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Adaptation paralléle de maillages non structurés avec
remaillage et repartitionnement itératif

Résumé : IL’adaptation de maillage a été provée comme un outil puissant pour améliorer
la précision des simulations numériques dans tous les cas ou la solution présente des charac-
teristiques non uniformes sur le domain de calcul. Le remaillage séquentiel représente un cou
de bouteille pour les solveurs paralléles. Pour cette raison, nous présentons un algorithme de
remaillage paralléle qui permet la réutilisation des bibliothéques séquentielles de remaillage déja
existantes, un couplage non intrusif avec des solveurs externes, et une exploitation efficiente des
environnements paralléles & mémoire distribuée. La procédure numérique est implémentée dans
le logiciel open source ParMmg.

Mots-clés : adaptation de maillage paralléle, maillages non structurés, migration de maillage,
déplacement d’interface, environnemments a mémoire distribuée.
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1 Introduction

Mesh adaptation is becoming an increasingly used tool for improving the accuracy of numerical
solutions in computational solid mechanics (CSM) and computational fluid dynamics (CFDE
The need to adapt along sharp solution patterns (such as wave fronts and shock waves in fluid
flows, or crack growth in solid mechanics, for example) has risen the interest to include preferen-
tial directions for local mesh refinement, derefinement and optimization, commonly referred as
anisotropic mesh adaptation.

Metric-based mesh adaptation (see for example [FG07] [Dob05| [DF0S8] [FA05|) offers a general
framework for both isotropic and anisotropic mesh adaptation. The target mesh edge sizes and
directions are computed from the numerical solution and its derivative, and used to build a
Riemaniann metric tensor which describes a transformed space where the mesh should have unit
sizes in each direction. In this framework, classical mesh modification operations can be applied
by simply re-evaluating edge lengths through the metric tensor. The problem of finding an
error estimator to drive mesh adaptation thus becomes independent from that of adapting the
mesh, once the error estimator is translated into a metric tensor, simplifying the development of
general-purpose remeshing libraries.

Since most of CSM /CFD solvers nowadays work on parallel computers, sequential mesh adap-
tation constitutes a bottleneck in the numerical solution workflow , impacting both the
computational time and the problem size, since this latter is limited by the memory available

IThe reader is referred for example to |[Par+-16| for a thorough review of the field in its application to CFD.
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on a single computing node. From a general viewpoint, parallel mesh adaptation presents fur-
ther complications compared to the sequential case, as several computational steps need to be
considered:

1. Mesh partitioning (can be provided by the CSM/CFD solver).
2. Parallel remeshing.
3. Mesh repartitioning - Load balancing.

Depending on the strategies, the last two stages can be repeated iteratively until a satisfying
mesh quality is reached.

Parallel remeshing strategies can be classified in two main categories. The first class of
techniques aims at parallelizing the mesh generation techniques. Once an initial mesh partitioning
is provided, the main difficulty of these techniques resides in adapting on the partition interfaces,
as a non-negligible amount of communication is needed to preserve mesh conformity on the
interface (see for example [CS97] [DCS99] [OBGO00] [CNO03]). A final load balancing step can
be required in order to evenly distribute mesh entities over the processors before returning the
adapted mesh to an external solver.

The second class aims at re-using existing sequential remeshers in a parallel framework. Once
an initial mesh partitioning is established, mesh adaptation is forbidden on partition interfaces,
in order to avoid race conditions and preserve mesh conformity, and adaptation is performed
only in the partitions interior. The resulting mesh is then re-partitioned so to move the former
partition interfaces, and remeshing is repeated in order to adapt on formerly forbidden zones.
By iterating on these remeshing-repartitioning stages, a globally adapted mesh is obtained (see
for example [Fla498] [CSFO05] [Dig+17] [MDV11]).

