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SUFFICIENT STABILITY CONDITIONS FOR TIME-VARYING
NETWORKS OF TELEGRAPHER’S EQUATIONS OR

DIFFERENCE-DELAY EQUATIONS∗

L. BARATCHART† , S. FUEYO† , G. LEBEAU‡ , AND J.-B. POMET†

Abstract. We give a sufficient condition for exponential stability of a network of lossless telegra-
pher’s equations, coupled by linear time-varying boundary conditions. The sufficient conditions is in
terms of dissipativity of the couplings, which is natural for instance in the context of microwave cir-
cuits. Exponential stability is with respect to any Lp-norm, 1 ≤ p ≤ ∞. This also yields a sufficient
condition for exponential stability to a special class of systems of linear time-varying difference-delay
equations which is quite explicit and tractable. One ingredient of the proof is that Lp exponential
stability for such difference-delay systems is independent of p, thereby reproving in a simpler way
some results from [4].

Key words. Time-varying 1-D hyperbolic systems, Time-varying difference-delay equations,
Stability
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1. Introduction. The stability of electrical circuits operating at high frequency,
that is, when delays induced by wires cannot be neglected, has received a lot of at-
tention in the last decades, see for example references [2, 16]. At such an operating
regime, wires should be considered as transmission lines, and it is customary to model
each of them by a lossless telegrapher’s equation (a 1-D hyperbolic partial differential
equation, in short: hyperbolic PDE) where voltage and current are functions of ab-
scissa and time. The other elements in the circuit, some of which may be active and
nonlinear (transistors, diodes), induce couplings between the boundary conditions of
these PDE consisting of a system of both differential and non-differential equations
with finite-dimensional state, obtained by applying the classical laws of electricity, at
each node, to the boundaries that “touch” this node.

Periodic solutions for such infinite dimensional dynamical systems occur naturally
in several contexts; for instance, they arise spontaneously in the case of oscillators,
or through periodic forcing in the case of amplifiers (the forcing is the signal to be
amplified, represented for instance by a periodic voltage source). Assuming a pe-
riodic solution, one may linearize the equations around the latter to investigate its
local exponential stability, based on the exponential stability of the first order ap-
proximation. The linearized system consists of the original collection of telegrapher’s
equations (which are linear already), coupled at their nodes (i.e. the endpoints of a
line) by a set of linear differential and non-differential equations with periodic coeffi-
cients, obtained by linearizing the initial couplings, see [18]. To this linear system, one
associates a high frequency limit system (in short: HFLS), where the linear differen-
tial equation at each node degenerates into a linear, time-varying but non-differential
relation (i.e. there is no dynamics in the couplings at infinite frequencies), so that
the state of the HFLS reduces to currents and voltages in the lines. The behavior
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of the HFLS is crucial to the stability of the linearized system, because the solution
operator of the latter is, in natural functional spaces, a compact perturbation of the
solution operator to the HFLS, see [13, ch. 3, thm. 7.3] and [12]. In particular, the
stability of the HFLS is essentially necessary to the stability of the linearized system.

The HFLS is a system of lossless 1-D telegrapher’s equations, with linear cou-
plings that depend on time in a periodic manner. With this application in mind, the
present paper is devoted, more generally, to the stability of lossless 1-D telegrapher’s
equations with linear time-varying couplings whose coefficients are measurable and
uniformly essentially bounded with respect to time, but not necessarily periodic. As is
well known, integrating the telegrapher’s equation yields an expression of the general
solution in terms of two functions of one variable, and this allows one to recast the
original system as a system of time-varying linear difference-delay equations; the two
frameworks are equivalent to study issues of stability.

Stability of networks of hyperbolic PDEs has been addressed extensively, includ-
ing more general systems of conservation laws than telegrapher’s equations (possibly
nonlinear), but almost1 only when the boundary conditions (i.e. the couplings) con-
sist of time-independent relations, see [1, 5] and the bibliography therein. Another
possible, different application of these criteria is to stabilization of such equations
with control, like in [7, 14] for instance. As far as methods are concerned, Lyapunov
functions are a classical tool to obtain sufficient stability conditions, see [1] where
they are applied to certain systems of hyperbolic PDEs with conservation laws, or
for instance [11], where Lyapunov functions are constructed through linear matrix in-
equalities, to retarded delay systems. We are not aware of attempts in this direction
for difference-delay systems.

In another connection, a typical way of obtaining necessary and sufficient sta-
bility conditions for a time-invariant network of telegrapher’s equations is to apply
the Henry-Hale theorem [15, 13] or variants thereof (cf. Section 3) to the equiva-
lent difference-delay system with constant coefficients. However, no analog for the
time-dependent case seems to be known.

The main contribution of this paper is to establish sufficient conditions for expo-
nential stability of networks of telegrapher’s equations, in the form of a dissipativity
assumption on the couplings at each node of the network, which is fairly natural in a
circuit-theoretic context. We also derive sufficient conditions for exponential stability
of time-varying difference-delay systems, that are a consequence of the former and
of independent interest. To our knowledge, this is the first result of this kind in the
time-varying case. The proof, which involves going back and forth between the PDE
formulation and the difference-delay system formulation, has interesting features that
should be useful in other contexts as well. Roughly speaking, we rely on classical
energy estimates to first obtain a Lyapunov function in the L2 sense for each teleg-
rapher’s equation, using the dissipativity condition at each node; this allows us to
show L2 exponential stability of the system of PDE, therefore also of the associated
delay system. In a second step, we deduce from the L2 exponential stability of the
difference-delay system its exponential stability in the L∞ sense (and in fact in the Lp

sense for all p ∈ [1,∞]). This second step is actually subsumed under the work in [4],

1 As an anonymous reviewer pointed out to us, although the paper [5] deals with local stability
of an equilibrium point for nonlinear time-invariant hyperbolic systems, it contains a statement
(Lemma 3.2) about stability of smoothly time-varying linear systems of hyperbolic PDEs for some
Sobolev norm. We discuss this further in Section 3.2 and sketch in Section 4.4 how the proof of that
lemma may be adapted here.
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but we feel our derivation is simpler and worthy in its own. Note that applications to
the local stability of a periodic trajectory in an electrical network indeed require L∞

(or C0) stability and not just L2 stability, for the state along a perturbed trajectory
of the linearized system must remain uniformly close to the state along the periodic
trajectory of the original system, in order that linearization remains meaningful. This
paper makes no attempt at handling more general PDEs or coupling conditions. We
rather tried to remain as elementary as possible in treating the problem at hand.
In particular, our arguments for well-posedness may fail for general hyperbolic 1-D
equations, for which notions like broad solutions were introduced in [3] and used e.g.
in [6], see also [1] for other approaches.

The paper is organized as follows. Section 2 introduces networks of telegra-
pher’s equations coupled by time-varying boundary conditions, gives well-posedness
results that we could not find in the literature, discusses the construction of equivalent
difference-delay systems and defines the notions of stability under examination. Sec-
tion 3 contains our main result, both in terms of networks of telegrapher’s equations
and in terms of difference-delay equations. Section 4 is devoted to the proofs.

2. Problem statement.

2.1. A time-varying network of hyperbolic equations. Consider a directed
graph with N edges and N ′ nodes, where N and N ′ are two positive integers. Nodes
are numbered by integers p ∈ {1, · · · , N ′}, and edges by integers k ∈ {1, · · · , N}.

Figure 1 represents a graph with 3 nodes and 4 edges whose only purpose is to
illustrate the definitions.

1 2 31

2

3

4

Fig. 1. A graph that induces coupling boundary conditions for (1) with N = 4.

Each edge figures a telegrapher equation. More precisely, we see edge number k
as a copy of the real segment [0, 1] (i.e. a transmission line of unit length) on which
two real functions vk(t, .) and ik(t, .) (the voltage and the current) are defined for any
positive time t in such a way that the lossless telegrapher’s equation is satisfied:

Ck
∂vk(t, x)

∂t
= −∂ik(t, x)

∂x
,

Lk
∂ik(t, x)

∂t
= −∂vk(t, x)

∂x
,

(t, x) ∈ Ω ,(1)

where

(2) Ω = {(t, x) ∈ R2, 0 < x < 1 and 0 < t < +∞},

and Lk, Ck are strictly positive numbers called the inductance and capacity of the
line, from which the delay τk and characteristic impedance Kk may be defined by (3).
Possibly re-ordering the edges, we assume that the delays τk are increasing:

(3) τk =
√
LkCk , Kk =

√
Ck/Lk , 0 < τ1 ≤ τ2 · · · ≤ τN .

Each node couples the edges adjacent to it through boundary conditions at one
of the endpoints of [0, 1]. More precisely, for node number p, if



4 L. BARATCHART, S. FUEYO, G. LEBEAU, J.-B. POMET

• j(p) is the out-degree of the graph at this node, i.e. the number of edges
outgoing from it, these edges being labelled k1 < · · · < kj(p),

• ̃(p) is the in-degree of the graph at this node, i.e. the number of edges
incoming at it, these edges being labelled kj(p)+1 < · · · < kj(p)+̃(p),

the node couples the equations (1) corresponding to these instances of k via the
following j(p) + ̃(p) linear relations:

Vp(t) = Ap(t)Ip(t),(4)

on the 2(j(p) + ̃(p)) entries of the following two vectors:

(5) Vp(t) =



vk1(t, 0)
...

vkj(p)(t, 0)
vkj(p)+1

(t, 1)
...

vkj(p)+̃(p)(t, 1)


, Ip(t) =



−ik1(t, 0)
...

−ikj(p)(t, 0)
ikj(p)+1

(t, 1)
...

ikj(p)+̃(p)(t, 1)


.

In (4), t 7→ Ap(t) is a map from [0,+∞) to the set of square (j(p) + ̃(p)) × (j(p) +
̃(p)) matrices, that will always be assumed measurable and bounded. It is moreover
continuous in many cases of interest (e.g. when modeling an electrical circuit). Our
results rest on the following condition characterizing dissipativity at (each) node p:

Ap(t) +A∗p(t) ≥ αp Id, αp > 0 , p ∈ {1, · · · , N ′},(6)

where αp is independent of t and superscript ∗ denotes the transpose of a real matrix,
or the transpose conjugate of a complex matrix since we shall have an occasion to
deal also with complex matrices. Inequality (6) is meant to hold between symmetric
matrices, for a.e. t. Here and below, the symbol Id stands for the identity operator
or matrix of appropriate size, while the context will keep the meaning clear.

