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This paper proposes a technique for estimating the computational time of programs 
in an actor model, which is intended to serve as a compiler target of a wide variety 
of actor-based programming languages. We define a compositional translation function 
returning cost equations, which are fed to an automatic off-the-shelf solver for obtaining 
the time bounds. Our approach is based on a new notion of synchronization sets, which 
captures possible difficult synchronization patterns between actors and helps make the 
analysis efficient and precise. The approach is proven to correctly over-approximate the 
worst computational time of an actor model of concurrent programs. Our technique is 
complemented by a prototype analyzer that returns upper bound of costs for the actor 
model.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

Time computation for programs running on mainstream architectures, for example, multicore, distributed systems or 
cloud, is intricate and demanding as the execution of a process may be indirectly delayed by other processes running 
on different machines due to synchronizations. The computational time of programs is particularly relevant in cloud ar-
chitectures, where services are bound by so-called service-level agreements (SLAs), which regulate the costs in time and 
assign penalties for their infringements [7]. In particular, the service providers need guarantees that the services meet the 
SLA, for example in terms of the end-user response time, by deciding on a resource management policy, and by deter-
mining the appropriate number of virtual machine instances (or containers) and their parameter settings (e.g., their CPU 
speeds).

In this paper we propose a technique for estimating the computational time of programs in an actor model. This model 
is intended to serve as a compiler target of a wide variety of actor-based programming languages, such as object-oriented 
ones, including Java and C#, which are used in cloud architectures. Our technique aims at (and in fact, has been devel-
oped for) helping service providers to select resource management policies in a correct way, before actually deploying the 
service.
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Several techniques have been proposed for analyzing the computational time of sequential programs. See for example [3,
6,10,11,17] and Section 7. Our approach is similar to [15], where a statically typed intermediate language has been defined 
in order to verify safety properties and certify code optimizations. Different from [15], our language, called alt, short 
for actor language with time, is concurrent, and contains an operation defining the number of processing cycles required to 
be computed, called wait(n) (similar to the sleep(n) operation in Java). In order to analyze the computational time of 
alt, we define an algorithm that returns a set of cost equations that are adequate for a solver. We demonstrate that the 
solution of the cost equations over-approximates the computational time of the alt program in input. Given these results, 
estimating the computational time of a program in some programming languages amounts to defining a compilation into 
an alt program (and demonstrating its correctness).

The presented work builds upon a previous article by the authors [9], where it captures the actor models of actor-based 
programming languages in terms of behavioral types, and obtains the computational time of the corresponding program by 
feeding the cost equations produced by a translation function to a off-the-shelf solver, namely the CoFloCo solver [8]. 
However, this technique proposed in [9] has a very severe constraint: invocations were admitted only either on the same 
actor or on newly created ones, i.e., no invocation on parameters. For instance, according to this constraint, an invocation to 
a method inner(y, x), where the first parameter is the actor executing the method, cannot occur in the body of a method 
outer(x, y). The challenge is that, in this case, computing the cost of outer(x, y) requires to know whether there is a 
synchronization between actors x and y. In case there is, one has to consider that inner(y, x) might be delayed by other 
methods running on y, which might be independent from outer(x, y).

This paper focuses on overcoming this issue. We first compute synchronization sets of actors, which are actors that po-
tentially might interfere with the executions of each other. We then compose the cost of an invocation with the cost of the 
callee in two ways: (1) it is added, corresponding to sequential compositions, if the arguments of the invocation and those of 
the caller are in the same synchronization set; (2) it is the maximum value, corresponding to parallel composition, otherwise. 
We then define a new translation function that takes the synchronization sets of an alt program into account and returns 
the corresponding set of cost equations.

The translation of alt programs into the solver input code [2,8] has been prototyped and can be experimented (see 
Section 6). This tool, together with the compiler we have defined in [9], allows us to automatically compute the cost of 
programs in ABS, a prototype language for programming the cloud [13] that is an extension of alt. Experimental results 
show that our technique is very precise when computing the cost of a number of typical distributed patterns, such as 
fork-join or map-reduce.

Paper overview. The alt language is defined in Section 2 and we discuss in Section 3 the issues in estimating the 
computational time. Section 4 explains the analysis of computational time by means of a translation function that returns 
cost equations, and Section 5 discusses the properties of the translation. In Section 6, we illustrate the conversion of the 
translation output to the adequate form for an off-the-shelf solver, present our prototype, together with the experimental 
results of our approach and a comparison with other tools. In Section 7, we discuss the related work and deliver concluding 
remarks in Section 8.

2. The language alt

In this section, we define the syntax and the semantics of alt and illustrate the language with some examples.

Syntax. We use several disjoint sets of names that, for convenience, we address taking different notations or identifiers: 
method names, ranged over by m, m′ , · · · ; actor names ranged over by x, y, · · · ; natural names u, w , a, b, · · · ; future names
ranged over by f , g , h, · · · . The notations x and u denote a possibly empty sequence of actor and natural names, respec-
tively; p ranges over sequences whose elements may be either actor or natural names. An alt program(

m1(p1)= s1, · · · ,mn(pn)= sn,main(x, u)= s
)

is a sequence of method definitions of the form mi(pi)= si . The last method is the main method, where x is the actor name 
executing the main body and u are natural names. Statements s and expressions e are defined by the following syntax:

s ::= 0 | νx;s | ν f : m(e);s | f �;s | wait(en);s

e ::= en | x
en ::=k | u | en + en (k are natural constants)

The syntax of alt statements is quite basic: 0 indicates a terminated statement; νx is the creation of a new actor x; 
ν f : m(e);s creates a new task of the method m that is associated to the future f ; the task starts in parallel with the 
continuation s. The term f � performs the synchronization of the task associated to f . This may cause the (busy) wait-
ing for the termination of the task. The statement wait(en), where en is a natural expression, represents the advance of 
e time units. This is the only term in our model that consumes time (a.k.a. that generates a cost). Note that term en in 
wait(en) contains constants and natural names, including the arithmetic binary operator + between them. These expres-
sions are also known as Presburger arithmetics, which is a decidable fragment of Peano arithmetics containing only addition. 
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The restriction is necessary because the analysis in Section 4 cannot deal with generic expressions. Note that, in general, 
expressions e also include actor names (in the syntax of e, x also ranges over actor names), as in the method invoca-
tions.

Method definitions have the form m(p)= νz1; · · ·;νzk;s such that all actors can only be created in the beginning of the 
method. Additionally, the method definition m(p)= s binds names p to the body s. We assume that p has always a fixed 
pattern: p = x, y, u, namely p is a nonempty sequence where the first element is always an actor name indicating the callee 
of the method, y are actor names and u are natural names. We assume that actor names x, y do not clash with names 
z1, · · · , zk . Therefore, method invocations ν f : m(e) have the pattern x′, y′, e′ . We further assume that alt has a simple 
type system that verifies the type correctness of method applications. Statements νx;s and ν f : m(e);s link the names x
and f in the continuations s. For the notion of bound name and the one of free name, we use the standard operations of 
alpha-conversion and substitution. It is also assumed that method names m1, · · · , mn in program declarations are pairwise 
different.

Example 2.1. To illustrate alt, consider the program:

1 main(x,a,b) =
2 ν y;νz;
3 ν f : timer(y,a);
4 f �;
5 νg: timer(z,b);
6 g�;

8 main′(x,a,b) =
9 ν y;νz;

10 ν f : timer(y,a);
11 νg: timer(z,b);
12 f �;
13 g�;

15 timer(x,n) =
16 wait(n);

Consider method main which is executed by actor x. Note that this actor is automatically created when the main method 
starts to run. After creating two actors y and z at line 2, main invokes timer(y, a) and continues its execution. By 
binding this invocation to the future name f and synchronizing it immediately afterwards at line 4, it is possible to delay 
the execution of the caller actor x until the termination of timer(y, a). In this case, since y has been just created, it 
will immediately execute timer(y, a) and return (this is not true in general because y might have other tasks running). 
Therefore, x will wait exactly a time units (effect of the instruction wait(n) at line 16) before continuing. The continuation 
spawns a task νg: timer(z,b) at line 5 on actor z and waits for its termination, which, for the same reasons as before, will 
occur after b time units. Overall, the computational time of main is a + b. Observe that the time is the same when line 5
is replaced by νg: timer(y,b), e.g., spawning the thread on y instead of z.

In the case of main′ , the two invocations to timer are performed one after the other, without any synchronization in 
between. Thus the two tasks are executed in parallel, and as they are both synchronized at lines 12 and 13, the computa-
tional time of main′ is max(a, b). Observe that if line 11 is replaced by νg: timer(y,b), e.g., spawning the thread on y
instead of z, the computational time becomes a + b. �

Two features of alt ease our theoretical development: (i) alt actors are stateless and (ii) methods do not return values. 
In fact, computing the cost of stateful actor programs requires a leap of the theory developed in this contribution because 
it is necessary to trace the state of the fields. Similarly, when methods return a value, it is necessary to estimate the value 
(is it an old actor or a new one? if it is a natural number, how large it is?) in order to have sensible cost computations.
Semantics. The semantics of alt is a transition system whose states are configurations cn that are defined as fol-
lows.

cn ::= act(x,p,q) | fut( f ,val) | invoc(x, f ,m, v) | cn cn

val ::= ⊥ | � p ::= s; f | f | 0
v ::= x | f | k q ::= ∅ | s; f | q q

The notation s; f represents the statement s where the tailing 0 is replaced by the future name f . We use p to range 
over s; f , f , and 0. A configuration cn is a nonempty set of actors, invocation messages and futures. The associa-
tive and commutative union operator on configurations is denoted by whitespace. An actor is written as act(x, p, q), 
where x is the identity of the actor, p is the active task, and q is a pool of either suspended or waiting tasks. An 
invocation message is denoted as invoc(x, f , m, v), where x is the callee, f the future to which the call is bound, m
the method name, and v the set of parameter values of the call. Configurations also include futures, denoted as 
fut( f , val), where f is the future identity and val indicates whether f has already been computed, written as �, other-
wise ⊥.