The aim of the ParMmg software package is to build parallel mesh adaptation capabilities
on top of the sequential open-source remesher Mmg |[DDF14] [Mmg]|, while preserving the open-
source spirit and the support for general-purpose applications through the library application-
programming interface (API). Therefore, in the following we will focus on the development of
a parallel iterative remeshing algorithm allowing the re-use of existing sequential remeshers,
coupled with a repartitioning algorithm capable of effectively move parallel interfaces.

2 Parallel iterative remeshing over constrained interfaces

The core idea of this family of method is to employ sequential remeshing techniques in the
domains interior, while parallel interfaces are constrained (i.e. adaptation is forbidden on the
interface), then the interface is moved by a repartitioning method, mesh migration is performed
and the process is iterated until an overall good mesh quality is reached. The same idea has been
already exploited in the context of parallel mesh generation |[Loh13] [Loh14].

Sequential remeshing over constrained interfaces have been already exploited in a parallel
iterative framework in [Ham92| [She+95] |Ozt95| |Fla+98|, where the interface is moved by an
advancing front and mesh migration is performed by one layer of elements at a time. The
interface is instead moved by several layers at a time in [CSF05] [DRO7] before performing mesh
migration. In [Dig+17], the mesh migration by advancing front presented in [CDDO00| is coupled
with load balancing by processor pairing. In [LDP14| [Lac+17| remeshing by means of Mmg is
iteratively performed on parts of the mesh that need remeshing after they have been identified and
partitioned through Scotch. In [AL09|, Hilbert space-filling curves plus a correction algorithm
are used for the purpose of producing connected mesh partitions on every process, while Mmg
is employed as sequential remesher, then partitions are merged and repartitioned to perform

Inria



Parallel iterative unstructured mesh adaptation 5

new remeshing steps. In [LM13|, after remeshing is performed in the partition interiors, one or
two elements layers next to the interfaces are extracted and either gather or repartitioned to be
adapted. In [LMA15|, a multiple-levels partitioning is employed to partition the domain, than
the set of elements touching the interfaces. Once the interior of the partitions are adapted, the
interface layers are enlarged so to include all mesh cavity that will be needed to locally adapt on
the interfaces.

Following previous works on the parallel usage of Mmg [MDV11]| [Ben+16|, we focus on a two-
levels partitioning scheme where the mesh is first partitioned on the parallel computer. Then,
local data are further partitioned into mesh groups, which can be remeshed sequentially by the
local process one after the other. The size of the mesh group is targeted to an optimal size for the
Mmg remeshing process. Both interfaces between partitions and mesh groups are kept unchanged
during the remeshing step.

After the remeshing step, the mesh is repartitioned in order to change the parallel inter-
face and to allow a new remeshing step. This can be accomplished through several strategies.
In [MDV11] [Ben+16], a load balancing step is applied to the partitioning of the parallel mesh
group graph rather, than of the parallel mesh element graph, in order to ease the partitioning
task for the Metis library. To do that, the size of the mesh groups is recalibrated for the repar-
titiong task. A high weight is placed on graph edges proportionally to old parallel interfaces, so
to penalize the occurrence of these edges in new partition interiors. ParMmg supports the same
algorithm.

A certain compromise between an optimal load balancing and the number or remeshing-
repartitioning iterations needs to be sought. We have found that load balancing algorithms can
be difficult to tune for an effective interface displacement that limits the number of total iterations
performed, as their primary aim is that of minimizing a communication cost function, without
explicitly targeting interface displacement. For this reason, we have investigated the usage of
direct interface displacement methods for mesh repartitioning, at the expense of optimal load
balancing.

3 Metrics interpolation

As the original metrics can be modified by the sequential remesher in order to impose additional
geometrical requirements or gradation (this is done in our case by Mmg), the original user-defined
metrics needs to be recovered after each remeshing iteration in order to prevent information loss
as the remeshing iterations are continued.