Example 2.1. For the graph in Figure 1 it holds that N = 4, i.e. we have four
telegrapher’s equations of the form (1), numbered with k ∈ {1, 2, 3, 4}, and we have
that N ′ = 3, hence we get three sets of boundary conditions. Let us detail the latter.
- For p = 1, we have j(1) = 1, ̃(1) = 0, and we see from the graph that k1 = 1,
- for p = 2, we have j(2) = 2, ̃(2) = 1, and we see from the graph that k1 = 2, k2 = 4,
k3 = 3,
- for p = 3, we have j(3) = 1, ̃(3) = 2, and we see from the graph that k1 = 3, k2 = 2
and k3 = 4.
This yields three equations of the form (4) as follows, with A1(t) a scalar, A2(t) a
4× 4 matrix and A3(t) a 3× 3 matrix: v1(t, 0) = −A1(t) i1(t, 0),

v2(t, 0)
v4(t, 0)
v1(t, 1)
v3(t, 1)

 = A2(t)


−i2(t, 0)
−i4(t, 0)
i1(t, 1)
i3(t, 1)

 , and

v3(t, 0)
v2(t, 1)
v4(t, 1)

 = A3(t)

−i3(t, 0)
i2(t, 1)
i4(t, 1)

 .

Remark 2.2 (On the minus signs in the vector Ip in (5)). We shall see later why
(6) amounts to energy dissipation in some sense. This is one justification for the
minus signs in (5): removing these minus signs would transfer them into Ap(t) in (4),
and dissipativity would then be expressed by an intricate property for the new Ap(t)
rather than the natural strict positivity in (6). Alternatively, from a circuit-theoretic
viewpoint, the minus signs are justified by Kirchoff’s law of currents.
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Remark 2.3 (On the normalization of line lengths). We have assumed that the
space variable x belongs to the interval [0, 1] for every k in equation (1) rather than
[0, `k] for some positive `k. This is no loss of generality, for such a normalization can
always be achieved by a linear change of variable on x. With this normalization, τk
given by equation (3) has the meaning of a time delay.

Remark 2.4 (On the possibility of loops). In the above framework, nothing
prevents an edge from being both outgoing from, and incoming to a given node p. In
this case, the index k of this edge appears twice in equation (5), once as a kj with
j ≤ j(p) and once as a kj(p)+l with l ≤ ̃.

So far, we endowed a system consisting of N PDE, indexed by the edges of our
graph (namely: (1)), with boundary conditions given by a collection of N ′ linear time-
dependent relations, indexed by the nodes of the graph (namely: (4)). As a result,
the boundary conditions at x = 0 and at x = 1 for a given telegrapher’s equation of
the form (1) are generally obtained from two different relations of the form(4). To
compactify the notation, we shall rewrite the boundary conditions in lumped form,
as a single linear relation between concatenated vectors V(t) and I(t) defined by:

v(x, t) =

 v1(x, t)
...

vN (x, t)

 , i(x, t) =

 i1(x, t)
...

iN (x, t)

 ,

V(t) =

v(t, 0)

v(t, 1)

 , I(t) =

−i(t, 0)

i(t, 1)

 ,

(7)

that aggregate all boundary values of voltages and currents in the lines. Since the
concatenation of all vectors Vp(t) (resp. Ip(t)) defined in (5) contains each component
of V(t) (resp. I(t)) exactly once, as p ranges from 1 to N ′, there is a 2N × 2N
permutation matrix P1 such that

(8)

 V1(t)
...

VN ′(t)

 = P1 V(t) ,

 I1(t)
...

IN ′(t)

 = P1 I(t) .

The set of equations (4), 1 ≤ p ≤ N ′, can now be written as

(9) V(t) = A(t) I(t)

with

(10) A(t) = P−1
1 diag(A1(t), . . . , AN ′)P1

where diag(A1(t), . . . , AN ′(t)) is a block-diagonal 2N×2N matrix. This “aggregated”
notation may be understood as collapsing all the nodes into a single one; all edges
are then “loops” as described in Remark 2.4. Clearly, the hypotheses on Ap made
in (6) translate into the following assumption on the matrix A(t) that will be used
throughout the paper :

Assumption 2.5. The matrix-valued map t 7→ A(t) is measurable and essentially
bounded [0,+∞)→ R2N×2N , and there exists a real number α, independent of t, such
that α > 0 and

(11) A(t) + A∗(t) ≥ α Id, t ∈ R.
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2.2. Well-posedness of the evolution problem in the Lp and C0 cases.
Equations (1) (1 ≤ k ≤ N) and (9)-(7) define a linear time-varying dynamical system,
whose state at time t consists of a collection of 2N real functions on [0, 1], namely
x 7→ vk(t, x) and x 7→ ik(t, x) for 1 ≤ k ≤ N . Before we can study the stability of this
dynamical system, we need to address the issue of well-posedness, i.e. of existence
and uniqueness of solutions given initial conditions vk(0, .) and ik(0, .) (the Cauchy
problem). When the matrices Ap(t) (or equivalently the matrix A(t)) do not actually
depend on t, well-posedness results are classical, see for instance the textbooks [1, 8].

In the time-varying case, which is our concern here, a very definition of well-
posedness seems hard to find in the literature, perhaps because the introduction of
time dependent boundary conditions leads to a failure of classical semigroup theory.
We shall consider two cases according to whether the state at time t consists of
continuous functions or merely Lp-summable functions on [0, 1], 1 ≤ p ≤ ∞.

Let us first fix notation. We denote respectively by N and R the sets of nonneg-
ative integers and real numbers. We write the Euclidean norm of x ∈ Rl as ‖x‖, and
the Euclidean scalar product of x, y ∈ Rl as 〈x, y〉, irrespectively of l. We put C0(E)
for the space of real continuous functions on any topological space E. When E is
compact we endow C0(E) with the sup norm. Also, whenever E ⊂ Rl is measurable
and 1 ≤ p < ∞, we put Lp(E) for the familiar Lebesgue space of (equivalent classes
of a.e. coinciding) real-valued measurable functions on E whose absolute value to the
pth power is integrable, endowed with the norm ‖f‖Lp(E) = (

∫
E
|f(x)|pdx)1/p where

dx indicates the differential of Lebesgue measure (restricted to E). The space L∞(E)
corresponds to real, essentially bounded Lebesgue measurable functions, normed with
the essential supremum of their absolute value on E. More generally, for F a Ba-
nach space with norm ‖.‖F , we let C0(E,F ) be the space of F -valued continuous
functions on E, and if E is compact we set ‖f‖C0(E,F ) = supE ‖f‖F . In a simi-
lar way, Lp(E,F ) is the space of F -valued measurable functions f on E such that
‖f‖F ∈ Lp(E). We also define locally integrable functions: Lploc(E) designates the
space of functions whose restriction f|K to any compact set K ⊂ E belongs to Lp(K).
Likewise, we let Lploc(E,F ) be the space of F -valued measurable functions f on E
such that ‖f‖F ∈ Lploc(E). Since Rl is σ-compact, the topology of Lp-convergence on
every compact set is metrizable on Lploc(Rl, F ). The spectral norm of a linear operator
B : F1 → F2 between two Banach spaces is |||B||| = supx∈F1

‖Bx‖F2
/‖x‖F1

, keeping
the notation independent of F1, F2 for simplicity.

Next, let us make precise the meaning of (1) and (9) when vk and ik lie in
L1
loc(Ω), where Ω is defined by (2) and Ω indicates the closure of Ω in R2. Later,

we shall see this space is big enough to accomodate cases we have in mind. Note
that Ω = [0,∞)× [0, 1], and that L1

loc(Ω) identifies with a subspace of L1
loc(Ω), since

([0,∞)× [0, 1]) \ Ω has 2-D Lebesgue measure zero. Indeed, the latter set is just the
boundary ∂Ω of Ω in R2:

(12) ∂Ω = ({0}×(0, 1)) ∪ ([0,+∞)×{0}) ∪ ([0,+∞)×{1}) .

Equation (1) is understood in the distributional sense as soon as (vk, ik) ∈
L1
loc(Ω)×L1

loc(Ω). That is, (vk, ik) is a solution to (1) if, for all C∞-smooth functions
ϕ : Ω→ R with compact support, it holds that∫∫

Ω

(
Lk ik(t, x)

∂ϕ

∂t
(t, x) + vk(t, x)

∂ϕ

∂x
(t, x)

)
dtdx = 0 ,∫∫

Ω

(
Ck vk(t, x)

∂ϕ

∂t
(t, x) + ik(t, x)

∂ϕ

∂x
(t, x)

)
dtdx = 0 .

(13)
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As to (9), the definition (7) of V and I, as well as the choice of initial conditions
vk(0, .) and ik(0, .), require that vk and ik extend in some way to ∂Ω described in
(12), and this is where their membership to L1

loc(Ω) (not just to L1
loc(Ω)) is useful.

In fact, when h ∈ L1
loc(Ω) = L1

loc([0,∞) × [0, 1]), we get from Fubini’s theorem that
τ 7→ h(τ, x) belongs to L1

loc([0,∞)) for a.e. x ∈ [0, 1] and that s 7→ h(t, s) lies in
L1([0, 1]) for a.e. t ∈ [0,∞). For such x and t, we set

ĥ(t, 0) = lim
ε→0

1

ε

∫ ε

0

h(t, s)ds , ĥ(t, 1) = lim
ε→0

1

ε

∫ 1

1−ε
h(t, s)ds ,

ĥ(0, x) = lim
ε→0

1

ε

∫ ε

0

h(s, x)ds , whenever the limits exist.

(14)

Definition 2.6. We say that h ∈ L1
loc(Ω) has a strict extension to ∂Ω if and

only if the limits in (14) exist for almost all x ∈ (0, 1) and almost all t ∈ (0,∞), and

then the functions x 7→ ĥ(0, x), t 7→ ĥ(t, 0) and t 7→ ĥ(t, 1) define the strict extension
of h to ∂Ω, almost everywhere with respect to H1-Hausdorff measure2.