The transition rules of alt are given in Fig. 1. We use an auxiliary function to bind invocations to the corresponding 
method bodies. Let m(x, z)= s be an alt method. Then

bind(y,m, v) = s{y, v/x, z} .
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(Context)

cn → cn′

cn cn′′ → cn′ cn′′

(New)

z′ = fresh( )

act(x, νz;p,q) →
act(x,p{z′

/z},q) act(z′,0,∅)

(Get-True)

act(x, f �;p,q) fut( f ,�) →
act(x,p,q) fut( f ,�)

(Get-False)

act(x, f �;p,q) fut( f ,⊥) →
act(x,0,q ∪ ( f �;p)) fut( f ,⊥)

(Async-Call)

[[e]] = v f ′ = fresh( )

act(x, ν f : m(z, e);p,q) →
act(x,p{ f ′

/ f },q) invoc(z, f ′,m, v) fut( f ′,⊥)

(Bind-Fun)

s = bind(x,m, v)

act(x, p,q) invoc(x, f ,m, v) →
act(x, p,q ∪ s; f )

(Wait-0)

[[e]] = 0

act(x,wait(e);s,q) → act(x, s,q)

(Activate)

act(x,0,q ∪ p)

→ act(x,p,q)

(Return)

act(x, f ,q) fut( f ,⊥) →
act(x,0,q) fut( f ,�)

(Tick)

strongstablet(cn)

cn
t→ �(cn, t)

Fig. 1. Transition rules.

We also use the function fresh( ) to return either a fresh actor name or a fresh future name. Finally, we use an evaluation 
function [ [·] ] of expressions e such that [ [x] ] = x, and [ [e] ] = v whenever e is a constant natural expression and v is its value; 
[ [e] ] is undefined otherwise.

The semantics of alt is almost standard. See, for example [14], for a similar semantics for a dialect of pi-calculus with 
time. We discuss the most relevant rules in the following: actor creation, method invocation, method return and the wait(e)
statement.

Actor creation is handled by rule New, which extends the configuration with act(z′, 0, ∅) where z′ is a fresh actor 
identifier. In alt, method invocations are asynchronous: rule Async-Call creates a new invocation predicate invoc(z, f ′, m, v)

and a new unresolved future predicate fut( f ′, ⊥), which is associated to the invocation with a fresh future identifier f ′ . The 
invocation predicate will then be bound to the corresponding callee actor as one of the tasks in the task pool (cf. rule 
Bind-Fun). When a method terminates, rule Return sets the value of the corresponding future f to �. Note that f is 
added to the end of the method body in rule Bind-Fun. In our model, wait(e) is the unique operation that consumes 
time; that is, time does not advance as long as a wait(e) statement is prefixed by some active task. For the trivial case 
where e = 0 (see rule Wait-0), the statement is simply discarded. On the contrary, when a configuration cn reaches a stable
state, that is, no other transition is possible apart from those evaluating the wait(e) statements, time advances until an 
actor with a non-wait(e) statement can proceed. To formalize this semantics, we first introduce the notion of stability as 
follows:

Definition 2.1. Let t > 0. A configuration cn is t-stable, written as stablet(cn), if every actor in cn matches one of the following 
forms:

1. act(x, wait(e);s; f ′, q) with [ [e] ] ≥ t ,
2. act(x, 0, q) and

i. either q = ∅,
ii. or, for every s ∈ q, s = f �;p and fut( f , ⊥) ∈ cn.

A configuration cn is strongly t-stable, written as strongstablet(cn), if it is t-stable and there exists an actor act(x, wait(e);s, q)

with [ [e] ] = t .

Note that t-stable (and consequently, strongly t-stable) configurations cannot progress anymore because every actor is 
stuck either on a wait(·)-statement or on an unresolved future.

We then define a function to update a configuration cn with respect to a time value t .
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�(cn, t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

act(x,wait(k);s,q) �(cn′, t) if cn = act(x,wait(e);s,q) cn′
and k = [[e]] − t

act(x,0,q) �(cn′, t) if cn = act(x,0,q) cn′

cn otherwise.

Together with the rule Tick in Fig. 1, we define the time progress of a configuration.
The initial configuration of a program whose main method is main(x, u)= s and with invocation main(z,k) is

act(z, s{k/u}; fstart,∅)

where fstart is the future identifier for the main body. As usual, →∗ is the reflexive and transitive closure of → and t⇒ is 
→∗ t→→∗ . A computation is cn

t1⇒ ·· · tn⇒ cn′ , that is, cn′ is a configuration reachable from cn with either transitions → or t⇒. 
When the time labels of transitions are not relevant we also write cn ⇒∗ cn′ .

Definition 2.2. The computational time of cn
t1⇒ ·· · tn⇒ cn′ is t1 + · · · + tn .

The computational time of a configuration cn, written time(cn), is the maximum computational time of computations start-
ing at cn. The computational time of an alt program is the computational time of its initial configuration.

Example 2.2. Consider the following method main1:

1 main1(x,a,b) =
2 ν y;
3 wait(k0);
4 ν f : m1(y);
5 wait(a);
6 νg: m2(y);
7 wait(b);
8 g�;
9 f �;

10 m1(x) =
11 wait(k1);
12

13 m2(x) =
14 wait(k2);

This method creates a new actor y at line 2 and spawns two tasks on it at lines 4 and 6, respectively, where the two tasks 
will execute in parallel with main1. Their terminations are synchronized at lines 8 and 9 by means of g� and f � . Note 
that main1 takes its natural number arguments as the input parameter of the wait(·)-operations at lines 5 and 7, while the 
one at line 3 uses a constant k0. Thus, the computational time of main1 depends on the concrete values of a and b. The 
other wait(·)-statements in the example are executed with some constants k0, k1 and k2. �

Our semantics does not exclude behaviors of methods that perform infinite actions without consuming time (preventing 
rule Tick to apply), such as foo(x)= ν f : foo(x); f � . This kind of behaviors are well-known in the literature (cf. Zeno 
behaviors, see [14]) and they may be easily excluded from our analysis by constraining recursive invocations to be prefixed 
by a wait(e)-statement, where e is a not-zero natural. A similar paradoxical behavior is gee(x)= ν y;ν f : gee(y); f � that 
spawns the new task on a new actor, thereby creating an unbounded number of actors.

We finally remark that the composite effect of Activate and Get-False might produce infinite computations that do not 
make progress, and no time is passing (an actor can repeatedly activate a blocked task and then suspend it again). However, 
assuming fairness in computations (an enabled task will eventually be executed), it is possible to demonstrate that these 
behaviors are not possible in alt.

3. The challenges of cost computation for alt programs

Computing the time of alt programs is challenging. In this section, we illustrate the difficulties by discussing four 
examples. These difficulties range from determining the tasks that cannot execute in parallel – therefore the cost of each of 
these tasks must be added together –, to understanding the tasks that are executed in parallel – thus, the maximum value of 
the cost of the tasks is selected – or to analyzing the whole spectrum of scheduling policies because they might also affect 
the computational time.

Example 3.1. The method main1 in Example 2.2 invokes m1 and m2 on an actor that is different from the caller. The 
following graphical representations illustrate four different computations that are obtained by choosing different values of a
and b. Rectangles in dark gray represent the largest segment of time that are used for computing the maximal cost of the 
computations, which are denoted by the names c1, c2, c3 and c4, respectively.
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Computation 1 represents an execution where a > k1, which leads to the execution of m2 on actor y starts after the 
termination of m1. In this case, the executions of wait(b) and m2 run in parallel. Thus, the cost of this computation is 
k0 + a + max(b, k2) (the expression c1 in the figure reflects the case where b ≥ k2). Computation 2 and Computation 3 de-
scribe computations where a < k1. This leads to delaying m2 until the execution of m1 finishes. In Computation 2, since 
a + b < k1 + k2, actor x has to wait for the termination of m2. On the contrary, in Computation 3, m2 returns before actor x
finishes the execution of wait(b). Finally, Computation 4 illustrates an execution where both x and y have to wait either for 
a method to terminate and return or for executing a new task.

As our analysis aims at finding a sound approximation of time needed for any computation of the program, the cost of
main1 is over-approximated by the expression

cmain1 = k0 + max(a,k1) + max(b,k2)

For Computation 1, Computation 2 and Computation 4, cmain1 captures precisely the execution time. Note that the sub-
expression k0 + max(a, k1) determines the starting time of m2 on actor y. However, k0 + max(a, k1) is an over-approximation 
of the starting time of the statement wait(b) at line 7 of main1, ending up in a non-precise result for Computation 3 as 
cmain1 > c3. �

Another challenging issue to cope with is when a task is delayed due to an unresolved future (see rule Get-false). In 
this situation, the carrier actor may start the execution of the pending tasks and may reschedule the initial task after the 
termination of the other ones.

Example 3.2. Consider following method main2, which is similar to main1 in Example 2.2, except that m2 is invoked on 
the callee actor x. The computations on the right show two possible executions of main2, depending on the values of a
and b.

In Computation 1, the synchronization g� at line 8 happens before m1 terminates. In this case, the cost of executing m2

does not contribute to the overall cost c1. On the contrary, in Computation 2, the cost of executing m1 does not contribute 
to the overall cost c2. The reason is that the values of a and b in this computation are larger than Computation 1, which 
consequently results in longer time for executing wait(a), wait(b) and m2 (i.e., wait(k2)) on actor x than m1 on actor y. The 
expression

cmain2 = k0 + max(a + b + k2,k1)

captures the worst case computational time of main2, which over-approximates c1 and c2. �
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A more complex scenario can be illustrated by having two actors x and y spawning tasks on a third actor z. In this case, 
the execution of tasks on x and y may delay the starting time of those spawned on z. As a consequence, it may lead to the 
postponement of the synchronizations on x and y. Determining the delays of synchronizations is crucial, as discussed in the 
following example.

Example 3.3. Consider the following method main3 that creates two actors y and z at line 2, then invokes m3 on y at line 4
and m1 on z at line 6. The actor z is given as a parameter in the invocation of m3 (line 4) and becomes the carrier of m2
(line 18).

1 main3(x,a,b) =
2 ν y; νz;
3 wait(k0);
4 ν f : m3(y, z);
5 wait(a);
6 νg: m1(z);
7 wait(b);
8 g�;
9 f �;

10 m1(x) =
11 wait(k1);
12

13 m2(x) =
14 wait(k2);
15

16 m3(x, y) =
17 wait(k3);
18 νh: m2(y);
19 h�;

The figure below shows four different computations of main3 that correspond to various values of a, b, k1, k2 and k3.