In our algorithm, this is done by interpolating the metrics from the mesh at the previous
iteration to the mesh to the current adapted mesh. This allows to avoid parallel communication,
as both the background and current group meshes are local. A classical walk-search algorithm is
employed for node localization, and interpolation on P1 finite elements is used (both are resumed,
for example, in [AM10]).

Solution interpolation is not currently supported, but different strategies could be envisaged.
In this case, it would be better to interpolate only from the initial to the final mesh in order to
reduce the computational time, with parallel box-intersection to pair the differently distributed
initial and final groups (as done in [Dig+17]).

4 Mesh repartitioning

Many algorithms can be used to perform mesh partitioning. One category of methods falls into
general graph partitioning approaches, such as those commonly used through the Metis and

RR n°® 9307
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Scotch libraries [Kar| [Pel09]. A second category exploits geometrical or topological informa-
tion which are specific about the mesh partitioning problem, like recursive spectral bisection
(described for example in [Sim91|, inertia axis methods (described in [FG07] |[FL93|) and greedy
algorithms |Far88| [FL93|, among others.

Graph-based partitioning schemes generally aim at minimizing a given cost function, as a
model of the communication cost, and old parallel interfaces can be penalized by applying a high
weight on the corresponding graph edge, thus only indirectly trying to minimize the occurrence of
a new parallel interface coincident with the old one. Similarly, mesh-based partitioning methods
are still designed to produce well-balanced partitions and to reduce the communication cost.
This is often done by exploiting more information about the mesh as a bipartite graph, through
element and node adjacency. In the following sections, we will rather focus on the construction
of a repartitioning algorithm explicitly targeting interface displacement, as this is the primary
interest in an iterative remeshing scheme in order to converge to an adapted mesh all over the
domain.

4.1 Interface displacement by an advancing-front method

We follow the same idea employed in [DR07] [CSF05] to move the interface by an advancing-front
algorithm. We adopt an element-based partitioning scheme, thus we aim at propagating the front
of parallel nodes by walking on edge connectivity, in order to mark the visited tetrahedra with
the color brought by the front.

To this purpose, a front direction needs to be chosen. This operation allows to give each front
node a unique color, based on the colors of the tetrahedra in its ball, and a logical operator to
decide whether this color should be passed to the tetrahedra visited by the front, or not. This
operation also allows to handle the case of colliding fronts. Once a direction is chosen for the
propagation of the interface, the front nodes visit all the tetrahedra in their ball and mark them
for repartitioning, if it is compatible with the front direction. Then, the color is passed to the
outer points of the ball, and a new front is created. By performing this process N times, an
N —layer mesh subgroup is built just beside the old parallel interfaces. This process is reminiscent
of a parallel version of the greedy algorithm for sequential mesh partitioning [Far88|, where the
seeds are not chosen independently but only the current node interfaces are allowed to grow their
ball by N new layers. At the end of each step, a parallel update is performed for the color of the
nodes on current parallel interfaces.

This algorithm effectively produces a new mesh partitioning that can be directly used for any
already available mesh migration routines. An example of front advancement on 4 partitions
in a sphere is given in figure From the practical point of view, this algorithm needs to be
complemented with: 1) the choice of the front advancement direction, and 2) handling of discon-
nected partitions, i.e. partitions where all elements cannot be reached by face adjacency (see for
example figure , which are very likely to be produced by the advancing front [Far88| [Ozt95].

4.2 Groups sorting for interface advancement direction

For every interface, a propagation direction needs to be chosen. In |[Ham92| and |[Dig+17],
processors are paired in order to balance the computational load. Since optimal load balancing
is not the main aim of the remeshing phase, we have preferred to sort the current groups by
the number of elements, and move the interface in the direction of the bigger mesh group. This
naive global sorting allows to effectively handling the case of colliding fronts, as each of them
continues to propagate into the bigger partition found, without the need to form new pairings.

Inria
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(b) Groups after front advancement.

(c) Initial groups (volumic cut). (d) Groups after front advancement (volumic cut).