Remark 2.7. Definition 2.6 may look strange at first glance, since when h ∈
L1
loc(Ω) it seems to be defined already on ∂Ω ⊂ Ω; but of course it is not so, be-

cause ∂Ω has 2-D Lebesgue measure zero, hence the values assumed by h there are
immaterial. When the limits in (14) exist for a.e. x and t, they produce a specific
definition of h on ∂Ω, a.e. with respect to H1, that we call the strict extension. If
h : Ω → R is continuous and extends continuously Ω → R, clearly the strict ex-
tension exists and it is the natural one. Even then, we sometimes use the notation
ĥ(0, x), ĥ(t, 0) and ĥ(t, 1) for reasons of consistency, although writing h(0, x), h(t, 0)
and h(t, 1) is more appropriate in this case.

If all vk and ik have a strict extension to ∂Ω, then we interpret the boundary conditions
(9) to mean the following set of equalities between (a.e. defined) measurable functions
of a single variable t:

(15)



v̂1(t, 0)
...

v̂N (t, 0)
v̂1(t, 1)

...
v̂N (t, 1)


= A(t)



−ı̂1(t, 0)
...

−ı̂N (t, 0)
ı̂1(t, 1)

...
ı̂N (t, 1)


, a.e. t ∈ (0,∞).

We can now state a well-posedness result for System (1)-(9). Part I deals with so-
lutions belonging to L1

loc([0,∞), Lp([0, 1])), and part II is about continuous solutions.
They do not run completely parallel to each other, because continuity requires a com-
patibility relation on the initial conditions, see (17). The theorem is standard in nature
but, as mentioned already, we could not find a reference in the literature for the case of
time-varying boundary conditions (15). To connect the statement with the previous
discussion, we observe that L1

loc([0,∞), Lp([0, 1])) ⊂ L1
loc([0,∞)× [0, 1]) = L1

loc(Ω) for
1 ≤ p ≤ ∞, by Hölder’s inequality and Fubini’s theorem.

2See e.g. [10, ch. 2] for the definition of Hausdorff measures. Here, H1 restricted to ∂Ω ⊂ R2

is simply the measure whose restriction to each curve {0}×(0, 1), [0,+∞)×{0} and [0,+∞)×{1}
coincides with arc length.
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Theorem 2.8 (Well-posedness). Let A : [0,∞) → R2N×2N meet Assumption
2.5 and 1 ≤ p ≤ ∞.
I) If i0k, v

0
k ∈ Lp([0, 1]), 1 ≤ k ≤ N , there is a unique map (t, x) 7→ (v1(t, x), . . . ,

vN (t, x), i1(t, x), . . . , iN (t, x)) from Ω into R2N×2N such that:
• t 7→ (v1(t, .), . . . , vN (t, .), i1(t, .), . . . , iN (t, .)) belongs to L1

loc([0,∞), (Lp([0, 1]))2N )
and vk, ik have a strict extension to ∂Ω satisfying the initial conditions

(16) v̂k(0, x) = v0
k(x), ı̂k(0, x) = i0k(x) k = 0, . . . , N ,

• (t, x) 7→ (v1(t, x), . . . , vN (t, x), i1(t, x), . . . , iN (t, x)) is a solution of (1)-(9), 1 ≤
k ≤ N , in the sense of (13) and (15).

II) If, in addition, t 7→ A(t) is continuous and v0
1 , . . . , v

0
N , i

0
1, . . . , i

0
N are elements of

C0([0, 1]) satisfying

(17)



v0
1(0)
...

v0
N (0)
v0

1(1)
...

v0
N (1)


= A(0)



−i01(0)
...

−i0N (0)
i01(1)

...
i0N (1)


,

then the map (t, x) 7→ (v1(t, x), . . . , vN (t, x), i1(t, x), . . . , iN (t, x)) from part I is con-
tinuous Ω → R2N (equivalently: t 7→ (v1(t, .), . . . , vN (t, .), i1(t, .), . . . , iN (t, .)) is con-
tinuous [0,∞) → C0([0, 1])2N×2N ) and satisfies the initial conditions in the strong
sense:

(18) vk(0, x) = v0
k(x), ik(0, x) = i0k(x) , x ∈ [0, 1], k = 0, . . . , N .

Remark 2.9. Assumption 2.5 is stronger than needed for the previous result to
hold. In fact, it is enough for part I that the maps t 7→ A(t) and t 7→ (I + A(t) K)

−1

be well defined, measurable and bounded (K is defined in (26)), and for part II that
they be continuous and bounded. We do not dwell on such generalizations.

The proof of Theorem 2.8 is given at the end of Section 2.3, after establishing the
equivalence of (1)-(9) with a suitable difference-delay system. As a first step in this
direction, we stress below the special form of solutions to (1) in Lploc(Ω), and show
they have a strict extension to ∂Ω if, moreover, they lie in Lploc(Ω).

Proposition 2.10. Let ik and vk belong to Lploc(Ω) (resp. C0(Ω)) for some p ∈
[1,∞], and satisfy (1) on Ω in the sense of (13). Then, the following three properties
hold.

(i) There exists two functions fk and gk in Lploc((−∞, 1)) and Lploc((0,∞)) (resp.
in C0((−∞, 1)) and C0((0,∞))) such that

(19) vk(t, x) = fk(x− t

τk
) + gk(x+

t

τk
), ik(t, x) = Kk

(
fk(x− t

τk
)− gk(x+

t

τk
)

)
,

for almost every (resp. every) (x, t) in Ω, where τk,Kk are defined by (3).
(ii) If, in addition, vk and ik lie in Lploc(Ω) (resp. extend continuously Ω →

R), then fk and gk lie in Lploc((−∞, 1]) and Lploc([0,∞)) (resp. in C0((−∞, 1]) and
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C0([0,∞))), moreover vk, ik have a strict extension to ∂ Ω according to Definition 2.6.
More precisely, we have that

v̂k(t, 0) = fk(− t

τk
) + gk(

t

τk
), ı̂k(t, 0) = Kk

(
fk(− t

τk
)− gk(

t

τk
)

)
,(20a)

v̂k(t, 1) = fk(1− t

τk
) + gk(1+

t

τk
), ı̂k(t, 1) = Kk

(
fk(1− t

τk
)− gk(1+

t

τk
)

)
,(20b)

ı̂k(0, x) = Kk (fk(x)− gk(x)) , v̂k(0, x) = fk(x) + gk(x),(20c)

where (20a) and (20b) hold for almost all (resp. all) t in (0,+∞) and (20c) for almost
all (resp. all) x in (0, 1).

(iii) Conversely, if fk and gk lie in Lploc((−∞, 1)) and Lploc((0,∞)) (resp. in
C0((−∞, 1)) and C0((0,∞))), then vk and ik given by (19) belong to Lploc(Ω) (resp.
C0(Ω)) and satisfy (1). If, moreover, fk and gk lie in Lploc((−∞, 1]) and Lploc([0,∞))
(resp. in C0((−∞, 1]) and C0([0,∞))), then vk and ik belong to Lploc(Ω) (resp. C0(Ω))
and (20a)–(20c) hold.

Proof. The proof of point (i) rests on a linear change of variables, valid even in
the distributional sense: if we introduce new variables r = x− t/τk, s = x+ t/τk and
new functions fk, gk on Ω1 := {(r, s) ∈ R2, 0 < r+ s < 2 and −∞ < r− s < 0}, via(

fk(r, s)
gk(r, s)

)
=

1

2

(
1 1/Kk

1 −1/Kk

)(
vk
(
τk
2 (−r + s) , 1

2 (r + s)
)

ik
(
τk
2 (−r + s) , 1

2 (r + s)
)) ,(

vk(t, x)
ik(t, x)

)
=

(
1 1
Kk−Kk

)(
fk
(
x− t/τk, x+ t/τk

)
gk
(
x− t/τk, x+ t/τk

)) ,
then fk, gk are in one-to-one correspondence with vk, ik, they are in Lploc(Ω1) (resp.
C0(Ω1,R)) if and only if the latter are in Lploc(Ω) (resp. C0(Ω,R)), and System (1)
gets transformed into the distributional identity ∂fk/∂s = ∂gk/∂r = 0. This equation
means that fk does not depend on the second argument nor gk on the first one, hence
the form (19) for vk and ik.

We turn to Point (ii). First, we observe that if vk and ik lie in Lploc(Ω) (resp.
extend continuously Ω → R), then fk and gk lie in Lploc((−∞, 1]) and Lploc([0,∞))
(resp. in C0((−∞, 1]) and C0([0,∞))), by the change of variable formula (resp. by
inspection). The case where vk and ik extend continuously Ω→ R is now obvious. To
handle the case where vk, ik ∈ Lploc(Ω), recall that a (non-centered) Lebesgue point of
a function ` ∈ L1

loc(R) is a point x ∈ R such that lim|I|→0,I3x
1
|I|
∫
I
|`(y)−`(x)|dy = 0,

where the limit is taken over all closed intervals I containing x and |I| indicates the

length of I. Let f̃k and g̃k be the extensions by 0 of fk and gk to the whole real line.
Using (19) in (14), we see that (20a) certainly holds for t ∈ (0,∞) such that −t/τk
is a Lebesgue point of f̃k and t/τk is a Lebesgue point of g̃k, (20b) if 1 − t/τk is a

Lebesgue point of f̃k and 1 + t/τk is a Lebesgue point of g̃k, and (20c) if x ∈ (0, 1)

is a Lebesgue point of both f̃k and g̃k. Since almost all points are Lebesgue points
of a given function in L1

loc(R) [10, thm. 1.34], while Lploc(R) ⊂ L1
loc(R) by Hölder’s

inequality, this proves Point (ii). Point (iii) is obvious, reverting computations.

Remark 2.11. The weak formulation (13) defines solutions vk, ik to (1) as lo-
cally integrable functions Ω → R, while Theorem 2.8 stresses their representation
as functions [0,+∞) → Lp([0, 1]). The two points of view are essentially equiva-
lent by Fubini’s theorem, but suggestive of different moods. In this connection, it
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is worth mentioning that if p < ∞, then the solution set forth in Part I of The-
orem 2.8 not only belongs to L1

loc([0,∞), (Lp([0, 1]))2N ), but in fact is continuous
[0,∞) → (Lp([0, 1]))2N×2N . Indeed, granted that fk and gk lie in Lploc((−∞, 1]) and
Lploc([0,∞)) by Proposition 2.10, this follows from the very proof of the theorem (cf.
(29) and (24) below) and the fact that τ 7→ f(. − τ) is continuous R → Lp(R),
whenever f ∈ Lp(R), p <∞.