In Computation 1, the cost is the sum of the costs of the wait(·) statements in main3. This cost does not include the cost of 
any task executed on y and z as they are running in parallel with main3 without any delay.

Computation 2 combines the costs from actors x and z but not from y because a > k2 + k3. Observe that the time needed 
to start m1 is determined by the expression k0 + a; observe also that wait(k3) and wait(k2) execute sequentially although 
they run on different actors (y and z). Note that, wait(b) and wait(k1) are executed in parallel on x and z, and since k1 > b, 
the maximum cost is expressed as c2 = k0 + a + k1.

In Computation 3, we assume a < k3 such that the execution of m1 on z starts before the invocation of m2 on z. Thus, 
the execution of m2 is delayed until m1 has finished. The cost of Computation 3 is calculated by the expression c3 = k0 + a +
k1 + k2.

Computation 4 highlights a possible dependency among tasks executed on actors y and z. The cost expression for this 
case is c4 = k0 + k3 + k2 + k1, describing a sum to which all three actors contribute (k0 on x, k3 on y and k2 + k1 on z). 
The reason is that a > k3 where the statement wait(k3) on y (line 17) directly determines the starting time of m2 on z, and 
which in this case delays the execution of m1 on z as a consequence.

One remarkable difference between Computation 2 and Computation 4 is the time taken before starting m1 on actor z. In
Computation 2, the cost k0 +k3 is smaller than k0 +a, causing that m2 is executed before m1 on z. When there are two actors 
whose tasks could be dependent on each other, their costs must be considered as if the tasks are executed sequentially, that 
is, their costs are summed up. Thus, the relation between the tasks executed on y and on z must be considered in order to 
over-approximate all possible computations of main3. Considering all possible values of a and b, the cost expression that 
over-approximates the cost of executing main3 is

cmain3 = k0 + max(a,k2 + k3) + max(b,k1)

Observe that cmain3 precisely approximates the overall cost of Computation 2 and Computation 4. However, to safely approx-
imate the latest starting time of m1 in case a > k3, the subexpression max(a, k2 + k3) returns k2 + k3. Thus, we have that 



8 C. Laneve et al. / Journal of Logical and Algebraic Methods in Programming 105 (2019) 1–27
cmain3 > c3, indicating that this expression is over-approximating the cost of Computation 3. Similarly, Computation 1 is also 
over-approximated by c3 as it captures that the starting time of m1 is k0 + k2 + k3, when its starting time is k0 + a. �

This last example suggests that, when a method invocation has several actors as arguments, the pools of pending tasks of 
these actors can have implicit and possibly complex dependencies, i.e., each of them may in principle affect the task pools of 
the others by delaying the execution of the tasks therein. We say that these actors belong to the same synchronization set. It 
is crucial to note that this synchronization relation is transitive. For instance, if x and y belong to the same synchronization 
set at a program point and if a new synchronization relation between y and z is established by a subsequent invocation, 
then actors x, y and z belong to the same synchronization set as well.

The final example illustrates how the scheduling might also affect the computational time of the alt programs.

Example 3.4. The following example shows the method main4 that spawns three tasks in actor y in parallel – m1, m2 and 
m3 – that will be in the pool of pending tasks of y. In turn, m3 spawns m4 in a newly created actor z.

We have also highlighted two possible computations of main4. Computation 1 illustrates an execution where task m2 is 
scheduled before m3. Therefore, the execution of m4, spawned by m3, is executed when m2 is finished. This scheduling leads 
to the computational time c1 that adds the cost of all methods. Additionally, note that different scheduling orders in y
affect the execution of m4 in z. On the contrary, in Computation 2 the execution of m3 is scheduled before m2. In this case, 
after executing wait(k3) at line 16, m4 is spawned and its return is synchronized at line 18. Note that, as m2 is in the pool 
of pending tasks of y, it will be executed in parallel with m4. The computational time of Computation 2 will be smaller: 
c2 = k0 + k1 + k3 + max(k2, k4). For this program, the expression that over-approximates the cost of executing main4 needs 
to sum up the cost of all methods:

cmain4 = k0 + k1 + k2 + k3 + k4

Since our technique is sound (see Section 5 for details), i.e., it returns an over-approximation for every possible computa-
tional time, it takes into account every scheduling order when multiple tasks can be pending in the same pool. �
4. The analysis of alt programs

This section defines the translation of an alt program into a cost program, i.e., a set of cost equations m(u) = exp, 
where m is a (cost) function symbol and exp is an expression that may contain (cost) function applications of the form:

exp ::=k | u | exp + exp | m(e) | max(exp, exp)

In particular, cost expressions are additions of the following type of elements: natural numbers k, natural names u, m(e)

which refers to the cost of executing method m, but only considering the natural expressions in e; or max(exp, exp′), which 
returns the maximum between two cost expressions exp and exp′ .

Given an alt program P , the analysis iterates independently over each method definition m(x, y, u)= s in P and trans-
lates it into a cost equation of the form m(u) = exp, where m corresponds to the method name m and exp encodes a cost 
function which corresponds to an upper bound of the time executing m, with respect to the numerical parameters u. As 
hinted in our examples, the analysis performs this translation by studying the task pool of every actor involved in the 
method’s execution, identifying an upper bound for the ending time of each of its tasks, which in turn give raise to an 
upper bound to the computational time of the method itself.

In order to manage the complexity of studying task pools and the different scheduling possibilities as described in 
Section 3, our analysis uses two major structures, synchronization schema and accumulated costs. The synchronization schema
of a method gives the synchronization set of every actor involved in that method’s body. As described in Example 3.3, actors 
in the same synchronization set interact outside the scope of the analyzed method, which means that the ending time of 
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1 main(x,a,b) =
2 ν y; νz; νw;
3 wait(k0);
4 ν f : m1(x);
5 νg: m3(y, z);
6 wait(a);
7 νh: m4(w);
8 νi: m2(z);
9 i�;

10 wait(b);
11 h�;
12 f �; g�;

13 m1(z) =
14 wait(k1);
15

16 m2(z) =
17 wait(k2);
18

19 m3(y, z) =
20 wait(k3);
21 ν f : m4(z);
22 f �;
23

24 m4(z) =
25 wait(k4);

Fig. 2. Running example of a alt program.

a task in one actor’s task pool depends somehow on the task pools and its scheduling orders of other actors in the same 
synchronization set. The analysis over-approximates this implicit dependency by considering the pools of all these actors as 
if they were one unique pool. An accumulated costs is an abstraction of a task pool used to get a good upper bound for the 
ending time of a computation. The main difficulty in identifying such an upper bound is to determine the starting time of 
a computation, which depends on the state of the task pool itself and on the time at which the corresponding method call 
was performed.

4.1. Synchronization schema

A synchronization set, ranged over by A, B , · · · , is a set of actor names whose tasks have implicit dependencies, that is, 
the tasks of these actors may reciprocally affect the task pools of the other actors in the same set by means of method 
invocations and synchronizations. A synchronization schema, ranged over by S , S ′ , · · · , is a collection of pairwise disjoint 
synchronization sets. The synchronization schema of a method m is thus a partition of the actors used in that method into 
synchronization sets and is constructed as follows.

Definition 4.1 (Synchronization schema function). Let S be a synchronization schema and s be a statement. Let

sschem(S, s) =
⎧⎨
⎩

S ⊕ {y′, z} if s = ν f : m(y′, z, e)
sschem(sschem(S, s′), s′′) if s = s′;s′′
S otherwise

where

S ⊕ A =
⎧⎨
⎩

A if S = ∅
(S ′ ⊕ A) ∪ A′ if S = S ′ ∪ A′ and A ∩ A′ = ∅
S ′ ⊕ (A′ ∪ A) if S = S ′ ∪ A′ and A ∩ A′ �= ∅

Let be an alt method definition. The synchronization schema Sm , where m(x, y, u)= νz1; · · ·;νzk;s, is the set Sm =
sschem({{x, y}}, s). The term S(x) denotes the synchronization set, which contains x, in the synchronization schema S .

The function S ⊕ A merges a schema S with a synchronization set A. If none of the actors in A belongs to a set in 
S , the operation reduces to a simple set union. For example, let S={{x, y}, {z, w}}. Then S ⊕ {x, v} is equal to ({{x, y}} ⊕
{x, v}) ∪ {{z, w}}, which equals {{x, y, v}, {z, w}}. It is worth to observe that the same result follows by swapping {x, y} and 
{z, w} (because elements of S are disjoint). In fact {{z, w}} ⊕ ({x, y} ∪ {x, v}) = {{x, y, v}, {z, w}}.

The synchronization schema sschem(S, ν f : m(y, z)) = {{x, y, z, w}} indicates that all the actors are in the same syn-
chronization set. On the contrary, sschem(S, ν f : m(x, v)) = {{x, y, v}, {z, w}}, because actors x, v do not belong to {z, w}.

We also compute Smain , where main(x, a, b) = ν y;νz;νw;smain is the main method in Fig. 2. This schema is equal 
to {{x}, {y, z}, {w}}, that is the task pools of actors y and z may affect each other due to the invocation at line 8, whereas 
the task pools of x and w are independent from the rest. Observe that, as the body of m3 does not contain actor creation 
statements, its synchronization schema is a singleton set that containing only its parameters, e.g., Sm3 = {{y, z}}.

4.2. Accumulated costs

In order to define (an over-approximation of) the time advancements of tasks in a same pool – e.g. in a same synchro-
nization set – we use an extension of the syntax of exp, called accumulated cost and noted ε, which is defined as follows:
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ε ::= exp | ε · 〈m(e), exp〉 | ε ‖ exp .

The term exp defines the starting time of a task invoked in an actor that does not belong to the same synchronization 
set of the carrier. Let this carrier be x in the discussion below and consider an actor y that resides in a different syn-
chronization set than that of x. The term ε · 〈m(e), exp〉 represents the starting time of a method invoked on actor y. For 
example, when x invokes a method m on y using ν f : m(y, z, e), the accumulated cost of the synchronization set of y is 
ε · 〈m(e), 0〉, where ε is the cost up to that point. Time advancements in the task of the carrier x (e.g., with wait(e′)), which 
affect the starting time of subsequent method invocations on y, is expressed by adding e′ to exp; namely, ε · 〈m′(e), exp〉
becomes ε · 〈m′(e), exp + e′〉, which means that the starting time of the next method invocation on the synchronization 
set of y is after the time expressed by ε plus the maximum between m′(e) and exp + e′ . The term ε ‖ exp expresses the 
time advancement in the carrier x when a method running on an actor y in a different synchronization set is synchro-
nized. In this case the time advances by the maximum between the current time exp of x and the time of y, represented 
by ε.

