Skip to Main content Skip to Navigation
Conference papers

Descriptional Complexity of Matrix Simple Semi-conditional Grammars

Abstract : Matrix grammars are one of the first approaches ever proposed in regulated rewriting, prescribing that rules have to be applied in a certain order. Typical descriptional complexity measures incorporate the number of nonterminals or the length, i.e., the number of rules per matrix. In simple semi-conditional (SSC) grammars, the derivations are controlled by a permitting string or by a forbidden string associated to each rule. The maximum length i of permitting strings and the maximum length j of forbidden strings are called the degree of such grammars. Matrix SSC grammars (MSSC) put matrix grammar control on SSC rules. We consider the computational completeness of MSSC grammars with degrees (2, 1), (2, 0) and (3, 0). The results are important in the following aspects. (i) With permitting strings alone, it is unknown if SSC grammars are computational complete, while MSSC grammars describe $$\textsf {RE}$$ even with severe further restrictions on their descriptional complexity. (ii) Matrix grammars with appearance checking with three nonterminals are computationally complete; however, the length is unbounded. With our constructions for MSSC grammars, we can even bound the length.
Document type :
Conference papers
Complete list of metadata

Cited literature [17 references]  Display  Hide  Download
Contributor : Hal Ifip <>
Submitted on : Friday, November 29, 2019 - 4:36:37 PM
Last modification on : Friday, November 29, 2019 - 5:01:47 PM


 Restricted access
To satisfy the distribution rights of the publisher, the document is embargoed until : 2022-01-01

Please log in to resquest access to the document


Distributed under a Creative Commons Attribution 4.0 International License



Henning Fernau, Lakshmanan Kuppusamy, Indhumathi Raman. Descriptional Complexity of Matrix Simple Semi-conditional Grammars. 21th International Conference on Descriptional Complexity of Formal Systems (DCFS), Jul 2019, Košice, Slovakia. pp.111-123, ⟨10.1007/978-3-030-23247-4_8⟩. ⟨hal-02387307⟩



Record views