Figure 1: Example of mesh repartitioning by interface displacement in a sphere. Left: Initial
partitioning. Right: Final partitioning.

RR n°® 9307



8 Cirrottola € Froehly

Figure 2: An example of disconnected mesh partition.

4.3 Correcting disconnected partitions

As already hinted in |[Far88| [Ham92|, experience shows that any advancing-front mesh parti-
tioning algorithm is likely to produce disconnected partitions in given conditions. Although Mmg
is capable of handling disconnected partitions, and it could be argued that a solver should be
capable of handling generic mesh partitions, this is often not an optimal situation to perform
computations. For example, in mesh adaptation over constrained interfaces one should aim at
keeping the ratio between surface and volume elements as high as possible, which is not the case
when disconnected mesh parts appear in a partition. Disconnected partitions also require special
treatments for the localization step for metrics interpolation from the old to the new mesh (like
tree-searches), which are not needed for connected partitions.

Some examples of common problems are presented in section[4.3.1] Some a priori corrections
to prevent the occurrence of disconnected partitions have been hinted in [FL93|, where the
greedy algorithm is stopped and restarted if disconnected elements are detected. Similarly,
in [Ozt95] the interface front advancement is said to be stopped if the target processor becomes
disconnected from the sender processor. While this correction effectively prevents disconnections
in the growing partition, it doesn’t prevent shrinking partitions from becoming disconnected (as
for example for a non-convex partition, as it will be shown in the next section). For these reasons,
we have implemented in ParMmg an a posteriori correction of disconnected partitions, presented
in section [£.3.2] to be performed only once after several layers of front advancement have been
performed.

4.3.1 Examples of configurations leading to disconnected partitions

The next paragraph focuses on the presentation of the most common geometrical and partitioning
configurations leading to disconnected meshes. For sake of simplicity, we use two-dimensional
examples to illustrate this configurations.

Eaten non-convex partitions If the original partition is not convex, the interfaces could
move inward so to cut away some partition extremities when the interface hits a boundary or
when several interface fronts collide. This issue can be easily solved by checking and fixing

Inria
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N

(a) Initial groups and interface front.

¥

(b) Groups after one level of front advancement.

Figure 3: Two-dimensional illustration of some configurations leading to disconnected partitions.
Right zoom: The extremity of a non-convex partition is cut away from its main domain by front
advancement. Left zoom: unordered front advancement leading to an isolated bite (priority is
red-blue-green-yellow).

RR n°® 9307
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the contiguity of the interior partition at the end of the interface displacement step. This
configuration is illustrated in the right zoom in figure 3]

Isolated bites If care is not given to the order by which each node grows and marks its ball, it
can happen that the color of a partition is propagated when it should not have been in the first
place, and the following propagation of a higher-priority front takes some isolated bites|Far88|
that disconnect the previously grown ball from its main partition. This configuration is illustrated
in the left zoom in figure

Parallel star configurations In the same way, if the front reaches an interface on a local
partition and this information is not communicated to the remote processor, at the next propa-
gation step the layer that propagated on the remote partition could not be reachable anymore
by its original partition. This behavior is easily corrected by always performing a parallel update
after one level of front advancement.

4.3.2 A posteriori corrections

From the practical point of view, it is difficult to predict all the situations that could lead
to a disconnected partition in three dimensions. A more general and robust approach is that
of a posteriori correcting partition connection after the front advancement step. This can be
achieved by means of two kinds of checks, one on the contiguity of the local partition, one
on the reachability of all layers that have propagated in the local partition by means of their
remote counterpart. An a posteriori correction also allows for a generic choice of the interface
propagation algorithm.

Contiguity fix for the local partition

1. Similarly to greedy algorithms, we choose a color and start from an element of this color:
we attempt at touching all elements of this color by adjacency (through the element faces).
Elements that we are able to reach by adjacency are stored in a list (main_ list).