2.3. Difference-delay equations and their relation with networks of te-
legrapher’s equations. A general linear time-varying difference-delay equation3 in
the variable z is of the form

z(t) =

M∑
i=1

Di(t) z(t− ηi) for all (or almost all) t ≥ 0 ,(21)

where the delays 0 < η1 ≤ · · · ≤ ηM are arranged in nondecreasing order, each
t 7→ Di(t) is a d × d matrix-valued function, and solutions t 7→ z(t) are Rd-valued
functions. Hereafter, we make the following assumption.

Assumption 2.12. The maps t 7→ Di(t) in (21) all belong to L∞([0,+∞),Rd×d).

Given initial conditions on [−ηM , 0], we recap existence and uniqueness of solutions
to (21) in the following theorem. The existence of continuous solutions requires an
additional continuity assumption on the Di, as well as compatibility relations on the
initial conditions; this is why we introduce the following space:

(22) C := {φ ∈ C0([−ηM , 0],Rd) |φ(0) =

M∑
i=1

Di(0)φ(−ηi)} .

Theorem 2.13. Let Assumption 2.12 hold and φ be an element of Lp([−ηM , 0],
Rd) with 1 ≤ p ≤ ∞.

(i) There is a unique solution z to (21) in Lploc([−ηM ,+∞),Rd) meeting the
initial condition z|[−ηM ,0] = φ.

(ii) If, moreover, the maps Di : [0,+∞)→ Rd×d are continuous and φ ∈ C, then
z ∈ C0([−ηM ,+∞),Rd)).

Proof. This is a classical, elementary inductive argument, see e.g. [13]: for any
T ≥ 0, if a solution has been found on [−ηM , T ], it clearly can be extended to
[−ηM , T + η1] in a unique manner using (21). When the Di(.) are continuous, φ ∈ C
is clearly necessary and sufficient for the unique solution to be continuous.

Remark 2.14 (merging repeated delays). In (21), we allow for repeated delays,
i.e. it may be that ηi = ηi+1 for some i. This to comply with (1)-(3), where it
would be too restrictive to require that the numbers τk are distinct, and because we
are about to convert (1)-(3) into (21) in such a way that ηi = τi. However, when
dealing with (21), it is better to avoid repetition by merging terms with the same
delay. Since it will be needed in the statement of Theorem 3.7, let us formalize
this: first, define an enumeration without repetition of the original list of delays, say,
0 < η̂1 < η̂2 < · · · < η̂

M̂
with M̂ ≤M , then define for each j

(23) D̂j(t) =
∑

{i, ηi = η̂j}

Di(t) .

3There is no consensus in the literature on a name for equations like (21). We stick with the
term “difference-delay equations” (or “difference-delay systems”) throughout the present paper.
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It is clear that (21) can be re-written as z(t) =
∑M̂
j=1 D̂j(t) z(t − η̂j), and if the ηi

were distinct already, then the system is left unchanged.

We now construe the system of coupled telegrapher’s equations from Sections 2.1 and
2.2 as a difference-delay system of the form (21). For this, let (vk, ik) ∈ L1

loc(Ω) ×
L1
loc(Ω) (resp. C0(Ω)×C0(Ω)) be, for 1 ≤ k ≤ N , solutions of (1)-(9), observing from

Proposition 2.10 (ii) that the boundary conditions (9) indeed make sense. Let fk, gk
be as in Proposition 2.10, and define:

(24) xk(t) = fk(− t

τk
) and yk(t) = gk(1 +

t

τk
).

The functions fk and gk lie in L1
loc((−∞, 1]) and L1

loc([0,∞)) (resp. in C0((−∞, 1])
and C0([0,∞))) by Proposition 2.10, therefore xk and yk lie in L1

loc([−τk,+∞)) (resp.
C0([−τk,+∞))). Moreover, the boundary values of vk and ik are related to xk and
yk as follows (substitute (24) in (20a) and (20b)):

v̂k(t, 0) = xk(t) + yk(t− τk) ,
ı̂k(t, 0) = Kk[xk(t)− yk(t− τk)] ,
v̂k(t, 1) = xk(t− τk) + yk(t) ,
ı̂k(t, 1) = Kk[xk(t− τk)− yk(t)] .

(25)

Plugging (25) in (15) gives us

x1(t)
...

xN (t)
y1(t)

...
yN (t)


+



y1(t− τ1)
...

yN (t− τN )
x1(t− τ1)

...
xN (t− τN )


= A(t)





−K1 x1(t)
...

−KN xN (t)
−K1 y1(t)

...
−KN yN (t)


+



K1 y1(t− τ1)
...

KN yN (t− τN )
K1 x1(t− τ1)

...
KN xN (t− τN )




.

Thus, if we define

K = diag(K1, . . . ,KN ,K1, . . . ,KN ), P2 =

(
0 Id
Id 0

)
(26)

where Id has size N × N , and observe that P2K = KP2 while noting that relation
K = K∗ > 0 together with the dissipativity condition (11) entail that I + A(t) K is
invertible, we obtain:

(27)



x1(t)
...

xN (t)
y1(t)

...
yN (t)


= − (I + A(t) K)

−1
(I −A(t) K)P2



x1(t− τ1)
...

xN (t− τN )
y1(t− τ1)

...
yN (t− τN )


.

Setting d = 2N and letting z(t) be the vector [x1(t), · · · , xN (t), y1(t), · · · , yN (t)]∗

and, for each i ∈ {1, · · · , , N}, the d× d matrix Di(t) have the same ith and (i+N)th

columns as the matrix − (I + A(t) K)
−1

(I −A(t) K)P2, the other columns being
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zero, it is obvious that system (27) can be rewritten in the form (21) with M = N
and ηi = τi, 1 ≤ i ≤ N . As for initial conditions, we obtain from (24) and (20c) that,
for t in [−τk, 0],

(28) xk(t) =
1

2
v0
k

(−t
τk

)
+

1

2Kk
i0k
(−t
τk

)
, yk(t) =

1

2
v0
k

(
1+

t

τk

)
− 1

2Kk
i0k
(
1+

t

τk

)
.

Note that both −t/τk and 1 + t/τk range over [0, 1] when t ranges over [−τk, 0]. The
only difference with the situation in Theorem 2.13 is that initial values for xk, yk are
only provided over [−τk, 0] through (24) and (20c), not over [−τN , 0]. However, with
the previous definitions of z(t) and Di(t), 1 ≤ i ≤ N , the values of xk and yk on
[−τN ,−τk) when τk < τN are unimportant to the dynamics of (21) for t ≥ 0, because
the columns of Di(t) other than ith and (i + N)th are identically zero. Thus, we
may pick initial conditions for xk and yk on [−τN ,−τk) arbitrarily, provided that we
comply with summability or continuity requirements. For instance, we can extend xk
and yk to [−τN , 0] using the operators J

[−τN ,0]
[−τk,0] defined as follows. For a < b < c three

real numbers, J
[a,c]
[a,b] be an extension operator mapping functions on [a, b] to functions

on [a, c] so that Lp([a, b]) gets mapped into Lp([a, c]) and C0([a, b]) into C0([a, c]), in
a continuous manner. Such an operator is easily constructed by choosing a smooth
function ϕ : R → R which is 1 on (−∞, b] and 0 on [min{2b − a, c},+∞); then, for

f : [a, b] → R, define J
[a,c]
[a,b] f to be f on [a, b] and ϕ(t)f(2b − t) for t ∈ (b, c], where

the product is interpreted as zero if 2b − t < a. Similarly we define J
[a,c]
[b,c] mapping

functions on [b, c] to functions on [a, c].
We have now reduced the Cauchy problem for (1)-(9), 1 ≤ k ≤ N , to the Cauchy

problem for a particular equation of the form (21). Moreover, it is obvious from what
precedes that initial conditions in Lp([0, 1],R) (resp. C0([0, 1]) meeting (17)) for vk, ik
correspond to initial conditions in Lp([−τN , 0],R2N ) (resp. C) for z, and that solutions
vk, ik in Lploc([0,∞), Lp([0, 1])) (resp. C0([0,∞), C0([0, 1]))) correspond to solutions
z ∈ Lploc([0,∞),R2N ) (resp. C0([0,∞),R2N )).

Proof of Theorem 2.8. The above discussion (starting after Theorem 2.13) shows
that the function (t, x) 7→ (v1(t, x), . . ., vN (t, x), i1(t, x), . . . , iN (t, x)) is a solution of
(1)-(9)-(16) for Part I or (1)-(9)-(18) for part II if and only if

vk(t, x) = xk(t− xτk) + yk((x− 1)τk + t) ,

ik(t, x) = Kk (xk(t− xτk)− yk((x− 1)τk + t)) ,
(29)

where t 7→ (x1(t), . . . , xN (t), yi(t), . . . , yN (t)) is a solution of the difference-delay sys-
tem (27) in Lploc([0,∞),R2N ) or in C0([0,∞),R2N ), with initial conditions given by

(28) and extended if necessary to [−τN , 0] using the operator J
[−τN ,0]
[−τk,0] constructed just

before this proof. The result now follows from Theorem 2.13.

2.4. Exponential stability: definitions.

Definition 2.15. Let A : [0,∞) → R2N×2N meet Assumption 2.5 (resp. meet
Assumption 2.5 and be continuous). For 1 ≤ p ≤ ∞, System (1)-(9) is said to be Lp

(resp. C0) exponentially stable if and only if there exist γ,K > 0 such that, for all
solutions given by Theorem 2.8 part I (resp. part II), one has, for all t ≥ 0,∥∥(̂ı(t, ·), v̂(t, ·)

)∥∥
Lp([0,1],R2N )

≤ Ke−γt
∥∥(̂ı(0, ·), v̂(0, ·)

)∥∥
Lp([0,1],R2N )

( resp.
∥∥(i(t, ·), v(t, ·)

)∥∥
C0([0,1],R2N )

≤ Ke−γt
∥∥(i(0, ·), v(0, ·)

)∥∥
C0([0,1],R2N )

).
(30)
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Definition 2.16. Let the maps t 7→ Di(t) meet assumption (2.12) (resp. meet
assumption (2.12) and be continuous). System (21) is said to be Lp (resp. C0) ex-
ponentially stable, p ∈ [1,∞], if and only if there exist γ,K > 0 such that, for all
solutions given by part (i) (resp. part (ii)) of Theorem 2.13, one has, for all t ≥ 0,

‖z(t+ ·)‖Lp([−τN ,0],Rd) ≤ Ke
−γt ‖z(·)‖Lp([−τN ,0],Rd)

(resp. ‖z(t+ ·)‖C0([−τN ,0],Rd) ≤ Ke
−γt ‖z(·)‖C0([−τN ,0],Rd) ).