Following the semantics described above, we can define the function [ [ε] ] that computes the time corresponding to ε, 
i.e., the (over-approximation of) starting time of the next task in the synchronization set whose cost is ε:

[[exp]] = exp [[ε · 〈m(e), exp〉]] = [[ε]] + max(m(e), exp)

[[ε ‖ exp]] = max([[ε]], exp)

Example 4.1. The following expressions εi indicate the accumulated costs in actor y for some interesting program points of 
method main1 in Example 2.2:

3: wait(k0); ε3 = 0
4: ν f : m1(y); ε4 = k0 · 〈m1(),0〉
5: wait(a); ε5 = k0 · 〈m1(),a〉
6: νg: m2(y); ε6 = k0 · 〈m1(),a〉 · 〈m2(),0〉
7: wait(b); ε7 = k0 · 〈m1(),a〉 · 〈m2(),b〉

Note that each task creation in y includes a new tuple in the accumulated cost: 〈m1(), 0〉 in ε4 and 〈m2(), 0〉 in ε6. Note 
also that time advancements local in the carrier, i.e., actor x in Example 2.2, update the last tuple in the accumulated cost 
with the corresponding expression: a in ε5 and b in ε7.

Next, consider the expression ε7 = k0 · 〈m1(), a〉 · 〈m2(), b〉. Because of the synchronization g� at line 8 of main1 we 
obtain the following cost expression:

[[ε7]] = k0 + max(m1(),a) + max(m2,b)

that over-approximates the worst possible time when g is synchronized. We observe that k0 is the computational time 
when m1 is invoked, max(m1(), a) expresses that m1 and wait(a) can be executed in parallel (analogously for max(m2(), b)) 
and k0 + max(m1(), a) corresponds to the worst possible starting time of m2. It is worth to notice that [ [ε7] ] returns the cost 
expression cmain1 computed in Example 3.1. �
4.3. The translation function

We have seen how the accumulated costs and their corresponding cost expressions can be computed for a given synchro-
nization set. Interestingly, each synchronization set has its own accumulated cost, thus, for our analysis it is fundamental to 
keep the accumulated costs separate in order to get precise results. In the following section we define a translate func-
tion that computes the cost of a method considering all possible synchronization sets and synchronizations performed on 
it.

The translation of an alt method m consists of two steps: first (i) the synchronization schema Sm is computed, following 
the technique described Section 4.1, then (ii) the body of method m is analyzed, by parsing each of its statements in order. 
The analysis (ii) records the accumulated costs of synchronization sets in translation environments, ranged over by �, �′ , 
· · · . Translation environments are maps of the form Sm(x) �→ ε, which relate the different synchronization sets to their 
corresponding accumulated costs. The auxiliary operators ‖ and + are used as follows:

(� ‖ exp)(S) = �(S) ‖ exp

(� + exp)(S) = ε · 〈m(e), exp’ + exp〉 ‖ (exp1 + exp) ‖ · · · ‖ (expn + exp)

with �(S) = ε · 〈m(e), exp′〉 ‖ exp1 ‖ · · · ‖ expn

Given a synchronization schema S , the translation function, written as translateS (I, �, x, l, t, s), takes the following six 
arguments:
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translateS (I,�, x, l, t,μ) =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) (I,� + e, l, t + e) when μ = wait(e)

(2) (I[ f �→ S(x)],�, l + m(e), t) when μ = ν f : m(y, z, e) and y ∈ S(x)

(3) (I[ f �→ S(y)],�[S(y) �→ ε · 〈m(e),0〉], l, t) when μ = ν f : m(y, z, e) and y /∈ S(x)

ε =
{

�(S(y)) if S(y) ∈ dom(�)

t otherwise

(4) (I \ F ,� + l,0, t + l) when μ = f � and x ∈ I( f )
where F = { f ′ | I( f ′) = S(x)}

(5) (I \ F , (� ‖ t′) \ I( f ),0, t′) when μ = f � and x /∈ I( f )
where F = { f ′ | I( f ′) = S(x) or I( f ′) = I( f )}
and t′ = max(t + l, [[�(I( f ))]])

(6) (I \ F ,� + l,0, t + l) when μ = f � and f /∈ dom(I)
where F = { f ′ | I( f ′) = S(x)}

Fig. 3. The translation of alt statements.

i. I is a map from future names to synchronization sets,
ii. � is a translation environment,

iii. x is the name of the carrier, i.e., the actor on which s is executing,
iv. l is a cost expression that over-approximates the cost of the methods invoked on actors belonging to the same synchro-

nization set where the carrier x resides and not yet synchronized,
v. t is a cost expression that over-approximates the current computational cost, which is the computational time accumu-

lated from the beginning of the method execution, and
vi. s is a sequence of statements, representing wait(e), ν f : m(e), or f � that must be translated.

and returns a tuple consisting of the four elements:

i. an updated map I ′ ,
ii. an updated translation environment �′ ,

iii. an updated the cost of methods running on actors in the same synchronization set as the carrier, and
iv. an expression of the updated current computational cost.

The function is defined on statements as follows

translateS(I,�, x, l, t,0) = (I,�, l, t)

translateS(I,�, x, l, t,μ;s) = translateS(I ′,�′, x, l′, t′, s)
where translateS(I,�, x, l, t,μ) = (I ′,�′, l′, t′)

where translateS (I, �, x, l, t, μ) is detailed in Fig. 3. Note that, the difficult case of the translation function is when the 
statement is a task synchronization f � , which is covered by cases (4), (5) and (6). In the following, we discuss the six cases 
of Fig. 3 in detail.

Case (1): When s is a wait(e) statement, the translate function adds the cost e to the current cost t , which is also 
reflected on the environment � by updating the accumulated cost of the method invocations on each synchronization set 
in �.

Cases (2) and (3): When s is a method invocation on actor y, there are two subcases, depending on whether y is in the 
same synchronization set of carrier x (Case (2)) or not (Case (3)). In Case (2), the cost of the invocation is added to l and 
the updated I binds the corresponding future f to S(x). In Case (3), we add the binding from f to S(y) to the map I and 
update the translation environment � by appending the cost of invoking m to the accumulated cost to which S(y) maps. 
Note that, method invocations only includes the natural expressions used for invoking m, that is, it includes m(e).

Case (4): This is the first sub-case of task synchronization which captures the situation where the synchronization is per-
formed on a method whose callee belongs to S(x). Since it is non-deterministic when the task being synchronized will 
actually be scheduled, we add the sum of the costs of all the tasks running on actors in S(x), which is stored in l, to the 
current time t (worst case) at this synchronization point. The translate function then resets l to 0, and removes from I
all the corresponding futures since the corresponding costs have been already considered.
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3 :
(
∅, ∅, 0, t3

)
[ t3 = k0 ] (1)

4 :
(
{ f �→ {x}}, ∅, m1, t4

)
[ t4 = t3 ] (2)

5 :
(
{ f �→ {x}, g �→ {y, z}}, {{y, z} �→ t4 · 〈m3,0〉}, m1, t5

)
[ t5 = t4 ] (3)

6 :
(
{ f �→ {x}, g �→ {y, z}}, {{y, z} �→ t4 · 〈m3,a〉}, m1, t6

)
[ t6 = t5 + a ] (1)

7 :
(
{ f �→ {x}, g �→ {y, z},h �→ {w}}, {{y, z} �→ t4 · 〈m3,a〉, {w} �→ t6 · 〈m4,0〉}, m1, t7

)
[ t7 = t6 ] (3)

8 :
(
{ f �→ {x}, g �→ {y, z},h �→ {w}, i �→ {y, z}}, {{y, z} �→ t4 · 〈m3,a〉 · 〈m2,0〉, {w} �→ t6 · 〈m4,0〉}, m1, t8

)
[ t8 = t7 ] (3)

9 :
(
{h �→ {w}}, {{w} �→ (t6 · 〈m4,0〉 ‖ t9)}, 0, t9

)
[ t9 = max

(
t8 + m1, t4 + max(m3,a) + max(m2,0)

) ] (5)

10 :
(
{h �→ {w}}, {{w} �→ (t6 · 〈m4,b〉 ‖ t9 + b)}, 0, t10

)
[ t10 = t9 + b ] (1)

11 :
(
∅, ∅, 0, t11

)
[ t11 = max

(
t10, t6 + max(m4,b), t9 + b

) ] (5)

12 :
(
∅, ∅, 0, t12

)
[ t12 = t11 ] (6)

Fig. 4. Application of the translate function to main of Fig. 2. Every line l has pattern l : (Ii , �i , li , ti) [ti ] (ci), where [ti ] is the calculation of ti and (ci ) 
is the translate function case applied.

Case (5): The second sub-case describes the synchronization that is performed on a task whose callee, say y, does not 
belong to S(x). As actors x and y reside in different synchronization sets, the invocation on y is executed in parallel with 
the carrier x. Thus, the overall cost is computed as the maximum between the total cost of all pending invocations on the 
actors in S(x) to which carrier x belongs, captured by the local cost l, and the cost of all invocations on actors in S(y), 
denoted by [ [�(S(y))] ]. Since at this point we have considered the worst scheduling, that is, we have already counted the 
cost of all methods spawned on the actors in S(y) and S(x) so far, we remove from the environment � all invocations on 
the actors in S(y), as well as all the futures associated to S(y) and S(x) from I .

Case (6): In this case, the future f does not belong to I , which implies that the cost of the invocation has been already 
computed. Nevertheless, it is possible that other methods have been invoked after this computation. Therefore, the actual 
termination of the invocation corresponding to f may happen after the completion of all the invocations. In order to take 
this into account, we need to add the cost of those tasks whose callee belongs to S(x), which has been accumulated in l, 
in a similar way as we have done in Case (4).

We observe that the resulting translation environment �n is always empty because every method invocation is always 
synchronized within the method body. For the same reason, l′n is always equal to 0. The following example is used to discuss 
in detail some relevant aspects of translate.

