P. Bilge-acun, L. V. Miller, and . Kale, Variation Among Processors Under Turbo Boost in HPC Systems, ICS '16, vol.6, p.12, 2016.

O. Adam, A. Y. Young-choon-lee, and . Zomaya, Stochastic Resource Provisioning for Containerized Multi-Tier Web Services in Clouds, 2017.

A. Bhattacharyya, On a measure of divergence between two statistical populations defined by their probability distributions, Bulletin of the Calcutta Mathematical Society, vol.35, pp.99-109, 1943.

R. N. Calheiros, R. Ranjan, A. Beloglazov, A. F. De-rose, and R. Buyya, CloudSim: A Toolkit for Modeling and Simulation of Cloud Computing Environments and Evaluation of Resource Provisioning Algorithms, Softw. Pract. Exper, vol.41, pp.23-50, 2011.

R. Cheng, S. Singh, S. Prabhakar, R. Shah, J. S. Vitter et al., Efficient Join Processing over Uncertain Data, CIKM '06, 2006.

N. Dalvi and D. Suciu, Efficient Query Evaluation on Probabilistic Databases, The VLDB Journal, vol.16, pp.523-544, 2007.

E. Deelman, K. Vahi, G. Juve, M. Rynge, S. Callaghan et al., Pegasus, a workflow management system for science automation, FGCS, vol.46, pp.17-35, 2015.

S. Di, Y. Robert, F. Vivien, D. Kondo, C. Wang et al., Optimization of Cloud Task Processing with Checkpoint-restart Mechanism, SC '13, vol.64, p.12, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00847635

B. Farley, A. Juels, V. Varadarajan, T. Ristenpart, K. D. Bowers et al., More for Your Money: Exploiting Performance Heterogeneity in Public Clouds, 2012.

M. , R. Hoseinyfarahabady, R. D. Hamid, L. M. Samani, Y. C. Leslie et al., Handling Uncertainty: Pareto-Efficient BoT Scheduling on Hybrid Clouds, ICPP '13, pp.419-428, 2013.

B. Huang and J. Yang, Cumulon-D: data analytics in a dynamic spot market, pp.865-876, 2017.

Q. Huang, S. Su, J. Li, P. Xu, K. Shuang et al., Enhanced Energy-Efficient Scheduling for Parallel Applications in Cloud, CCGRID '12, pp.781-786, 2012.

H. Kllapi and E. Sitaridi, Schedule Optimization for Data Processing Flows on the Cloud, Manolis M. Tsangaris, and Yannis Ioannidis, 2011.

M. Malawski, G. Juve, E. Deelman, and J. Nabrzyski, Costand Deadline-constrained Provisioning for Scientific Workflow Ensembles in IaaS Clouds, SC '12, vol.22, p.11, 2012.

I. Manousakis, Í. Goiri, R. Bianchini, S. Rigo, and T. D. Nguyen, Uncertainty Propagation in Data Processing Systems, SoCC, 2018.

M. Mao and M. Humphrey, Auto-scaling to Minimize Cost and Meet Application Deadlines in Cloud Workflows, SC '11. Article, vol.49, 2011.

M. Mao and M. Humphrey, Scaling and Scheduling to Maximize Application Performance Within Budget Constraint in Cloud Workflows, IPDPS'13, pp.67-78, 2013.

L. Mo, R. Cheng, X. Li, D. W. Cheung, and X. S. Yang, Cleaning uncertain data for top-k queries, ICDE '13, pp.134-145, 2013.

, NASA/IPAC. 2005. Montage Archive, p.8080, 2005.

J. Niedermayer, A. Züfle, T. Emrich, M. Renz, N. Mamoulis et al., Probabilistic Nearest Neighbor Queries on Uncertain Moving Object Trajectories. VLDB, 2013.

Z. Ou, H. Zhuang, J. K. Nurminen, A. Ylä-jääski, and P. Hui, Exploiting Hardware Heterogeneity Within the Same Instance Type of Amazon EC2, p.12, 2012.

J. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger, Distribution-based Cluster Scheduling for Runtime Uncertainty, EuroSys '18, vol.3, pp.1-17, 2018.

. Pegasus, Workflow Generator, 2014.

D. Poola, K. Ramamohanarao, and R. Buyya, Faulttolerant Workflow Scheduling using Spot Instances on Clouds, ICCS '14, 2014.

M. Rinard, Probabilistic Accuracy Bounds for Fault-tolerant Computations That Discard Tasks, ICS '06, pp.324-334, 2006.

J. Schad, J. Dittrich, and J. Quiané-ruiz, Runtime Measurements in the Cloud: Observing, Analyzing, and Reducing Variance, VLDB, pp.460-471, 2010.

G. Singh, M. Su, K. Vahi, E. Deelman, B. Berriman et al., Workflow Task Clustering for Best Effort Systems with Pegasus, MG '08, vol.9, pp.1-9, 2008.

A. Tchernykh, U. Schwiegelsohn, A. Vassil, and . El-ghazali-talbi, Towards understanding uncertainty in Cloud computing resource provisioning, ICCS '15, pp.1772-1781, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01249505

A. Thusoo, Z. Shao, S. Anthony, D. Borthakur, N. Jain et al., Data Warehousing and Analytics Infrastructure at Facebook, SIGMOD '10, pp.1013-1020, 2010.

J. Yu, R. Buyya, and C. Tham, Cost-Based Scheduling of Scientific Workflow Applications on Utility Grids, e-Science '05, pp.140-147, 2005.

A. C. Zhou, B. He, X. Cheng, and C. Lau, A Declarative Optimization Engine for Resource Provisioning of Scientific Workflows in IaaS Clouds, HPDC '15, pp.223-234, 2015.

A. C. Zhou, B. He, S. Ibrahim, and R. Cheng, Incorporating Probabilistic Optimizations for Resource Provisioning of Cloud Workflow Processing, 2019.