W. Köckenberger et al., Training Schrödinger's cat: quantum optimal control, The European Physical Journal D, vol.69, p.279, 2015.

N. Khaneja, R. Brockett, and S. Glaser, Time optimal control in spin systems, Phys. Rev. A, pp.32308-32309, 2001.

C. Koch, M. Lemeshko, and D. Sugny, Quantum control of molecular rotation, 2018.

P. Mason and M. Sigalotti, Generic controllability properties for the bilinear Schrödinger equation, Comm. Partial Differential Equations, vol.35, pp.685-706, 2010.

M. Mirrahimi and P. Rouchon, Controllability of quantum harmonic oscillators, IEEE Trans. Automat. Control, pp.745-747, 2004.

S. Nonnenmacher, Anatomy of quantum chaotic eigenstates, Prog. Math. Phys, vol.66, pp.193-238, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00486062

M. Reed and B. Simon, Methods of modern mathematical physics. II. Fourier analysis, self-adjointness, 1975.

T. I. Seidman and J. Yong, How violent are fast controls? II, Math. Control Signals Systems, vol.9, pp.327-340, 1996.

E. D. Sontag, Texts in Applied Mathematics, vol.6, 1998.

M. Zworski, Semiclassical analysis, vol.138, 2012.