2. While we are able to find an element of the same color outside of main_ list:

e we build by adjacency a second list of elements of this color (next list);

o If next list is not empty, we compare the lengths of next list and main_list and we
merge the smaller list of elements into an adjacent color. The biggest list is stored as
main_ list and we go back to step 2}

3. Go back to step[1] (choice of a color and construction of main_ list) until all the colors have
been treated.

Reachability fix for the inward-propagating remote partitions As hinted in [Ozt95],
the front advancement can create subgroups cut away from any interface, or subgroups connected
only to an interface of different color than their remote counterpart. These subgroups are not
reachable by their remote partition anymore. To fix this problem, after a parallel exchange of
remote colors on the current interface, for each interface face we attempt at building a list of
elements of the same remote color which can be touched by adjacency, and we mark them as
reachable. At the end of this process, we iteratively look for a list of adjacent elements which
have not been reached by remote colors, and merge them into an adjacent color (reachable or
not).

Inria
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The current implementation is conceived in order to leave the interface displacement and the
contiguity /reachability correction independent. This allows for a certain freedom in the exper-
imentation of different advancing-front methods (for example, advancing on element adjacency
instead of node adjacency). and interface sorting methods. Although a partition could be a
priori split into an arbitrary number of disconnected parts, the contiguity correction algorithm
only uses two lists to immediately compare two parts and merge the smallest into another color,
thus limiting the memory usage. Similarly, the reachability correction algorithm only uses one
list to store the current subgroup of unreachable elements. At the end of the two correction
steps, all mesh elements are guaranteed to having been touched by a list only once, if the counter
is decremented every time an element is merged in a different color.

5 Summary of the algorithm

The key features of the parallel remeshing algorithm can be summarized as follows:
e Two-level parallelization scheme (distributed mesh partitions and local mesh groups);
e Sequential remeshing of mesh groups over constrained parallel interfaces.;
e Mesh repartitioning by interface displacement.

A pseudocode for the ParMmg workflow is presented in algorithm Mesh migration directly
exploits the two-level parallelization schemes, as mesh parts to be sent to other processors are
assembled into mesh groups to be used for parallel communication, while mesh repartitioning
acts as an independent step which can be further tailored to ensure a more robust load balancing.
A pseudocode for mesh repartitioning is presented in algorithm

Algorithm 1 ParMmg algorithm pseudocode.

1: Input(mesh,metrics); /* Initialization (sequential or parallel) */
2: Group split; /* Split partitions into groups */
3: fori=0,...,ipmax — 1 do /* Tterative remeshing-repartitioning */
4: Update old groups; /* Set background mesh for metrics interpolation */
5: for igrp=0,...,ngrp— 1 do /* Loop on mesh groups */
6: Mmg call; /* Remeshing */
7 end for

8: Interpolate metrics; /* Recompute metrics */
9: Mesh repartitioning; /* Interface displacement and mesh migration */
10: end for

11: Output(mesh,metrics); /* Return the adapted mesh */

6 Open-source software implementation

The presented algorithm is implemented into the ParMmg software package for parallel unstruc-
tured mesh adaptation, released under the GNU Lesser General Public License (LGPL) and
available at the repository https://github.com/MmgTools/ParMmg. The implementation is tar-
geted to provide:

e Reusage of existing sequential remeshing libraries;

RR n°® 9307
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Algorithm 2 Mesh repartitioning pseudocode.

Input(mesh groups);

Sort interfaces; /* Choose interface propagation direction */

Parallel update of interface colors;

for ijqyer = 0,...,Nigyer — 1 do /* Loop on mesh groups */
Propagate node front;

end for

Correct contiguity;

Correct reachability;

Mesh migration;

Output(mesh groups); /* Return repartitioned groups */

—
=

e Non-intrusive linkage with third-party solvers;
e Improvable parallel performances by means of dynamic load balancing.