(31)

There is a slight abuse of notation in (31): for t ≥ 0, the norms should not apply to
z(t+ ·) : [−τN− t,+∞)→ Rd, but rather to its restriction to [−τN , 0].

Our main concern in this paper is the exponential stability of system (1)-(9), but
we shall need the equivalent formulation as a difference-delay system of the form (27),
which is a particular case of (21). In fact, exponential stability of the two systems
are equivalent properties, as asserted by the following proposition.

Proposition 2.17. System (1)-(9) is Lp exponentially stable (resp. C0 exponen-
tially stable) if and only if System (27) is Lp exponentially stable (resp. C0 exponen-
tially stable), 1 ≤ p ≤ ∞.

Proof. This follows at once from (29) expressing solutions of (1)-(9) from solutions
of (27) and vice-versa.

3. Results.

3.1. Known results in the time-invariant case. The exponential stability
of difference-delay systems like (21) when the Di are constant matrices is well under-
stood. Indeed, the following necessary and sufficient condition is classical.

Theorem 3.1 (Henry-Hale Theorem, [15, 13]). If the matrices Di in system (21)
do not depend on t, the following properties are equivalent.

(i) System (21) is Lp exponentially stable for all p ∈ [1,+∞].
(ii) System (21) is C0 exponentially stable.

(iii) There exists β < 0 for which

(32) Id−
N∑
i=1

Di e
−λτi is invertible for all λ ∈ C such that <(λ) > β.

Theorem 3.1 is usually stated for C0 exponential stability only. However, the proof
yields Lp exponential stability as well for 1 ≤ p ≤ ∞, see the discussion after [5, eq.
(1.11)]. To study the stability of time-invariant networks of 1-dimensional hyperbolic
systems, it is standard to convert them into difference-delay systems, much like we did
in the previous section, and to apply Theorem 3.1. There is a sizeable literature on this
topic, dealing with more general equations with conservation laws than telegrapher’s
ones, see for instance the textbook [1] and references therein.

For systems of the form (27), if we assume on top of the dissipativity condition
(11) that the coupling matrix A(t) in fact does not depend on t, then Theorem 3.1
applies to yield exponential stability. This is the content of the following proposition,
whose (elementary) proof is given in section 4.2 for completeness:

Proposition 3.2. If the matrix A(t) is constant and condition (11) holds, then
the constant matrices Di obtained when putting (27) into the form (21) satisfy (32)
for some β < 0.
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3.2. Sufficient stability condition in the time-varying case. There is un-
fortunately no straightforward generalization of the Henry-Hale theorem to time-
varying difference-delay systems of the form (21), even if we assume that the Di(t)
are periodic with the same period, as is the case in the application to electrical net-
works outlined in the introduction. To the best of our knowledge, there are very few
results on the stability of such systems; let us mention two. One is [5, Lemma 3.2].
It gives exponential stability results in Sobolev norms for the class of time-varying
difference-delay systems (21) which come from 1-D hyperbolic equations, where the
matrices Di(·) are continuously differentiable and the delays may be time-dependent.
Another, extensive reference is [4], which gives a necessary and sufficient condition for
Lp exponential stability when 1 ≤ p ≤ +∞ that obviously remains valid for C0 expo-
nential stability as well. It is stated in terms of the boundedness of sums of products
of the Di(tj) at delayed time intants tj , where the number of terms in the sums and
products can be arbitrary large. This is akin to an expression of the solution to (21)
in terms of the matrices Di(.) and the initial conditions (see (58) and (59) further
below), which looks difficult to bound efficiently in practice because of the tremen-
dous combinatorics and the many cancellations that can occur. In contrast, we only
deal here with telegrapher’s equations, or with difference-delay systems that can be
recast as such, but Assumption 2.5 is a much more manageable sufficient condition
for exponential stability.

The main result of the paper —see Theorems 3.6 and 3.7 below— asserts Lp

exponential stability for all p ∈ [1,∞], as well as C0 exponential stability, for networks
of telegrapher’s equations with time-varying coupling conditions of the form or (1)-(9)
(or (1)-(4)) under Assumption 2.5 (dissipativity at the nodes), and for difference-delay
systems (21) under conditions that imply that they can be put in the form (27) with
the same dissipativity conditions.

It may be interesting to note that the sufficient condition for stability that we
give here is independent of the delays when speaking of a difference-delay system
(Theorem 3.7) or independent of the characteristics of the lines (constants Ck and
Lk) when speaking of networks of telegrapher’s equations (Theorem 3.6). Also, these
sufficient conditions are not claimed to be necessary.

Let us state these results, preceded by some auxiliary results of independent
interest. The proofs not given right after the theorems can be found in Sections 4.3
through 4.6.

The first step is to establish L2 exponential stability of System (1)-(9) asserted
in the following theorem. We give in Section 4.3 a proof using a natural energy
functional as Lyapunov function for the telegrapher equations (1). Condition (11)
in Assumption 2.5, which has been termed dissipativity without much explanation
so far, expresses dissipativity in the sense of this energy functional. We also sketch,
in Section 4.4, a second proof, elaborating on [5, Lemma 3.2], which is exclusively
based on the time-varying difference-delay system (27); see the remark at the end of
Section 4.4 for a comparison of the two proofs.

Theorem 3.3. Under Assumption 2.5, the time-varying network of telegrapher’s
equations (1)-(9)-(7) is L2 exponentially stable.

In view of Proposition 2.17, we get as a corollary that L2 exponential stability holds
for difference-delay systems of the form (27).

Remark 3.4 (On other sufficient conditions than Assumption 2.5). Another more
general result could have been stated here, for arbitrary q in [1,+∞], concluding Lq

exponentially stability from the assumption that
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- the maps t 7→ Id+ A(t)K and t 7→ (Id+ A(t)K)−1 are measurable and bounded,
- there exists a number ν, 0 < ν < 1 and an invertible diagonal matrix D such that

(33)
∣∣∣∣∣∣∣∣∣D (Id+ A(t)K)

−1
(Id−A(t)K)P2D

−1
∣∣∣∣∣∣∣∣∣
q
< ν for (almost) all t,

where |||·|||q denotes the operator norm with respect to the q norm in R2N . See
Remark 4.3 in section 4.4 for a proof, in the spirit of [5]. Also, in view of Theorem 3.5
below, the same conditions would also imply Lp exponential stability for any p ∈
[1,∞], and C0 stability if the map A(·) is continuous, yielding a version of Theorem 3.6
below with Assumption 2.5 replaced by the above conditions for one q in [1,∞].

If q = 2, the above conditions are implied, with D = K1/2, by Assumption 2.5 (see
(52) in Section 4.4 and Remark 2.9 for well-posedness), but are clearly more general.
Hence, the sketched results are indeed formally more general than Theorems 3.3 and
3.6. We however chose to keep them as a remark and to keep Assumption 2.5 in the
exposition because it is much more explicit and is the natural dissipativity assumption
in the applications described in the introduction.

To deduce Lp exponential stability, for all p, from Theorem 3.3, we rely on the
following result.

Theorem 3.5. Under Assumption 2.12, System (21) is Lp exponentially stable
for some p ∈ [1,∞] if and only if it is Lp exponentially stable for all such p. Moreover,
if the maps t 7→ Di(t) are continuous, then this is also if and only if System (21) is
C0 exponentially stable.

The only original bit here is that C0 exponential stability implies Lp exponential
stability for all p, because the first assertion of Theorem 3.5 is essentially contained
in [4, Corollary 3.29]. We do consider C0 stability, because it is the natural one in the
application to electronic circuits mentioned in the introduction. Although, again, the
first assertion is a consequence of [4, Cor. 3.29], we nevertheless give an independent
proof in Section 4.5. Indeed, we feel our argument is simpler than in [4] (the latter
paper contains of course other results), and of independent interest. Moreover, our
proof shows (for better readability it is not stated in the theorem) that if System (21)
is Lp (resp. C0) polynomially stable of degree m > N for some p ∈ [1,∞] (i.e. if (31)
holds with e−γt replaced by (1 + t)−m), then it is Lp polynomially stable of degree 1
for all such p (and also C0 polynomially stable of degree 1).

An obvious corollary of Theorem 3.5, based on Proposition 2.17, is that System
(1)-(9) (network of telegrapher’s equations) is Lp exponentially stable for some p ∈
[1,∞] if and only if it is C0 exponentially stable and also Lq exponentially stable
for all q ∈ [1,∞]. This leads to our main result regarding network of telegrapher’s
equations:

Theorem 3.6. Under Assumption 2.5, the time-varying network of telegrapher’s
equations (1)-(9)-(7) is Lp exponentially stable for 1 ≤ p ≤ ∞, and also C0 exponen-
tially stable if the maps t 7→ A(t) are continuous.

Proof. This is a straightforward consequence of Theorem 3.3 and the “obvious
corollary” to Theorem 3.5 mentioned just before Theorem 3.6.

A direct consequence of Theorem 3.6 and Proposition 2.17 is that the same sta-
bility properties hold for difference-delay systems of the special form (27). It is in-
teresting to restate this in terms of general delay systems of the form (21), making
additional assumptions to fall under the scope of the previous result. This is the
purpose of Theorem 3.7 below, whose proof is given in Section 4.6. Recall that the
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matrices D̂j(t) were defined from the matrices Di(t) in Remark 2.14 (cf. (23)), and
that they differ from the Di only when some of the delays ηi appear with repetition
in (21)).