Example 4.2. Fig. 4 illustrates the application of translate function to main in Fig. 2. The leftmost column states the 
line of code i of main and we let Ii , �i , li , ti refer to the corresponding argument of the function at line i. The second 
column contains the output tuple of translate function, while the third specifies the calculation of the current cost ti . 
The rightmost column indicates the case (ci) of translate function that we have applied. For the sake of clarity, as 
method calls do not contain numeric parameters, we use m for the cost expression m(_). Note that translate takes the 
synchronization schema Smain = {{x}, {y, z}, {w}} that has been computed in Section 4.1 as input.

At lines 3, 6 and 10, the cost expression ti increases by summing the previous cost expression and the cost of 
wait(·)-statements at each of these lines (case (1)). A local invocation (case (2)) to m1 is added to l4 at line 4 and its 
corresponding future variable is added to I4 = { f �→ {x}}. Lines 5, 7 and 8 contain method invocations on actors not belong-
ing to the carrier’s synchronization set, which correspond to case (3) of the translate function. For instance, at line 5
we have the first method invocation on an actor in the synchronization set {y, z}. We then add the bindings g �→ {y, z}
to I5 and {y, z} �→ t4 · 〈m3, 0〉 to �5, where t4 corresponds to the accumulated costs of methods invoked on the carrier’s 
synchronization set so far, and the time distance to the subsequent method invocation on the same synchronization is 0. 
Observe that it is possible to compute the cost of pending invocations (on the actors of a synchronization set) by combining 
information in I and �. In particular, I returns the synchronization set of the carrier of a future, � returns the cost of the 
pending invocations on actors of that set.

The invocation of m4 on actor w works analogously, where the associated synchronization set is {w}. As the call to m2 at 
line 8 is invoked on z and S(y) = {y, z}, we update �8 by appending the pair 〈m2, 0〉 to �({y, z}), obtaining �8({y, z}) =
t4 · 〈m3, a〉 · 〈m2, 0〉. This accumulated cost expresses that the actors in {y, z} have (i) two pending calls to be synchronized, 
namely m3 and m2; (ii) the time distance between these calls is a; and (iii) the first invocation on this synchronization 
set {y, z} is performed at time t4. Observe that the time distance a between m3 and m2 is set at line 6 by applying case (1) 
of translate function.
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There are four synchronizations in this example, namely, i� at line 9, h� at line 11, and f � , g� at line 12. Since 
�8({y, z}) = t4 · 〈m3, a〉 · 〈m2, 0〉, the synchronization i� may have to wait for the termination of the calls to both m2 and m3. 
The function translate applies case (5) at line 9, which gives t9 as the maximum between (i) the cost local to the 
carrier, that is, t8 + m1, where m1 corresponds to the cost expression of m1 that is invoked on the carrier’s synchronization 
set, which is pending to be synchronized and (ii) the expression t4 + max(m3, a) + max(m2, 0), which consists of three 
parts: (a) t4 that is the starting time of the first call to an actor in I(g) = {y, z}, (b) the maximum between the cost of m3
and the distance a between the invocations of m3 and m2, and (c) the time needed to compute m2. Observe that {y, z} is 
removed from �9, as the cost of the invocations on these two actors have already been calculated. Similarly, I(i) and I(g)

are removed from I9. Consequently, the synchronizations f � and g� at line 12 do not affect the cost expression. Observe 
also that t9 is kept in parallel with the synchronization set {w} in the translation environment, which allow us to calculate 
the correct costs of synchronizations in subsequent steps.

The application of case (1) at line 10 increases the cost local to the carrier to t10 = t9 +b, and updates �10 by adding b to 
the time distance in the pair 〈m4, b〉 and to the parallel cost t9. The synchronization h� at line 11 amounts to the maximal 
value of three elements: (a) t10 which is the local cost before the synchronization; (b) the cost expression t6 + max(m4, b), 
which is the sum of the first invocation on an actor in {w} and the cost of method m4; and (c) the cost t9 + b which is 
parallel to the method m4. Finally, the application of function translate at line 12 does not produce any effect. Thus, the 
cost of the main method in Fig. 2, tmain is the cost expressed by t12, that is:

tmain = max(k0 + a + max(b,k4),max(k0 + max(a,k3 + k4) + k2,a + k0 + k1) + b) �
5. Properties of the translation

The correctness of our system relies on the property that the computational time never increases during transitions. 
Therefore, the cost of the program in the initial configuration over-approximates the actual cost of every computation.

Cost programs The cost of a program is computed by solving a number of equations. Let a cost program be an equation 
system of the form

m1(u1) = exp1
...

mh(uh) = exph
main(u) = exp

where mi are function names, ui natural formal parameters, and expi and exp are cost expressions. The solution of the above 
cost program is the closed-form upper bound for the equation main(u), which is a function expressed in terms of its input 
parameters.

Definition 5.1 (Cost of P). Let

P =
(
m1(x1, y1, u1)= νz1;s1, · · · ,mh(xh, xh, uh)= νzh;sh,main(x, u)= νz;s

)
be an alt program. For every 1 ≤ i ≤ h, let

1. Smi = sschem({{xi, yi}}, si),
2. mi(ui) = ti , where translateSmi

(∅, ∅, xi, 0, 0, si) = (Ii, �i, li, ti),
3. S = sschem({∅}, s) and translateS (∅, ∅, x, 0, 0, s) = (I, �, lmain, tmain).

Let also eq(P) be the cost program

(m1(u1) = t1, · · · ,mh(uh) = th,main(u) = tmain)

A cost solution of eq(P), named U(P), is the closed-form solution of the equation main(u) in eq(P).

For each method we produce cost equations which matches the cost of the method to the cost of its last statement, 
mh(uh) = th . Analogously, we produce one extra equation for the cost of the main method main(u) and its close-form 
solution over-approximates the computational time of an alt program.

Main result The correctness of our analysis follows by the statement below.

Theorem 5.1 (Correctness). Let P be an alt program, whose initial configuration is cn, and U(P) be the closed-form solution of 
eq(P). If cn ⇒∗ cn′ , then time(cn′) ≤ U(P).
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(1) eq(m_pp(u),e,[m_pp-1(u))]),[])
(2), (3) eq(m_pp(u),0,[m_pp-1(u))]),[])
(4), (6) eq(m_pp(u),numexp(l),[calls(l),m_pp-1(u)]),[])

(5) eq(m_pp(u),0,[maxeq(pp, t + l, [[�(I( f ))]])]),[])

Fig. 5. PUBS cost equations production.

The proof of Theorem 5.1 is presented in the Appendix. It relies on (i) the extension of the function translate to run-
time configurations, on (ii) defining the cost of a computation cn ⇒∗ cn′ , noted time(cn ⇒∗ cn′) to be the sum of the labels 
of transitions, and on (iii) verifying that if U(P) is a solution of translate(cn) and cn ⇒∗ cn′ then U(P) − time(cn ⇒∗ cn′)
is a solution of translate(cn′).

As regards the extension in (i), we need to enhance the notion of synchronization set in order to refer to the current 
state of the objects. In this way, it is possible to define the cost equations of futures that have been already created (the 
corresponding task is either enqueued in a task pool, or running, or terminated). Overall, this enhancement requires the 
demonstration of a number of properties (see Lemma A.3, A.4, and A.5). In particular, Lemma A.5 shows that synchronization 
sets are stable over time. Namely, two different synchronization sets will never get merged during the execution. This is 
clearly very important as objects of two different synchronization sets are considered to execute in parallel in our analysis, 
while objects within the same synchronization set are considered to execute sequentially.

As regards (iii), we reason by induction on the length of cn ⇒∗ cn′ and we are reduced to two basic cases, according to 
the type of the last transition in cn ⇒∗ cn′:

1. either cn′′ → cn′; assuming that U is a solution of translate(cn′′), then it is also a solution of translate(cn′), see 
Lemma A.15;

2. or cn′′ t→ cn′; assuming that U is a solution of translate(cn′′), then U − t is also a solution of translate(cn′), see 
Lemma A.14.

The proof is complex because we have to deal with a lot of technical details, such as managing the synchronous sets at 
runtime and extracting the time difference in the cost equations when cn′′ t→ cn′ (which is not easy when costs are stored 
in �).

It is important to observe that Theorem 5.1 is demonstrated using the (theoretical) solution of cost equations in [2]. This 
allows us to circumvent possible errors in implementations of the theory, such as CoFloCo [8] or PUBS [2]. As a byproduct 
of Theorem 5.1, we obtain the correctness of our technique, modulo the correctness of the solver.

6. The prototype

The analysis technique proposed in this paper has been prototyped using [1]. In this section, we are going to discuss 
a number of technical details about converting cost equations in Section 4 to an adequate format for PUBS [2], which is 
an equation solver. We also present a preliminary evaluation of our prototype by discussing a number of examples and 
compare our analysis with the parallel cost analysis in [4].

6.1. The conversion of cost equations

The translate function returns a set of equations that need to be adapted before inputting them in PUBS. In particular, 
the equations used by this tool have the form eq(name,cost,calls,size), where name is the equation name, cost
the value produced by this equation, calls a list of equations called from name and size the size relations needed to 
compute the closed form of the upper bound (see [2] for details). The reason why an adaptation is needed is that in one 
equation, PUBS add the cost of the expression cost plus the cost of all calls in calls, thus, using only one equation we 
cannot express the cost of max(m1, m2), because the cost of methods m1 and m2 will be summed if we include m1 and 
m2 in calls. A maximum can be derived by generating two different equations with the same name, so that, as PUBS
computes the worst cost, it applies the maximum between the two equations.

Let us explain how equations are generated by using the recursive execution of translate. Observe that, as it is 
detailed in Section 4.3, function translate is applied recursively to all statements in a method. Note also that the cost 
of each program can be expressed with respect to the cost of the previous program point with expressions like t + e, 
where t corresponds to the time computed for the previous program point. This can be seen in Example 4.2 where the 
cost produced by the application of translate to each statement can be expressed in terms of the cost produced by the 
previous executions with expressions like t6 = t5 + a (see the right of Fig. 4). Then, for each program point, by means of the 
application of translate, we produce one cost equation capturing how the time advances, that is, how t is modified in 
the different cases of Fig. 1.