Open-source software packages are used for every step in the computing chain, from mesh parti-
tioning, remeshing, node renumbering, mesh visualization. The remeshing kernel is the sequen-
tial Mmg library [DDF14] [Mmg]. Parallelization is performed through Message Passing Interface
(MPI) libraries. Partitioning of a centralized input mesh is performed by means of the Metis
library [Kar| [Met|, and the Scotch library [Sco| is employed for nodes renumbering to reduce
cache misses. Finally, mesh files can be saved for visualization in the Medit format (readable
by Medit [FreOl] [Med| and Gmsh |[GR09]) and in VTK format [Sch+06][Vtk|. Finally, version
control is performed with Git and continuous integration testing with Jenkins.

7 Results

7.1 Qualitative comparison of graph-based repartitiong and interface
displacement algorithms

In this section we compare the behaviour of graph-based repartitioning and repartitioning by

interface displacement in effectively enabling mesh adaptation near old parallel interfaces. For

graph-based repartitioning, we penalize each old parallel face f by computing an associated
weight wy as

1
exp (% Yo e

where index i runs on the edges of the face (n, = 3 for a simplicial mesh), o = 28 and wyay = 10°.
Quantity e; is built using the length of the edge Iq,; in the metrics M as

wy = min

e W
)

Ipme—1 il <1

;= 1 2
¢ 1 if by > 1 )

M,i

This expression is inspired by the effectiveness index introduced in [Dob05| and used in [Dob+06|.
This weight is converted in integer format and directly applied to graph edges when a mesh
partition is split into groups. When groups have to be repartitioned, instead, the sum of the
weights on the parallel interface between two groups is applied on the graph edges.

Inria
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The effectiveness of the proposed weight is shown in figure The test case is a sphere of
radius 10, with a tennis ball isotropic metrics

h(:c,y, Z) = Nmax — (hmax - h!nin) exp ((2} — @2 + 22)2) s T=sx, y=S8Yy, Z=S52 (3)

with s = 0.1, Apmin = 0.3 and hpnax = 1.5. For tetrahedra on a parallel interface, the sum of
the weights on parallel faces is visualized. For interior tetrahedra, an arbitrary unitary weight is
visualized. The weight is capable of capturing the tetrahedra that do not respect the imposed
metrics. This includes boundary regions, as boundary surfaces are not adapted in the current
implementation.

Anyway, graph-based repartitioning has difficulties in converging towards a fully adapted
mesh as the number of remeshing-repartitioning is increased when a significant number of par-
titions/groups is involved. This can be seen in figure 5| where meshes obtained after three
iterations of remeshing and load balancing are compared with meshes obtained after three it-
erations of remeshing and interface displacement. Old parallel interfaces are clearly visible as
poorly-adapted regions in graph-based partitions, while this effect is much less evident with direct
interface displacement.

7.2 Parallel weak-scaling of a uniform refinement test case

For a preliminary evaluation of the parallel performances of the algorithm, we test its weak
scalability for an uniform refinement case. The aim is that of distributing the work load on each
mesh group as uniformly as possible.

The geometry is a sphere of radius 10. Input meshes have been generated with Gmsh, and
their size grows with the number of processors (the input edge size is shown in table [1f).

The assigned target mesh size is about 1/6 the original edge size. The size of the output
adapted meshes are shown in table , compared with the sizes of the corresponding input meshes.
The same results are visualized in figure[7] in order to check that the load is maintained approx-
imately constant in the weak scaling test.

Tests have been performed on the Miriel nodes of PlaFRIM clusteIEI, equipped with 2 Dodeca-
core Haswell Intel Xeon E5-2680 v3 (2.5 GHz) and 128 GB of RAM (see figure [f] for the Istopo
view), connected through Infiniband QDR TrueScale (40 Gb/s) and Omnipath (100 Gb/s).

The computational time in the weak scaling test is shown in figure [§] The total time is split
into the time spent in the remesher and the time spent in mesh repartitioning. In this phase,
the time spent in migrating the mesh (MPI communication) is explicitly highlighted. It can be
seen that the remeshing time is kept approximately constant with the number of cores, while
the time for mesh migration constitute a bottleneck on more than 64 cores. The reasons for this
behavior are currently under investigation. Even if performances can clearly still be optimized,
parallel remeshing is able to generate billion-element meshes over 128 cores (table .

7.3 Preliminary results on anisotropic test cases

A qualitative assessment of the capabilities of our parallel remeshing algorithm to handle anisotropic
mesh adaptation is given in this section. The implementation of interface displacement algorithm
has not been tuned for anisotropic cases yet, so the following tests are mostly intended to verify
that metrics interpolation is correct, and to assess the effects of the iterations in order to collect
research directions for future developments.

2Supported by Inria, CNRS (LABRI and IMB), Université de Bordeaux, Bordeaux INP and Conseil Régional
d’Aquitaine (see https://www.plafrim.fr/)
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(c) Metrics (2 iterations). (d) Interface weights (2 iterations).

(e) Metrics (3 iterations). (f) Interface weights (3 iterations).

Figure 4: Mesh partitions produced by graph-based repartitioning for different number of
remeshing-repartitionig iterations, for the isotropic tennis ball case. Left: isotropic metrics.
Right: Interface weights.

Inria
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(a) Graph-based repartitioning (first cut). (b) Interface displacement (first cut).

(c) Graph-based repartitioning (second cut). (d) Interface displacement (second cut).

(e) Graph-based repartitioning (third cut).  (f) Interface displacement (third cut).

Figure 5: Comparison of graph-based repartitioning (left) and interface displacement for different
volume cuts on the isotropic tennis ball case, for three iterations of remeshing-repartitioning on
8 cores (between 2 and 8 groups per partition are used). Colors represent the isotropic metrics.
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Machine (128G8B)

Socket P#0 (64GB) sSocket P#1 (64GB)
| NUMANode P#0 (32GB) | | NUMANode P#1 (32GB) |
| L3 (15M8) | | L3 (15MB) |
| L2 (258KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (258KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) |
| L1d (32kB) | | L1d (32kB) | | L1d (32kB) || L1d (32¢B) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) || L1d (32kB) | | L1d (32kB) | | L1d (32kB) | | L1d (32kB) || L1d (32kB) |
| L1i (32kB) | | L1i (32kB) | | LLi (32KB) || L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32KB) || L1i (32kB) | | L1i (32kB) | | L1i (32¢B) | | L1i (32KB) || L1i (32kB) |
Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5 Core P#0 Core P#1 Core P#2 Core P#3 Core P#4 Core P#5
| PUP#0 | | PUP#2 | | PUP#4 | | PU P#6 | | PUP#8 | | PU P#m| | PU P#1 | | PUP#3 | | PUP#5 | | PU P#7 | | PU P#9 | | PU P#11|
| NUMANode P#2 (32GB) | | NUMANode P#3 (32GB) |
| L3 (15mB) | | L3 (15MB) |
| L2 (256KB) | | L2 (256KkB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) | | L2 (256KB) |
| L1d (32kB) | | L1d (32B) | | L1d (32kB) || L1d (32¢B) | | L1d (32kB) | | L1d (32B) | | L1d (32¢8) || L1d (32¢8) | | L1d (32kB) | | L1d (32kB) | | L1d (32¢8) || L1d (32¢B) |
| L1i (32¢B) | | L1i (32kB) | | L1i (32kB) || L1i (32kB) | | L1i (32kB) | | L1i (32kB) | | L1i (32kB) || L1i (32kB) | | L1i (32kB) | | L1i(32kB) | | L1i (32kB) || L1i (32kB) |
Core P#8 Core p#9 Core P#10 Core P#11 Core P#12 Core P#13 Core P#8 Core P#9 Core P#10 Core P#11 Core P#12 Core P#13
| PUP#12 | | PUP#14 | | PUP#16 | | PUP#18 | | PUP#20 | | PU P#22 | | PUP#13 | | PUP#15 | | PUP#17 | | PUP#19 | | PU P#21 | | PU P#23 |

