T. V. Aardenne-ehrenfest and N. G. De-bruijn, Circuits and trees in oriented linear graphs, Simon Stevin, vol.28, pp.203-217, 1951.

M. C. Anisiu, Z. Blázsik, and Z. Kása, Maximal complexity of finite words, Pure Math. Appl, vol.13, pp.39-48, 2002.

N. G. De-bruijn, A combinatorial problem, Proc. Konin. Neder. Akad. Wet, vol.49, pp.758-764, 1946.

N. G. De-bruijn, Acknowledgement of priority to C. Flye Sainte-Marie on the counting of circular arrangements of 2 n zeros and ones that show each n-letter word exactly once, 1975.

J. Brzozowski, Quotient complexity of regular languages, J. Automata, Languages, and Combinatorics, vol.15, pp.71-89, 2010.

T. Etzion, An algorithm for generating shift-register cycles, Theoret. Comput. Sci, vol.44, pp.209-224, 1986.

A. Flaxman, A. W. Harrow, and G. B. Sorkin, Strings with maximally many distinct subsequences and substrings, Electronic J. Combinatorics, vol.11, issue.1, p.8, 2004.

F. Sainte-marie and C. , Question 48. L'Intermédiaire Math, vol.1, pp.107-110, 1894.

H. Fredricksen, A survey of full length nonlinear shift register cycle algorithms, SIAM Review, vol.24, pp.195-221, 1982.

I. J. Good, Normal recurring decimals, J. London Math. Soc, vol.21, pp.167-169, 1946.

F. Hemmati and D. J. Costello, An algebraic construction for q-ary shift register sequences, IEEE Trans. Comput, vol.27, pp.1192-1195, 1978.

A. Iványi, On the d-complexity of words, Ann. Univ. Sci. Budapest. Sect. Comput, vol.8, pp.69-90, 1987.

J. Jirásek and G. Jirásková, Cyclic shift on prefix-free languages, Lecture Notes in Computer Science, vol.7913, pp.246-257, 2013.

G. Jirásková and A. Okhotin, State complexity of cyclic shift, RAIRO Inform. Théor. App, vol.42, pp.335-360, 2008.

A. Lempel, m-ary closed sequences, J. Combin. Theory, vol.10, pp.253-258, 1971.

M. H. Martin, A problem in arrangements, Bull. Amer. Math. Soc, vol.40, pp.859-864, 1934.

A. N. Maslov, Estimates of the number of states of finite automata, Russian. English translation in Soviet Math. Dokl, vol.194, issue.6, pp.1373-1375, 1970.

A. Ralston, De Bruijn sequences -a model example of the interaction of discrete mathematics and computer science, Math. Mag, vol.55, pp.131-143, 1982.

J. Shallit, On the maximum number of distinct factors of a binary string, Graphs and Combinatorics, vol.9, pp.197-200, 1993.

N. J. Sloane, The on-line encyclopedia of integer sequences, 2019.