Fig. 5 illustrates how the execution translateS (I, �, x, l, t, pp:μ), where pp corresponds to the program point of 
instruction μ, produces its corresponding equation for the different cases of Fig. 3 applied to method m. We use m_pp
to refer to the new equation produced at program point i of method m, which captures the cost at this point, that is ti
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eq(main(A,B),0,[main_12(A,B)],[]).

eq(main_2(A,B),0,[],[]).
eq(main_3(A,B),c(k0),[main_2(A,B)],[]).
eq(main_4(A,B),0,[main_3(A,B)],[]).
eq(main_5(A,B),0,[main_4(A,B)],[]).
eq(main_6(A,B),nat(A),[main_5(A,B)],[]).
eq(main_7(A,B),0,[main_6(A,B)],[]).
eq(main_8(A,B),0,[main_7(A,B)],[]).

eq(main_9(A,B),0,[main_9_max(A,B)],[]).
eq(main_9_max(A,B),0,[main_8(A,B),m1(A)],[]).
eq(main_9_max(A,B),0,[main_4(A,B),main_9_1_max(A,B), main_9_2_max(A,B)],[]).

eq(main_9_1_max(A,B),0,[m3(A)],[]).
eq(main_9_1_max(A,B),nat(A),[],[]).

eq(main_9_2_max(A,B),0,[m2(A)],[]).
eq(main_9_2_max(A,B),0,[],[]).

eq(main_10(A,B),nat(B),[main_9(A,B)],[]).

eq(main_11(A,B),0,[main_11_max(A,B)],[]).
eq(main_11_max(A,B),0,[main_10(A,B)],[]).
eq(main_11_max(A,B),0,[main_6(A,B),main_11_1_max(A,B)],[]).
eq(main_11_max(A,B),nat(B),[main_9(A,B)],[]).

eq(main_11_1_max(A,B),0,[m4(A)],[]).
eq(main_11_1_max(A,B),nat(B),[],[]).

eq(main_12(A,B),0,[main_11(A,B)],[]).

eq(m1(A),c(k1),[],[]).
eq(m2(A),c(k2),[],[]).
eq(m3(A),c(k3),[m4(A)],[]).
eq(m4(A),c(k4),[],[]).

Fig. 6. Equations from the translate function Fig. 4.

in Fig. 4. We also use m_pp-1 for the equation of the preceding program point. For case (1) the equation adds the 
cost expression e with the cost of the previous program point m_pp-1. Cases (2) and (3) only adds the cost of the 
previous program point. Cases (4) and (6) adds the cost of l, which might contain natural expressions, like constants or 
natural names, or can contain calls to other methods or to previous program point equations. We define two functions to 
handle these two cases: numexp(e), which returns the addition of the natural expressions in e; and calls(e), which returns 
a sequence of all non-natural expressions in e. Thus, numexp(l) are added to the cost expression of the equation, and calls 
to other equations, captured by calls(l), are added to the calls of the equation, including also the cost of the previous 
program point m_pp-1(u). The following example illustrates the production of the equations according to the application 
of translate function shown in Fig. 4.

Example 6.1. Fig. 6 outputs the equations corresponding to translate function shown in Fig. 4. The solver uses nat(e) to 
refer to max(e, 0) and to avoid negative input values (see equations main_6 and main_10), and c(k) for constant values 
(see equations main_3, m1, m2, m3 and m4). Note that the cost expressions are composed step by step by referencing 
the previous cost equation in the calls of a cost equation, as it is shown in all cost equations. New cost is added according 
to case (1) e.g., main_3, which sums the cost of main_2 and c(k0), or main_6, which sums the cost of main_5 and
nat(A). For instance, expressions like t6 = t5 + a are captured by the equation

eq(main_6(A,B),nat(A),[main_5(A,B)],[]) . �
The computation of the accumulated costs in case (5), which include max expressions, requires a specific treat-

ment. To deal with expressions of the form max(exp1, . . . , expn), we produce n equations of the forms maxeq(u) =
exp1; . . . ; maxeq(u) = expn . max expressions are processed by the function maxeq(id, exp1, . . . , expn) which generates the 
following n equations for the identifier id:
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Program ta ts #eq Upper bound
NWorkers (t1,t2,lt) 1 194 119 max(t2,lt,t1)
NWorkersMultiWorks (t1,t2,t3,t4) 5 591 231 t1+t2+t3+t4
NWorkersPartSync (t1,t2,lt) 1 73 57 lt+max(lt+lt,t2,lt+max(t1,lt))
NWorkersDelayed (t1,t2,t3,t4,lt) 1 237 87 t1+max(lt,t2)+t3+t4
ProdCons (pt,ct) 1 132 118 max(ct+max(pt+pt,ct+pt))
MapReduce (mt1,mt2,lt1,rt1,rt2,lt2) 2 3665 1330 lt1+max(mt2,mt1)+lt2+max(rt1,rt2)
MapRedSubWorkers(mt,rt,sm1,sm2,sr1,sr2) 3 11059 1378 mt+max(sm1,sm2)+rt+max(sr1,sr2)

Fig. 7. Experimental results (times in ms).

eq(m_id_max(u),natexp(exp1),[calls(exp1),maxexp(exp1)],[])
.
.
.

eq(m_id_max(u),natexp(expn),[calls(expn),maxexp(expn)],[])

As before, in the equations we distinguish the cost corresponding to natural values and the cost associated to calls. In 
addition, we use maxexp(exp) to separate the cost associated to other max expressions that could be found in the accu-
mulated cost. For each max expression, we use to maxeq function with a fresh identifier for processing other possible max
expressions found within the expressions and apply it recursively.

Example 6.2. For instance, let us produce the equations for the cost expression

t9 = max(t8 + m1, t4 + max(m3,a) + max(m2,0))

at line 9 in Fig. 4 is captured by the two main_9_max equations in Fig. 6, which respectively includes the cost main_8 +
m1, and the cost of main_4 + main_9_1_max + main_9_2_max. Analogously, main_9_1_max and main_9_2_max
corresponds to the maximums max(m3, a) and max(m2, 0), respectively. Similarly, three equations main_11_max are 
needed to compute max expression of t11 at line 11 in Fig. 4. By solving the equations shown in Fig. 6 with PUBS, we 
get the expression:

max([nat(A) + c(k0) + max([nat(B), c(k4)]),
nat(B) + max([c(k0) + max([nat(A), c(k3) + c(k4)]) + c(k2),

nat(A) + c(k0) + c(k1)])])
which reflects the cost expression tmain computed in Fig. 4 and captures the overall cost of main in Example 4.2. �

Another point to remark is that PUBS is able to detect non-terminating programs caused by direct or indirect recursions, 
indicating the solution of the equations is unbounded.

6.2. Experimental evaluation

The prototype can be experimented online.1 To deliver preliminary assessments, we have written our programs in a 
language that is an extension of alt – the ABS language [13], where only the features presents in alt are used. The 
experiments, whose source codes are available in the tool web site, model a number of typical concurrent and distributed 
scenarios:

NWorkers(t1,t2,lt) models the standard fork-join pattern where multiple workers execute in parallel on different actors parts 
of a larger task, represented by wait(t1) and wait(t2), respectively, and the carrier spends lt time units in parallel 
to the workers.

NWorkersMultiWorks(t1,t2,t3,t4) models a similar scenario but spawning four tasks per worker, with durations t1, t2, t3, t4
and synchronizes all of them at the end of the main method.

NWorkersPartSync(t1,t2,lt) models a fork-join pattern with two workers, but the launcher spends lt time units, between the 
synchronizations;

NWorkersDelayed(t1,t2,t3,t4,lt) also models a fork-join pattern with two workers that execute four tasks with durations t1, t2,
t3, t4. In this model, the launcher spends lt time units between spawning the second and the third task.

ProdCons(pt,ct) models a producer-consumer scenario where the production and the consumption might occur in parallel, 
taking pt and ct time units for producing and consuming, respectively.

1 http://costa .ls .fi .upm .es /timeanalysis.

http://costa.ls.fi.upm.es/timeanalysis
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MapReduce(mt1,mt2,lt1,rt1,rt2,lt2) models the map-reduce algorithm where the map tasks, which take mt1 or mt2, are 
spawned on multiple workers in parallel. When all map tasks are finished, after lt1 time units for modeling 
the map result processing, the reduce tasks, which take rt1 or rt2, are spawned on the workers. Then after the 
synchronizations, the main methods spends lt2 time units to process the results.

MapReduceSubWorkers(mt,rt,sm1,sm2,sr1,sr2) models the map-reduce algorithm where the workers share the task, taking 
times mt for map and rt for reduce, and launch subtasks with times sm1, sm2 for map and sr1, sr2 for reduce to 
other sub-workers.

We have executed the above codes on an Intel Core i7-7500U CPU @ 2.70 GHz with 64 Gb of RAM, running Debian 9.3. 
Table 7 summarizes the upper bounds obtained by means of our prototype. For the sake of clarity, we have simplified the 
expressions that are redundant, and we have replaced in the table nat(e) by e. For instance, the expression returned for
NWorkers, namely max([nat(t2),nat(lt),nat(t1),nat(lt)]), is written as max([t2,lt,t1]).

The results of Table 7 show that the computational time of our analysis is quite short: less than 5 ms for all the programs. 
The number of equations might be high for big programs, as it can be seen in MapReduce or in MapReduceSubWorkers. 
Even so, the time required to solve them is higher but is still rather short. This number of equations can be reduced by 
producing only one equation for those sequence of instructions that do not modify the time, reducing the time taken in 
solving them.

Regarding to the precision of our analysis, the results highlight that we do not lose precision in fork-join patterns. In fact, 
in this case, we properly identify those parts that can execute in parallel and use the max to capture the parallelism. For 
instance, in NWorkers and NWorkersMultiWorks, our tool identifies the parts running in parallel and calculates the cost as 
the maximum cost needed among the workers, independent from the number of workers executing simultaneously (in this 
programs we have four different workers). Similarly, as highlighted by the programs MapReduce and MapReduceSubWorkers, 
our tool identifies that map and reduce tasks might execute in parallel before their synchronization. In this case, their costs 
are added only once to the total cost inside the two maximum expressions max(mt2,mt1) and max(rt2,rt1).