Figure 6: Istopo view of a miriel node

 (in)

8
16
32
64

128
256

0.16667
0.13228
0.10499
0.08333
0.066142
0.052497
0.041667
0.033071
0.026248

Table 1: Input mesh edge size with different number of cores.
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Cores | Nodes (in) Nodes (out) Elements (in) Elements (out)
1 3842 1591657 18990 9418375
2 7251 2645804 37752 15893278
4 13871 5439170 75195 32688539
8 26772 11147795 149329 67019257
16 52235 22703159 297586 136515675
32 102101 46023487 593845 276849115
64 205737 77677606 1192034 552962469
128 411553 164118099 2416482 1115114432
256 856547 328668480 5044573 2260289909

Table 2: Number of nodes and elements in the input and output meshes, with different number

of cores.
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Figure 7: Number of nodes in the input and output meshes for the weak scaling test.
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Figure 8: Computational time in the weak scaling test.

Uniform anisotropic metrics An example of anisotropic adaptation in a sphere of radius 10
and uniform metrics

2% 0 0
M=[0 25 0 (4)
0 0 04

is given in figure [9] for 6 iterations on 8 processors. It can be seen that still more iterations
are needed to converge towards a fully adapted mesh, with respect to the isotropic case. In
particular, we notice that some isotropic regions are visible near old parallel interfaces (left zoom

in figure E[)

Continuous sinusoidal shock The last effect is confirmed when adapting on a more complex
function, like the continuous sinusoidal shock from |Alalj]

f = tanh(20(z + 0.3sin(—10y) — 0.3sin(—0.5(z — 0.1)))), T=sz, §=sy, 2=sz (5

with s = 0.1. The anisotropic metrics is computed from the Hessian matrix of the function
following the approach in |[AF03|. The eigenvalues \; of the Hessian matrix are truncated as

- 1 1
A; = min (max <?|Ai|,m),m) i=1,...,3 (6)

max min

with Amin = 0.1 and hyax = 1.5. Parallel results, for 6 iterations on 8 processors, are compared
with the sequential ones in figure It can be noticed that the effects of parallel interfaces in
spreading isotropic zones is evident. This is probably due to the way the metrics is corrected
in Mmg on parallel interfaces, and an improvement of this correction is likely to improve the
anisotropic results too.
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Figure 9: Uniform anisotropic mesh adaptation (volume cut), 6 iterations on 8 processors. Right
zoom: A parallel interface is still visible. Left zoom: Isotropic zones induced by a parallel
interface.
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Figure 10: Adaptation on the continuous sinusoidal shock (volume cuts). Left: Sequential Mmg.
Right: ParMmg with 6 iterations on 8 processors.

Inria



Parallel iterative unstructured mesh adaptation 21

8 Conclusion and future developments

We have presented a parallel unstructured mesh adaptation algorithm based on iterative remesh-
ing and mesh repartitioning. The algorithm rests on a two-level parallelization scheme allowing
to tweak the mesh group size for remeshing, and on a mesh repartitioning scheme based on
interface displacement by front advancement.

Specific corrections have been developed to avoid the occurrence of disconnected mesh groups
during the interface propagation step, and the efficacy of an interface displacement repartitioning
algorithm compared to a graph-based repartitioning approach has been shown.

Isotropic weak-scaling tests and anisotropic tests provide directions for future software im-
provement. New developments are foreseen in order to enable:

e Adaptation on boundary surfaces.
e Discretization of implicit surfaces described by a level-set function.
e Load balancing improvement during repartitioning.

The described algorithm is implemented into the open-source ParMmg software application and
library, released under LGPL license, and available at the reporitory https://github.com/
MmgTools/ParMmg.
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