Theorem 3.7. Under Assumption 2.12, if Conditions (i) and (ii) below are sat-
isfied, then the time-varying difference-delay system (21) is Lp exponentially stable
for all p ∈ [1,∞]. Moreover, if the maps t 7→ Di(t) are continuous, then it is also C0

exponentially stable.
(i) The columns of the matrices D̂j(t) are disjoint, i.e. there is a partition
{1, . . . , d} = I1 ∪ · · · ∪ IM̂ (with i 6= j ⇒ Ii ∩ Ij = ∅) such that the kth

column of D̂j(t) is identically zero if k /∈ Ij.
(ii) The sum of the matrices Di(t) is uniformly contractive, i.e. there is a number

ν < 1 such that

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣
M∑
i=1

Di(t)

∣∣∣∣∣
∣∣∣∣∣
∣∣∣∣∣ ≤ ν for almost all positive t .

Here, |||·||| is the spectral norm for matrices associated to the Euclidean norm on Rd,
like in section 2.2.

To recap, Theorem 3.6 offers a sufficient condition for exponential stability of
networks of coupled telegrapher’s equations, relevant to the study of oscillations in
circuits with transmission lines as explained in Section 1, while Theorem 3.7 deals with
difference-delay systems and applies to an admittedly narrow class thereof (the disjoint
columns assumption is clearly restrictive), but is still worth stating for it points at
a class of time-varying systems for which relatively simple sufficient conditions for
exponential stability can be given. These results are apparently first to give fairly
manageable sufficient conditions for exponential stability in the time-varying case.
Another contribution is the somewhat simpler approach, provided by Theorem 3.5
and its proof, to the fact that all types of Lp exponential stability, 1 ≤ p ≤ ∞, are
equivalent for general time-varying difference-delay systems.

4. Proofs.

4.1. A technical lemma. Here, the superscript ∗ denotes the transpose of a
real matrix, and the spectral norm |||·||| defined at the beginning of section 2.2 is with
respect to the canonical Euclidean norm ‖x‖ = (x∗x)1/2.

Lemma 4.1. If Q is a square matrix satisfying Q + Q∗ > κId > 0, there is a
unique square matrix R solution of

(34) (Id+Q)R = Id−Q ,

and it satisfies |||R||| < (1 − κ)/(1 + κ) < 1. Conversely, if R is a square matrix
satisfying |||R||| < 1, there is a unique square matrix Q solution of (34) and it satisfies

Q+Q∗ ≥ 1−|||R|||
1+|||R||| Id .

Proof. It is clear that −1 cannot be an eigenvalue of Q if Q + Q∗ > 0 or an
eigenvalue of R if |||R||| < 1. This allows to solve for R or Q using the inverse of
Id+Q or Id+R.

Now suppose that R and Q satisfy (34). Then (Id + Q)(Id + R) = 2 Id, hence
both Id+Q and Id+R are invertible and R commutes with Q, (34) can be re-written
R(Id+Q) = Id−Q that readily implies

‖R (Id+Q)y‖2

‖(Id+Q)y‖2
= 1− 2

y∗(Q+Q∗)y

‖(Id+Q)y‖2
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for any nonzero y. Since on the one hand, using invertibility of Id + Q, |||R||| < 1 if
and only if the left-hand side is less than 1 for any nonzero y and on the other hand
the right-hand side is less than one if and only if y∗(Q+Q∗)y is positive, one deduces
that Q+Q∗ > 0 and |||R||| < 1 are equivalent.

4.2. Proof of Proposition 3.2. From the very definition of Di in terms of A,
K and P2 —see discussion after (27)— we get that

(35)

N∑
i=1

Di e
−λτi = (Id+AK)−1(Id−AK)P2 diag(e−λτ1 . . . e−λτN , e−λτ1 . . . e−λτN ) .

In view of (11), (26) and the strict positivity of the Kj , it holds if we set Q =
K1/2AK1/2 that Q + Q∗ ≥ α̃Id with α̃ = αmin1≤j≤N Kj > 0, hence Lemma 4.1
gives us: ∣∣∣∣∣∣∣∣∣(Id+ K1/2AK1/2)−1(Id−K1/2AK1/2)

∣∣∣∣∣∣∣∣∣ < 1.(36)

Consider now the K-norm on R2N , defined for x ∈ R2N by ‖x‖K = ‖K 1
2x‖.

Clearly, for any 2N × 2N complex matrix B, the corresponding operator norm is

|||B|||K =
∣∣∣∣∣∣∣∣∣K 1

2BK−
1
2

∣∣∣∣∣∣∣∣∣; it is obviously multiplicative.

Since [Id+ AK]−1[Id−AK] = K−
1
2 (Id+ K

1
2 AK

1
2 )−1(Id−K

1
2 AK

1
2 )K

1
2 , equa-

tion (36) implies that ∣∣∣∣∣∣[Id+ AK]−1[Id−AK]
∣∣∣∣∣∣

K
< 1,(37)

consequently there is β < 0 such that

(38)
∣∣∣∣∣∣[Id+ AK]−1[Id−AK]

∣∣∣∣∣∣
K
e−β τN < 1 .

To see that (32) holds for this β, pick λ ∈ C with <(λ) > β and observe that∣∣∣∣∣∣P2 diag(e−λτ1 , . . . , e−λτN , e−λτ1 , . . . , e−λτN )
∣∣∣∣∣∣

K
≤ e−βτN

by (3), the multiplicativity of the K-norm and the fact that P2 commutes with K1/2.
Hence, using (35) and (38) together with the multiplicativity of the K-norm, we see

that

∣∣∣∣∣∣∣∣∣∣∣∣ N∑
i=1

Di e
−λτi

∣∣∣∣∣∣∣∣∣∣∣∣
K

< 1 which implies (32). �

4.3. Proof of Theorem 3.3 via a Lyapunov functional approach . Let
(v1(t, x), . . . , vN (t, x), i1(t, x), . . . , iN (t, x)) ∈ L1

loc([0,∞), (L2([0, 1]))2N ) be the solu-
tion to (1)-(9)-(7) set forth in Part I of Theorem 2.8, with initial condition i0k, v

0
k ∈

L2([0, 1]) for 1 ≤ k ≤ N . We define the energy functional Ek in the line k and the
global energy E by

(39) Ek(t) =
1

2

∫ 1

0

[
Ckv

2
k(t, x) + Lki

2
k(t, x)

]
dx , E(t) =

N∑
k=1

Ek(t) .

Fact. Each function t 7→ Ek(t) is locally absolutely continuous and its derivative
is given by:

d

dt
Ek(t) = −ı̂k(t, 1)v̂k(t, 1) + ı̂k(t, 0)v̂k(t, 0), a.e. t.(40)
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Proof of the Fact. This would be easy if the solution was smooth (differentiating
under the integral sign and using (1) would readily yield (40)), but we have only
proved so far, according to Remark 2.11, that Ek is continuous [0,+∞)→ R for each
k. In particular it defines a distribution on (0,+∞); let us compute the derivative of
this distribution by approximation. By Proposition 2.10, points (i)-(ii), the functions
vk, ik are of the form (19) with fk ∈ L2

loc((−∞, 1]) and gk ∈ L2
loc([0,∞)). Let f̌k

and ǧk extend fk and gk by zero to the whole of R, and pick φ : R → R a positive,
C∞-smooth function, supported on [−1, 1] and such that

∫
R φ = 1. For each ε > 0,

we set φε(x) := φ(x/ε)/ε (hence,
∫
R φε = 1) and define

(41) f̃k,ε(s) :=

∫
R
f̌(y)φε(s− y) dy, g̃k,ε(s) :=

∫
R
ǧ(y)φε(s− y) dy .

Thus, f̃k,ε ∈ L2
loc(R) is C∞ smooth and satisfies ‖f̃k,ε‖L2(K) ≤ ‖fk‖L2(K+[−ε,ε]) for

any compact K ⊂ R, and similarly for g̃k,ε. Moreover, f̃k,ε and g̃k,ε converge, both
pointwise a.e. and in L2

loc(R), respectively to f̌k and ǧk, when ε → 0. Indeed, it is
enough to check this on an arbitrary compact set K ⊂ R, and since φε is supported
on [−ε, ε] we may redefine f̌k and ǧk as being zero outside the compact set K+[−ε, ε]
without changing the values of f̃k,ε nor g̃k,ε on K. Thus, it is enough to prove the
desired pointwise and L2

loc convergence when f̌k and ǧk lie in L2(R), in which case
the result is standard [17, ch. III, thm. 2]. Next, let us put

ṽk,ε(t, x) := f̃k,ε(x−
t

τk
) + g̃k,ε(x+

t

τk
) ,

ı̃k,ε(t, x) = Kk

(
f̃k,ε(x−

t

τk
)− g̃k,ε(x+

t

τk
)

)
,

(42)

so that ṽk,ε and ı̃k,ε lie in L2
loc(R2) and are C∞ smooth solutions to (1) on R2, by

Proposition 2.10 point (iii). Because (t, x) 7→ (x − t/τk, x + t/τk) is a bi-Lipschitz
homeomorphism of R2, it preserves compact sets and sets of measure zero. Thus, since
f̌k and ǧk coincide respectively with fk and gk on [0,+∞)×[0, 1], the properties of f̃k,ε
and g̃k,ε indicated after (41) imply that ṽk,ε, ı̃k,ε respectively converge pointwise a.e.
to vk, ik on [0,+∞)×[0, 1], in such a way that ‖ṽk,ε(t, .)‖L2([0,1]) and ‖̃ık,ε(t, .)‖L2([0,1])

remain essentially bounded with t. Therefore, by dominated convergence, we get for
every C∞ smooth compactly supported function ψ : (0,+∞)→ R that

lim
ε→0

∫ +∞

0

∫ 1

0

(
Ckṽ

2
k,ε(t, x) + Lk ı̃

2
k,ε(t, x)

)
ψ(t) dtdx

=

∫ +∞

0

∫ 1

0

(
Ckv

2
k(t, x) + Lki

2
k(t, x)

)
ψ(t) dtdx.