6.3. Tools comparison

In the following, we compare the results obtained by our approach and by the analysis described in [4].
The analysis of [4] uses a language – the ABS language [13] – that is actually a superset of alt. In particular, in order 

to solve the syntactic mismatches, we had to modify the wait(e)-statement into loops with e iterations so as to model the 
time progress. Additionally, we ignore the constant times output by [4] as they are not considered by our time analysis.

The table illustrates the results obtained by applying our time analysis and the analysis of [4] to the alt programs in 
Examples 3.1, 3.2 and 3.3.

Prog. Time Analysis Analysis of [4]
main1 k0+max(a,k1)+max(b,k2) max(k0+a+b,k0+k1+k2+a)
main2 k0+max(a+b+k2,k1) k0+max(k1+k2,a+b+k2)
main3 k0+max(a,k2+k3)+max(b,k1) k0+max(k0+a+b,k0+k1+k2+k3,k0+a+k1+k2)

To explain this point, we need to recall the technique of [4], which uses block-level cost-centers to compute the cost 
expression of the sequential parts of the program. A distributed flow graph of the program is then generated to express tasks 
that might be executed in parallel and their flow relations. The distributed flow graph is used to find all the paths that 
start from the initial node and end in any possible final node. The cost expressions of every path are computed accordingly 
and the overall cost, called the parallel cost of the program, is simply the maximum of the costs. The critical point of the 
technique in [4] is that, in order to take into account every possible scheduler’s choice, the distributed flow graph collects 
edges that connect the beginning and the end of those methods that might be simultaneously in the pool of pending 
tasks. These edges introduce cycles in the graph; hence, the collection also includes those paths where parallel methods are 
sequentialized. This results in a loss of precision.

The reader may notice that the results obtained in some scenarios by our time analysis are more precise than [4] for 
the studied programs. For instance, this precision loss in [4] is shown in main1, where the cost of a and k1 are not 
considered to happen in parallel. Similarly, in main2, where the costs k1 and k2 are summed; or in main3, where k2
should not be added to the expression k0+a+k1+k2. As the values of the upper bound depend on the input values, cost 
expressions cannot be directly compared. In order to compare the results obtained by both tools, we evaluate the upper 
bound for all possible combinations of the input arguments, including constant values, ranging each of them between 
[1-100] and compare the results obtained with both tools. The following table summarizes the results obtained by showing 
the percentage of evaluations where our approach is more precise (%w ), less precise (%l) or equally precise (%e) with respect 
to the technique in [4]:



18 C. Laneve et al. / Journal of Logical and Algebraic Methods in Programming 105 (2019) 1–27
Program (%w ) (%l) (%e)
main1 75.00% 12.09% 12.91%
main2 16.17% 0.00% 83.83%
main3 34.62% 34.62% 30.74%

The results of the evaluations show that our technique obtains better results than [4] for programs for main1 and 
main2, and for main3 we get better results for 34% of the evaluations and worse for the same number of evaluations.

Regarding the benchmarks of Fig. 7, the analysis of [4] gives results similar to our tool, except for NWorkersDelayed. In 
fact, this program is the only one spends some time between two invocations on the same actor. For this program, the upper 
bound expression obtained by [4] is lt+t1+t2+t3+t4, which sequentialize the cost of all the methods. On the contrary, 
our tool is able to detect that lt and t2 are costs of two parallel methods. Thus, our analysis does not sequentialized these 
two costs, but returns their maximal value, which in turn produces the expression t1+max(lt,t2)+t3+t4.

7. Related work

Static time analysis techniques for concurrent programs follow two main approaches: those based on type-and-effect 
systems and those based on abstract interpretation.

Type-and-effect systems [9] (i) collect constraints on type and resource variables and (ii) solve these constraints by 
means of an off-the-shelf solver [2,8]. Recent work has applied type-based amortized analysis for deriving upper bounds of 
parallel first-order functional programs [12]. This work differs from our approach in the concurrency model, as they do not 
handle references to actors in the programs and there is no distinction between blocking and non-blocking synchronization.

In this paper we do not perform constraint collection on type and resources. This is because alt is intended to be a 
behavioral type language; therefore, we directly use alt to define a (compositional) analysis that returns cost equations. 
The main difference with respect to the analysis of [9] is that now we are able to compute the cost of functions that contain 
invocations on arguments, namely on actors that are already alive before the function invocations. An approach similar to 
our one has been proposed in [15] for verifying safety properties of sequential languages.

Abstract interpretation techniques addressing domains carrying quantitative information, such as resource consumption, 
have been proposed in the literature – see references in [16]. Consequently, several well-developed automatic solvers for 
cost analysis already exist. These solvers either use finite domains or use expedients (widening or narrowing functions) to 
guarantee the termination of the fix-point generation. For this reason, solvers often return inaccurate answers when fed with 
systems that are finite but not statically bounded. Among the others, [4] defines a technique based on abstract interpretation 
that targets a language with a similar concurrency model as presented in this paper. We have discussed the technique of [4]
in Section 6, where we have also analyzed the differences with our technique. We recall that our technique returns more 
precise costs for programs that spawn several invocations without synchronization on the same synchronization set. In 
particular, [4] manifests a sensible loss of precision when cycles appear in the distributed flow graph, as all nodes in the 
cycle will be part of the path that leads to the maximum upper bound. We also observe that, since the technique in [4] is 
not compositional, it does not require any management of synchronization sets, which entangles a lot our technique.

8. Conclusions

This paper presents a technique for computing the time of concurrent programs. We have defined alt, an actor calculus 
that is intended to be a compilation target for concurrent languages featuring actor creation, task invocation and synchro-
nization. In particular, alt features an explicit cost annotation that defines the number of machine cycles required before 
executing the continuation, which abstracts away the actual computation activities of the program. The computational time 
is then measured by introducing the notion of (strong) t-stability (cf. Definition 2.1), which represents the ticking of time 
and expresses that no control activity is possible up to t time units. In order to relate actors that might potentially delay 
executions of other actors, we introduce the notion of synchronization sets. Then, we define a translate function that 
uses synchronization sets to compute a cost equation function for each method definition. We have also proven that our 
approach is sound with respect to the actual computational time (cf. Theorem 5.1). The analysis has been prototyped and 
experimented, which shows that our approach produces accurate over-approximation.

Overall, our technique allows one to estimate the computational time of the source program by computing the cost 
of the target actor program. The aim is to use our technique in a cloud computing setting because alt terms might be 
considered as abstract descriptions of services and the estimation of the computational time may be used for enforcing the 
compliance with the service level agreement contract. In this context, the cost expressions in wait(·)-statement, might be 
defined by means of a worst-case execution time analysis [5].

Future lines of work must consider the possibility of obtaining more precise information about synchronization sets of 
actors. In this paper, these sets are computed for method bodies by simply accumulating information, despite of the fact 
that two actors, in a stage of the computation may affect each other, while in another stage they are independent. In fact, 
a more appropriate notion would have been that of sequence of synchronization sets. While such improvement will end up in 
more precise results of the cost analysis, it is not clear how much more complex the theoretical developments will become. 
Perhaps a manageable extension will be a notion in between the synchronization sets and the sequences of such sets.
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In this paper, the cost of a method includes that of the asynchronous invocations in its body because every invocation 
is synchronized. This constraint does not permit to trigger methods such as drivers, daemons, etc. without waiting for their 
termination. In order to take care of costs of unsynchronized methods, one should use continuations and compose costs 
according to the synchronization set they correspond. We will address this extension in a future work.

Appendix A

We introduce this appendix with some helpful notation related to the cost equation of an alt program, and with few 
algebraic notation on graphs and equivalence relations that will be helpful to define synchronization schema for runtime 
configurations.

Definition A.1. In this appendix, to simplify future notations, we extend the notion of cost expression with future names, to 
be able to refer to the cost of currently running processes. We also extend the max operator to take a variable number of 
parameters (with the standard semantics), and thus have the following syntax definition:

exp ::=k | u | f | exp + exp | m(e) | max(exp)

Additionally, we extend the syntax of accumulated costs as follows, to allow to count the cost of running process as well as 
functions yet to be executed:

ε ::= exp | ε · 〈m(e), exp〉 | ε · 〈 f , exp〉 | ε ‖ exp .

The parameters S , I , �, x, l, t and s of the translate function are consistent iff: S is an equivalence relation on a set 
including all free actor names in s and x; all free future names in s are in dom(I); all the synchronization sets in im(I) are 
in S;2 and all the synchronization sets in im(I), minus S(x), are in dom(�).

Suppose given consistent parameters S , I , �, x, l, t and s. We write TS (I, �, x, l, t, s) the cost of the translation of s:

translateS(I,�, x, l, t, s) = (I ′,�′, l′, t′) ⇔ TS(I,�, x, l, t, s) = t′

Definition A.2. Suppose given any two cost expressions exp1 and exp2. We write exp1 ≤ exp2 iff for all substitution � with 
fv(exp1) ∪ fv(exp2) ⊆ dom(�) and im(�) ⊆ [0..∞], we have �(exp1) ≤ �(exp2).

The following definition is a small adaptation of Definition 5.1 where the cost of the main statement of the program, 
instead of being by itself, is mapped to a name fstart . That way, a cost program becomes a simple set of equations, that is 
easier to manipulate in the proofs (see Lemma A.13).

Definition A.3. Suppose given a set of functions FD = m1(x1)= s1, · · · , mn(xn)= sn . The cost program eq of an alt program 
P = (FD, smain) is defined as follows:

eq(P)
def= [ fstart �→ Tsschem({ {start} },smain)(∅,∅, start,0,0, smain)]

∪
⋃

i

[mi(xi) �→ translate(mi(xi)= si)]

A cost solution � of an alt program P is a solution for the equation eq(P).

Finally, the following definition introduces some notations on graphs and relations. They will be useful in the next 
section, where we define the notion of synchronization schema on runtime configurations.

Definition A.4. Given a set V and a relation R on V , we write Req(V ) the transitive, reflexive and symmetric closure of R
in V . Note that we will write Req when the set V is clear from the context. Given a set V and an equivalence relation R
on V , we write R̃ the partition of V raised by R . Given a graph G = (V , E) and an equivalence relation R on V , we write 
G/

*
R the graph G ′ = (V ′, E ′) such that:

V ′ def= R̃ E ′ def= {(A, A′) | A �= A′ ∈ R,∃x ∈ A, y ∈ A′, (x, y) ∈ E}
In the rest of the appendix, we write: parents(G, x) for the set of the parent nodes of x in G , i.e., parents(G, x) def=

{y | (y, x) ∈ E}; paths(G) for the set of non-empty paths p in the directed graph G; start(p) for the start node of the path p; 
end(p) for the end node of the path p; and nodes(p) for the set of nodes traversed by the path p.

2 We note im(I) the image of I , i.e., im(I) = {I( f ) | f ∈ dom(I)}.
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A.1. Runtime analysis

In this section, we extend the translation function of Fig. 3 to the runtime terms of alt. This extension maps all tasks 
in the runtime to a cost equation encoding an upper bound of its finishing time. In order to do so, we need to define the 
different parameters of the translate function. First of all, let us introduce the necessary notations:

Definition A.5. Suppose given a runtime configuration cn. We write x ∈ cn iff there exists p, q and cn′ such that 
cn = act(x, p, q) cn′ . If cn = act(x, p, q) cn′ , we write cn(x) for the configuration act(x, p, q). If cn = act(x, p, q) cn′ , we write 
(x : f ) ∈ cn iff there exists s; f ∈ p q or if cn′ = invoc(x, f , m, v) cn′′; we write f → f ′ ∈ cn iff there exists s; f ∈ p q
and f ′� is a statement in s; and we write f → x′ ∈ cn iff there exists s; f ∈ p q such that x′ is free in s or if there 
exists f ′ such that f → f ′ ∈ cn and (x′ : f ′) ∈ cn. Finally, we write roots(cn) for the set of root futures of cn, i.e., 
roots(cn) = { f | � f ′, f ′ → f ∈ cn}; and A(cn) for a set of actor names A, which extracts from cn all actors named in A, 
with their futures fut( f , val) and invocation messages invoc(x, f , m, v).

Synchronization schema The first parameter, the synchronization schema, has a central role in the cost computation, as it 
captures the actors that may reciprocally affect the queues of each other by means of function invocations and synchroniza-
tions. Without such information, the cost computation cannot capture all the tasks that could occur in an actor’s process 
queue, and thus would be erroneous. At static time, such schemas are computed using the parameters of method calls. 
However, at runtime, this information is missing as running code does not refer back to their originating method and pa-
rameters. The way we can recreate information captured by a synchronization schema at runtime is to follow the point-to 
relation between objects. We recall the point-to relation between object in the following definition:

Definition A.6. The point-to relation of a runtime configuration cn, noted point-to(cn), is a directed graph (V , E) where 
V

def= {x, f | (x : f ) ∈ cn}; E
def= {(x, f ) | (x : f ) ∈ cn} ∪ {( f , x) | f → x ∈ cn}.

With this, we can construct the synchronization schema of a runtime configuration. Following Definition 4.1, synchro-
nization sets actually capture a notion slightly more subtle than simply affecting each other’s queue. Firstly, synchronization 
sets do not include the obvious parent-son object relation, as this would be a too restrictive approximation that would 
consider any concurrent computation as put in sequence. Secondly, synchronization sets put in relation not only objects 
that may influence each other, but also objects that refer to influencing objects: the synchronization set somehow consider 
the transitive closure of the point-to relation. Finally, we also need to include in the synchronization sets the dependencies 
that might be created by future method calls. These considerations lead to the following definition of the synchronization 
sets for runtime configuration:

Definition A.7. Give a runtime configuration cn and a graph G = (V , E) where the vertexes are sets of object and futures 
names in cn, we define the relation I on V as follows:

v I v ′ ⇔ x ∈ v, f ∈ v ′, (x : f ) ∈ cn

This relation I is used to identify an object with its processes in the point-to relation.
Given a graph G = (V , E), we define the relations P and L on V as follows:

x P y ⇔ {y} � parents(G, x)

x L y ⇔ ∃p ∈ paths(G), start(p) = end(p) ∧ {x, y} ∈ nodes(p)

The relation P corresponds to the fact that an object x with more than one parent y must be in the same synchronization
set; the relation L corresponds to the fact that objects in a dependency loop are in the same synchronization set.

The synchronization graph of a runtime configuration cn, written Gcn is defined as follows:

Gcn
def= ({flat(S) | S ∈ V }, {(flat(S),flat(S ′)) | (S, S ′) ∈ E})

where

{
(V , E) = point-to(cn)/

*
P eq/

*
Ieq/

*
Leq

flat(M) = ⋃
N∈M

⋃
O∈N O ∩ {x | x ∈ cn}

The synchronization schema of a runtime configuration cn, written Scn is the set of vertices of Gcn .
Note that, by construction, Scn is a partition of the object names in cn. Hence, we can use the same notation as in 

Section 4 by writing Scn(x) for the set A ∈ Scn containing x.

Future localization The parameter I is the simplest to define, now that we have a precise definition of synchronization 
schema. Indeed, this parameter simply maps the futures living in the configuration to its actor’s synchronization set. Given 
a runtime configuration cn, we define:

Icn
def= [ f �→ Scn(x) | x ∈ cn, f ∈ cn(x)]
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translateS (I, cn) =⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(1) ∅ when cn = ε

(2.1) ∅ when cn = fut( f ,⊥)

(2.2) { f �→ 0} when cn = fut( f ,�)

(3)
⋃

p′∈p,q
translateS (I, x,p′) when cn = act(x,p,q)

(4) { f �→ m(x, v)} when cn = invoc(x, f ,m, v)

(5) translateS (I, cn1) ∪ translateS (I, cn2) when cn = cn1 cn2

translateS (I, x,p) =⎧⎪⎪⎪⎨
⎪⎪⎪⎩
(6) ∅ when p = 0

(7) { f �→ TS ′ (I ′,�, x, l,0, s)} when p = s; f and with [S, I]x
s = (S ′, I ′,�, l)

(8) { f �→ 0} when p = f

Fig. 8. The translation of alt runtime terms.

Translation environments The translate function has a last important parameter: the environment � giving the accumu-
lated cost of every running synchronization set. At runtime, waiting statements are not only bound to numerical expression 
or method calls, but partially to executed processes identified by futures. This motivates the expression extension we gave 
in the introduction of the appendix. During the static time analysis, and also in the runtime analysis, � contains an entry 
for all synchronization sets that have a non-empty process queue. Hence, this parameter is relevant only when translating a 
process, and collects data about the futures and synchronization sets related to the analyzed process.

The translation function We present in Fig. 8 the translation function of runtime configurations into mappings from future 
names to cost equations. Note that when translating a specific process, we need to use a local future localizations I , which 
takes into account objects that are not created yet, and to create the corresponding translation environment �. This is done 
with the following function:

[S, I]x
s

def= (S ′, I ′,�, l) with

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

S ′ = sschem(S, s)
I ′ = [ f �→ A | f ∈ dom(I), I( f ) ⊂ A, A ∈ S ′]
� = [A �→ 〈 ∑

I( f )=A, f ∈fv(s)
f ,0〉 | A ∈ I ′(fv(s)) ∧ x /∈ A]

l = ∑
f ∈I−1(S(x))

f free in s

f

Definition A.8. Suppose given a set of functions FD = m1(x1)= s1, · · · , mn(xn)= sn . The cost configuration eq of a runtime 
configuration cn based on the functions FD, written eq(cn, FD), is defined as follows:

eq(cn, FD)
def= translateScn(Icn,�cn, cn) ∪

⋃
i

[mi(xi) �→ translate(mi(xi)= si)]

A cost solution � of a runtime configuration cn based on the functions FD, is a solution for the cost configuration eq(cn, FD).

The following two lemmas give some properties about the image of a cost equation, so we will be able to manipulate 
them in the rest of the proofs. The first lemma states that a cost equation maps functions and futures to expressions expx .

Lemma A.1. Consider a consistent set of parameters S , I , �, x, l, t and s. Then, TS (I, �, x, l, t, s) is a cost expression. Consider 
additionally a runtime configuration cn and a set of functions FD. Then, the image of eq(cn, FD) is a set of cost expressions exp.

Proof. Inspecting the rules in Fig. 3, it is clear that t′ in (I, �, l′, t′) = translateS (I, �, x, l, et, s) is a cost expression. 
Consequently, by Definition A.1, TS (I, �, x, l, t, s) is a cost expression as well. Additionally, it is easy, looking at the rules in 
Fig. 8, and by Definition A.8, to see that the image of eq(cn, FD) are all constructed from TS (I, �, x, l, 0, s) where l is a sum 
over futures. Hence, the image of eq(cn, FD) is a set of cost expressions exp (a sum of future is a valid cost expression). �
Lemma A.2. A cost expression exp is always equal to some max(exp1, . . . , expn) where none of the expi contain a max operator.
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Proof. This property is a consequence of the following equations that can move all the max functions in e to the top level:

max(exp1, . . . , expn) + exp = max(exp1 + exp, . . . , expn + exp)

max(max(exp), exp′) = max(exp, exp′) �
In the rest of this appendix, we will always consider cost expressions exp to be equivalent modulo the previous equalities 

that allow to move the max function around.

A.2. Upper bound correction

In this section, we prove that the cost we computed is a correct upper bound for the execution time of the program.

A.2.1. Properties of the runtime configuration’s graph structure
The three following lemmas illustrate the fact that our definition of synchronization sets abstracts within synchronization 

sets all the complex artifacts of the point-to relation between objects, and exposes only a simple structure that we can 
analyze. Lemma A.3 states that the point-to relation between synchronization sets is a forest. Lemma A.4 shows that links in 
the point-to relation between objects of different synchronization sets have all different sources and targets. And Lemma A.5
shows that our notion of synchronization set is stable over time, in the sense that two different synchronization sets will 
never get merged during the runtime configuration’s execution. This last lemma is very important as objects of two different 
synchronization sets are considered to execute in parallel in our analysis, while objects within the same synchronization 
set are considered to execute sequentially. Hence while splitting a synchronization set reduces the computed cost of the 
program (as objects considered to execute sequentially are now considered to execute in parallel), merge synchronization 
set increases it and could likely mean that our analysis did not compute the right cost before the merger.

Lemma A.3. The synchronization graph of a runtime configuration cn is a forest.

Proof. This is a direct consequence of merging in the same equivalence classes the nodes that break acyclicity in the 
point-to graph. �
Lemma A.4. Suppose given a runtime configuration cn, (x : f ) ∈ cn, (x′ : f ′) ∈ cn and y ