M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, ninth Dover printing, tenth GPO printing edn, vol.27, p.29, 1964.

P. R. Amestoy, I. S. Duff, J. Koster, and J. &-l'éxcellent, A fully asynchronous multifrontal solver using distributed dynamic scheduling, SIAM Journal of Matrix Analysis and Applications, vol.23, pp.15-41, 2001.
URL : https://hal.archives-ouvertes.fr/hal-00808293

X. Antoine, H. Barucq, and A. Bendali, Bayliss-Turkel-like radiation conditions on surfaces of arbitrary shape, Journal of Mathematical Analysis and Applications, vol.229, pp.184-211, 1999.

H. Barucq, R. Djellouli, and A. Saint-guirons, Construction and performance analysis of local DtN absorbing boundary conditions for exterior Helmholtz problems. Part II : Prolate spheroid boundaries, 2007.
URL : https://hal.archives-ouvertes.fr/inria-00180475

H. Barucq, R. Djellouli, and A. Saint-guirons, Construction and performance assesment of new local DtN conditions for elongated obstacles, Applied Numerical Mathematics, vol.59, issue.7, pp.1467-1498, 2009.

H. Barucq, R. Djellouli, and A. Saint-guirons, Performance assessment of a new class of local absorbing boundary conditions for elliptical-and prolate spheroidal-shaped boundaries, Applied Numerical Mathematics, vol.59, pp.1467-1498, 2009.
URL : https://hal.archives-ouvertes.fr/inria-00338494

H. Barucq, A. St-guirons, and S. Tordeux, Non-reflecting boundary condition on ellipsoidal boundary, Numerical Analysis and Applications, vol.5, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00760458

A. Bayliss, M. Gunzburger, and E. Turkel, Boundary conditions for the numerical solution of elliptic equations in exterior regions, SIAM Journal on Applied Mathematics, vol.42, pp.430-451, 1982.

A. Bendali, Approximation paréléments finis de surface de problèmes de diffraction des ondesélectromagnétiques, 1984.

A. Bendali and M. Fares, Boundary integral equations methods in acoustic scattering. Computational Methods for Acoustics Problems, Saxe-Coburg edn, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00952225

A. L. Burn and J. E. Boisvert, Accurate calculation of prolate spheroidal radial functions of the first kind and their first derivatives, Quarterly of Applied Mathematics, vol.60, pp.589-599, 2002.

A. L. Burn and J. E. Boisvert, Oblate and prolate spheroidal functions, 2015.

X. Claeys, Analyse asymptotique et numérique de la diffraction d'ondes par des films minces, 2008.

R. Dautray and J. Lions, Mathematical analysis and numerical methods for science and technology, vol.5, 1988.

B. Engquist and A. Majda, Absorbing boundary conditions for the numerical simulation of waves, Mathematics of Computation, vol.31, pp.629-651, 1977.

B. Engquist and A. Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Communications on Pure and Applied Mathematics, vol.32, issue.3, pp.314-358, 1979.

C. Flammer, Spheroidal wave functions, 1957.

D. Givoli and J. Keller, Nonreflecting boundary conditions for elastic waves, Wave Motion, vol.12, pp.261-279, 1990.

M. J. Grote, Nonreflecting boundary conditions, 1995.

I. Harari and T. J. Hughes, Analysis of continuous formulations underlying the computation of time-harmonic acoustics in exterior domains, Computer Methods in Applied Mechanics and Engineering, vol.97, pp.103-124, 1992.

I. Harari and T. J. Hughes, A cost comparison of boundary element and finite element methods for problems of time-harmonic acoustics, Computer Methods in Applied Mechanics and Engineering, vol.97, pp.77-102, 1992.

U. Hetmaniuk and C. Farhat, A fictitious domain decomposition method for the solution of partially axisymmetric acoustic scattering problems. Part 2: Neumann boundary conditions, International Journal for Numerical Methods in Engineering, vol.58, pp.63-81, 2003.

C. Johnson and J. Nédélec, On the coupling of boundary integral and finite element methods. Mathematics of Computation, vol.35, pp.1063-1079, 1980.

J. B. Keller and D. Givoli, Exact non-reflecting boundary conditions, Journal of Computational Physics, vol.82, pp.172-192, 1989.

N. N. Lebedev and R. A. Silverman, Special functions and their applications, 1972.

M. Lenoir and A. Tounsi, The localized finite element method and its application to the two-dimensional sea-keeping problem, SIAM Journal on Numerical Analysis, vol.25, pp.729-752, 1988.
URL : https://hal.archives-ouvertes.fr/hal-00974512

J. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, vol.1, 1968.

W. Mclean, Strongly Elliptic Systems and Boundary Integral Equations, 2000.

M. Medvinsky, E. Turkel, and U. Hetmaniuk, Local absorbing boundary conditions for elliptical shaped boundaries, Journal of Computational Physics, vol.227, pp.8254-8267, 2008.

M. H. Protter, Unique continuation for elliptic equations, Transactions of the American Mathematical Society, vol.95, pp.81-91, 1960.

R. Reiner, R. Djellouli, and I. Harari, The performance of local absorbing boundary conditions for acoustic scattering from elliptical shapes, Computer Methods in Applied Mechanics and Engineering, vol.195, pp.3622-3665, 2006.

A. Saint-guirons, Construction et analyse de conditions absorbantes de type Dirichletto-Neumann pour des frontières ellipsoidales, 2008.

J. Sherman and W. J. Morrison, Adjustment of an inverse matrix corresponding to a change in one element of a given matrix, Annals of Mathematical Statistics, vol.21, pp.124-127, 1950.

W. Smigaj, S. Arridge, T. Betcke, J. Phillips, and M. Schweiger, Solving boundary integral problems with BEM++, ACM Transactions on Mathematical Software, vol.41, issue.2, p.29, 2015.

C. H. Wilcox, Scattering theory for diffraction gratings, 1984.

A. Zarmi and E. Turkel, A general approach for high order absorbing boundary conditions for the Helmholtz equation, Journal of Computational Physics, vol.242, pp.387-404, 2013.