In other words: when ε → 0, then Ẽk,ε(t) :=
∫ 1

0

(
Ckṽ

2
k,ε(t, x) + Lk ı̃

2
k,ε(t, x)

)
dx con-

verges to Ek(t), as a distribution on (0,+∞). Now, since ı̃k,ε and ṽk,ε are smooth, the

derivative of t 7→ Ẽk,ε(t) can be computed in the strong sense by differentiating under
the integral sign; since ı̃k,ε and ṽk,ε are solutions of the telegrapher’s equation (1), an
elementary integration yields:

d

dt
Ẽk,ε(t) = −ı̃k,ε(t, 1)ṽk,ε(t, 1) + ı̃k,ε(t, 0)ṽk,ε(t, 0).(43)
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By (42) and the Schwarz inequality, the properties of f̃k,ε and g̃k,ε indicated after (41)
imply that the right hand side of (43) converges pointwise a.e. and in L1

loc(R) to the
function

F (t) := Kk

(
f2
k (− t

τk
)− g2

k(
t

τk
)− f2

k (1− t

τk
) + g2

k(1 +
t

τk
)

)
,

and since we know that d
dt Ẽk,ε converges to d

dtEk as a distribution we conclude that
d
dtEk = F . In particular, since Ek is a distribution in dimension 1 whose derivative is
a locally integrable function, [9, thm. 6.74] implies local absolute continuity and we
get from what precedes that d

dtEk(t) = F (t) for a.e. t, which can be rewritten as (40)
in view of (20a) and (20b). This ends the proof of the above fact.

Proof of Theorem 3.3. Adding equalities (40) for 1 ≤ k ≤ N and considering (39)
together with the boundary conditions (15) yields the following equation, where one
may indifferently use 1

2 (A(t) + A(t)∗) or A(t):

d

dt
E(t) = −



−ı̂1(t, 0)
...

−ı̂N (t, 0)
ı̂1(t, 1)

...
ı̂N (t, 1)



∗

A(t) + A(t)∗

2



−ı̂1(t, 0)
...

−ı̂N (t, 0)
ı̂1(t, 1)

...
ı̂N (t, 1)


, a.e. t,(44)

Using the dissipativity condition (11) in (44) readily implies:

d

dt
E(t) ≤ −α

2

N∑
k=1

[̂
ı2k(t, 0) + ı̂2k(t, 1)

]
, a.e. t.(45)

This entails that the global energy E is decreasing. In order to show that it tends
to zero exponentially, let us express E in terms of the functions fk, gk as follows.
Substituting (19) in (39), we get since LkK

2
k = Ck that

Ek(t) = Ck

(∫ 1

0

g2
k(x+

t

τk
)dx+

∫ 1

0

f2
k (x− t

τk
)dx

)
.(46)

Changing variables to τ = xτk + t in the first integral and to τ = (1− x)τk + t in the
second, we obtain:

Ek(t) = Ck

∫ t+τk

t

(
g2
k(
τ

τk
) + f2

k (1− τ

τk
)

)
dτ.(47)

Thus, if we define G : (0,+∞) → R by G(τ) :=
∑N
k=1 Ck

(
g2
k(τ/τk) + f2

k (1 − τ/τk)
)
,

we deduce from (47) that

E(t) ≤
∫ t+τN

t

G(τ) dτ.(48)

In another connection, we get from (19) that G(τ) can be expressed as a non-negative
quadratic form in the 4N variables v̂k(τ, 0), v̂k(τ, 1), ı̂k(τ, 0), ı̂k(τ, 1), for 1 ≤ k ≤ N ,
with constant coefficients. Hence, using (15) to substitute the v̂k’s for the ı̂k’s, the
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same G(τ) can be expressed as a non-negative quadratic form in the 2N variables
ı̂k(τ, 0), ı̂k(τ, 1), for 1 ≤ k ≤ N , with time-varying essentially bounded coefficients
(Assumption 2.5) depending on the matrix A(τ) and the constants Kk. This implies:

G(τ) ≤ ã

N∑
k=1

(
ı̂2k(τ, 0) + ı̂2k(τ, 1)

)
, a.e. τ > 0.(49)

with a positive constant ã that depends only on the coefficients Kk and the bounds
on the coefficients of A(.). Using this inequality in (45) yields

(50)
d

dτ
E(τ) ≤ − α

2 ã
G(τ), a.e. τ > 0.

Integrating (50) between t and t+ τN we gather, in view of (48), that

0 ≤ E(t+ τN ) ≤ (1− α

2 ã
)E(t), t > 0.(51)

Comparing the expression of E(t) in (39), this last inequality readily implies that
system (1)-(9) is L2 exponentially stable.

4.4. Sketch of an alternative proof of Theorem 3.3 via difference-delay
systems exclusively. First note that, from a straightforward generalization of Equa-
tion (37) using the fact that P2 and K commute, there is a γ ∈ (0, 1) independent of
t ∈ R such that :

(52)
∣∣∣∣∣∣[Id+ A(t)K]−1[Id−A(t)K]P2

∣∣∣∣∣∣
K
≤ γ < 1.

By applying ‖ · ‖ 2
K to each side of Equation (27), using (52) above and integrating the

resulting inequality between t and t2 (−τN < t < t2), one gets after simple algebraic
manipulation the following inequality, valid for any t > 0 and t2 > t:∫ t2

t

‖z(s)‖2Kds ≤ 1

1− γ2

∫ t+τN

t

‖z(s)‖2Kds ,(53)

in which one may then take t2 = +∞. This implies L2 exponential stability of

system (27) (one first proves that, for T large enough,
∫ t+T
t
‖z(s)‖2Kds converges

exponentially to zero) and thus L2 exponential stability of system (1)-(9) via the
equivalence between stability of the difference-delay system and of the PDE network,
see Proposition 2.17.

Remark 4.2. The above proof expounds that of [5, Lemma 3.2], but in essence

is not so different from the previous one. Indeed, the quantity
∫ t+T
t
‖z(s)‖2Kds acts

as a Lyapunov function for (27), although it is not proved to be non-increasing with
respect to continuous time, while E, that also has an expression in terms of the
difference-delay system (see (46)), is a Lyapunov function in the usual sense for the
network of telegrapher’s equations, see (45).

Remark 4.3. The “more general” result we sketched in Remark 3.4 can be proved
as follows. On the one hand, as already noticed in Remark 2.9, the first point provides
existence and uniqueness of the solutions. On the other hand, instead of deducing
(52) from previous statements, one directly uses (33) after applying ‖D · D−1‖ pp to
each side of Equation (27).
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4.5. Proof of Theorem 3.5. Before proceeding with the proof, we take a closer
look at the structure of solutions to System (21).

Given the ordered collection of delays 0 < τ1 ≤ τ2 ≤ . . . ≤ τN , we define the
following subsets of R:

(54) Σ = {
N∑
i=1

qiτi , (q1, . . . , qN ) ∈ NN} and Σt = [0, t] ∩ Σ for t in [0,+∞).

Call Q(t) ∈ N the cardinality of Σt. Clearly, Q(t) is no larger than the number of

N -tuples (q1, . . . , qN ) ∈ NN satisfying
∑N
i=1 qi ≤ t/τ1, and the latter is bounded from

above by (1 + [[t/τ1]])N , where [[r]] indicates the integer part of the real number r.
Hence, we have that

(55) Q(t) ≤
(

1 +
t

τ1

)N
, t ∈ [0,+∞).

We enumerate the elements of Σ as a sequence 0 = σ1 < σ2 < σ3 · · · , so that Σt is
described as:

(56) Σt = {σ1, σ2, . . . , σQ(t)} , t ∈ [0,+∞) .

Our proof of Theorem 3.5 will dwell on the following observation.

Fact. There is a collection of maps (Mq)q∈N from R into Rd×d enjoying the three
properties (i), (ii), (iii) below.

(i) The map Mq lies in L∞loc(R,Rd×d),
(ii) Mq satisfies

(57) t /∈ (σq − τN , σq] ⇒ Mq(t) = 0 ,

(iii) the solution t 7→ z(t) of (21) with initial condition z(t′) = φ(t′), t′ ∈ [−τN , 0],
is given by

z(t) =

Q(t+τN )∑
q=1

Mq(t)φ(t− σq) =

+∞∑
q=1

Mq(t)φ(t− σq), t ≥ 0.(58)

Formula (58) applies equally well to solutions in Lploc([0,∞),Rd) and to continuous
solutions, but in the former case the equality is understood for almost every t. Note
that (57) ensures that the two sums in (58) are equal, and also that they do not
depend on the values φ(y) for y /∈ [−τN , 0] (which are not defined).

Proof of the Fact. For 0 ≤ t < τ1, Equation (21) is of the form (58), with
Mq(t) = Di(t) if σq = τi and Mq(t) = 0 otherwise. If we assume inductively such
a formula for 0 ≤ t < σq0 and substitute it in the right hand side of (21) when
σq0 ≤ t < σq0+1 to express z(t) as a linear combination of the φ(t − σq) for −τN ≤
t − σq < 0, a moment’s thinking will convince the reader that we get a formula of
the same type over the interval σq0 ≤ t < σq0+1 by defining Mq(t) as the sum of the
coefficients corresponding, after the above substitution, to one and the same φ(t−σq)
(the latter may arise as many times as there are decompositions σq = τi + σq′ with
i ∈ {1, · · · , N} and σq′ ∈ Σσq0+τN . Such coefficients are of the form Di(t)Mq′(t), and
therefore properties (i), (ii) and (iii) are obviously met. This proves the fact.
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Although we will not need this, it is instructive to derive an explicit expression
for Mq that should be compared with [4, thm. 3.14] or, in the continuous case, with
[13, ch. 9, eqns. (1.4)-(1.5)]. Namely, we can take Mq(t) to be the sum of all terms

(59) 1(ρs−1,ρs](t)Dk1(t)Dk2(t− ρ1)Dk3(t− ρ2) · · ·Dks

(
t− ρs−1

)
for all s in N\{0} and all s-tuples (k1, . . . , ks) ∈ {1, · · · , N}s such that

∑s
j=1 τkj = σq,

where the numbers ρj are defined by ρ0 = 0 and ρj =
∑j
i=1 τki for j ≥ 1 (in particular

ρs = σq), and 1(ρs−1,ρs] is the characteristic function of the interval (ρs−1, ρs]. These
maps Mq satisfies (57) because (ρs−1, ρs] = (σq − τks , σq] is a subset of (σq − τN , σq],
and formula (58) is easily checked from (21), by induction on j such that t ∈ (σj−1, σj ].

Proof of Theorem 3.5. Assume first that 1 ≤ p < ∞. If System (21) is Lp

exponentially stable, there is by definition γ > 0 and C0 > 0 such that, for all
φ ∈ Lp([−τN , 0],Rd) and all t > 0, one has

(60)
(∫ t

t−τN
‖z(u)‖pdu

)1/p

≤ C0 e
−γt‖φ‖Lp([−τN ,0],Rd)

for z(.) the unique solution of (21) with initial condition φ given by Theorem 2.13.
Pick t? ∈ (−τN , 0), v ∈ Rd, ε > 0, and define a function φt?,v,ε ∈ Lp([−τN , 0],Rd) by

(61) φt?,v,ε(θ) =
1

ε1/p
1(t?−ε,t?)(θ) v , θ ∈ [−τN , 0].

Let zt?,v,ε(.) be the solution to (21) with initial condition φt?,v,ε on [−τN , 0]. By (60),
it holds that

(62)
(∫ t

t−τN
‖zt?,v,ε(u)‖pdu

)1/p

≤ C0 e
−γt‖v‖ , t > 0,

and from (58) we get for all u > 0 that

zt?,v,ε(u) =
1

ε1/p

(
+∞∑
q=1

1(t?−ε,t?)(u− σq) Mq(u)

)
v.(63)

Let us fix t > 0 for a while. By (57), the only terms in the sum on the right of
(63) which may not be zero for a.e. u ∈ (t − τN , t) are such that E(q, t?, ε) :=
(σq + t? − ε, σq + t?) ∩ (σq − τN , σq] ∩ (t − τN , t) has strictly positive measure. The
set of integers q for which this holds for some t? ∈ (−τN , 0) and some ε > 0 consists
exactly of those q such that t − τN < σq < t + τN . If we pick one of them and, say,
σq ≥ t, it is easy to check that for ε small enough E(q, t?, ε) = (t? + σq − ε, t? + σq)
when t? ≤ t − σq and E(q, t?, ε) = ∅ when t? > t − σq. If on the contrary σq < t,
then E(q, t?, ε) = (t? + σq − ε, t? + σq) when t? > t − σq − τN and E(q, t?, ε) = ∅
when t? ≤ t−σq − τN . Altogether, since there are finitely many q under examination
(i.e. at most Q(t + τN )), we can take ε > 0 so small that all intervals E(q, t?, ε) are
disjoint, and then we deduce from (63) and the previous discussion that∫ t

t−τN
‖zt?,v,ε(u)‖pdu =

∑
{q: t−τN−t?<σq≤t−t?}

1

ε

∫ 0

−ε
‖Mq(t? + σq + θ) v‖pdθ.(64)

Observe next that a.e. t? ∈ (−τN , 0) is a Lebesgue point of (each entry of) s 7→
Mq(s + σq) for all q ∈ N, and let E denote the set of such points. By the triangle
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inequality, E a fortiori consists of Lebesgue points of s 7→ ‖Mq(s + σq)v‖, and since
Mq ∈ L∞loc(R,Rd×d) it also consists of Lebesgue points of s 7→ ‖Mq(s + σq)v‖p, by
the smoothness of x→ xp for x > 0. Thus, from (62) and (64), we deduce on letting
ε→ 0 that

(65) t− τN − t? < σq ≤ t− t? ⇒ ‖Mq(t? + σq)v‖ ≤ C0e
−γt‖v‖, t? ∈ E.

Now, choose σq ∈ Σ and t? ∈ E. We can find t > 0 such that t− τN < σq + t? < t and
then, applying what precedes with this t and this t?, we obtain in view of (65) that

(66) ‖Mq(t? + σq)v‖ ≤ C0e
−γt‖v‖ ≤ C0e

−γ(t?+σq)‖v‖.

As E has full measure in (−τN , 0] and v ∈ Rd is arbitrary, we conclude from (66) and
(57) that

|||Mq(s)||| ≤ C0 e
−γs, a.e. s > 0,(67)

where |||·||| is the spectral norm for matrices on Euclidean space. Because the number
of summands in the middle term of (58) is Q(t + τN ) which is bounded above by
CtN for some constant C, as asserted in (55), the inequality (67) implies that to any
γ′ ∈ (0, γ) there is a constant C1 > 0 for which

‖z‖Lλ((t−τN ,t),Rd) ≤ C1 e
−γ′t‖φ‖Lλ((−τN ,0),Rd), t ≥ 0, 1 ≤ λ <∞,(68)

and also ‖z‖L∞((t−τN ,t),Rd) ≤ C1e
−γ′t‖φ‖L∞((−τN ,0),Rd), t ≥ 0.(69)

Since (69) readily implies C0 exponential stability when the mapsDi(.) are continuous,
this achieves the proof when 1 ≤ p <∞.

Assume now that p = ∞, so that (60) gets replaced by ‖z‖L∞((t−τN ,t),Rd) ≤
C0e

−γt‖φ‖L∞((−τN ,0),Rd) for all t > 0. The goal is again to prove (67) from which the
result follows, as we just saw. For this, we argue much like we did before, defining
φt?,v,ε as in (61) except that we do not divide by ε1/p. Then, (62) becomes

(70) ess. sup
α∈(t−τN ,t)

‖zt?,v,ε(α)‖ ≤ C0e
−γt‖v‖,

and the discussion that led us to (64) now yields for ε > 0 small enough:

ess. sup
α∈(t−τN ,t)

‖zt?,v,ε(α)‖ = max
{q: t−τN−t?<σq≤t−t?}

ess. sup
θ∈(−ε,0)

‖Mq(t? + σq + θ) v‖.(71)

We need now to replace Lebesgue points by points of approximate continuity. Recall
that a function f : R→ Rm is approximately continuous at x if, for every ε > 0,

lim
r→0+

1

2 r
H1
(

(x− r, x+ r) ∩ {y : ‖f(y)− f(x)‖ > ε}
)

= 0

where H1 is the Lebesgue measure on R, and that a measurable f is approximately
continuous at almost every point [10, thm. 1.37]. Thus, if we define E ⊂ (−τN , 0) to
be the set of approximate continuity points of all maps s 7→Mq(s+σq) (say, extended
by zero off (−τN , 0)) as q ranges over N, then E has full measure in (−τN , 0) and
letting ε → 0 in (71) we find that (65) holds. From the latter we obtain (67) by the
same reasoning as before, thereby completing the proof when p =∞.

It remains to handle the case where the Di(t) are continuous and System (21)
is C0 exponentially stable. Then, the previous argument needs adjustment because
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φt?,v,ε /∈ C. However, it is easy to construct a sequence of continuous functions ϕk :
[−τN , 0] → [0, 1], with ϕk(0) = ϕk(−τj) = 0 for 1 ≤ j ≤ N , such that ϕk converges
pointwise a.e. to 1(t?−ε,t?) when k → +∞ (for instance, we may take piecewise linear
ϕk). Then, the φk(θ) := ϕk(θ)v lie in C, and if zk denotes the solution to System (21)
with initial condition φk, we get by assumption that sup

α∈(t−τN ,t)
‖zk(α)‖ ≤ C0e

−γt‖v‖.

As φk converges pointwise a.e. to φt?,v,ε on [−τN , 0], we see from (58) that zk converges
to zt?,v,ε pointwise a.e. on R. Thus, letting k → +∞, we deduce that (70) holds and
we conclude as before.

4.6. Proof of Theorem 3.7. First assume that each set Ij has even cardi-

nality 2nj , and put N =
∑M̂
j=1 nj so that d = 2N . Let P3 be the permutation

matrix sending I1 to {1, . . . , n1} ∪ {N + 1, . . . , N + n1} and, more generally, Ij to

{1 +
∑j−1
`=1 n`, . . . ,

∑j
`=1 n`} ∪ {N + 1 +

∑j−1
`=1 n`, . . . , N +

∑j
`=1 n`} for each j. Set

τk = ηj for each k in {1 +
∑j−1
`=1 n`, . . . ,

∑j
`=1 n`}. Using P3 as change of basis and

denoting by (x1, . . . , xN , y1, . . . , yN ) the new coordinates, one can (by gathering the
matrices with disjoint nonzero columns into a single one) re-write (72) as (27) where

− (I + A(t) K)
−1

(I −A(t) K)P2 has been replaced with
∑M̂
j=1 P3

−1 D̂j(t)P3. We
want now to find A(t) and K so that these two matrices coincide. For this, we

fix K = Id and solve (I + A(t))
−1

(I −A(t)) = R(t) with respect to A(t), where

R(t) = −P3
−1
(∑M̂

j=1 D̂j(t)
)
P3P2

−1 = −P3
−1
(∑M

i=1Di(t)
)
P3P2

−1 (the last equal-

ity is clear from the definition of D̂i(t) in (23)). Assumption (ii) implies |||R(t)||| ≤
ν < 1 because P2 and P3 are orthogonal matrices, hence, according to Lemma 4.1,
setting A(t) = (Id−R(t))(Id+R(t))−1 solves the above and satisfies Assumption 2.5
with α = (1−ν)/(1+ν); (26) is satisfied too with K = Id, setting all the numbers Kk

to 1. By virtue of Proposition 2.17 and Theorem 3.6, the difference-delay equation
(27) with these A(.) and τk is Lp exponentially stable for all p ∈ [1,∞], as well as C0

exponentially stable if the maps Di(.) (hence A(.)) are continuous. This proves the
result if all the sets Ij has even cardinality.

If some of the sets Ij have odd cardinality, define d′ > d so that d′ − d is the
number of such sets Ij . By adjoining to each such Ij one element of {d+ 1, . . . , d′},
one constructs a partition Ĩ1, . . . , ĨM̂ of {1, . . . , d′} such that, for each j, Ĩj has even

cardinality and contains Ij . Constructing some d′×d′ matrices D̃j(t) by adding d′−d
zero last lines and d′ − d zero last columns to D̂j(t), the following difference-delay

system (with state z̃ in Rd′):

(72) z̃(t) =

M̂∑
j=1

D̃j(t)z̃(t− ηj)

satisfies the assumptions of the theorem: (i) with the sets Ĩj instead of the original
sets Ij and (ii) because adding zero lines and columns to a matrix does not increase
its norm, hence the first part of the proof gives exponential stability, that yields
exponential stability of the original system because, since the last d′ − d columns are
zero, the evolution of the d first entries of z does not depend on the last ones. �
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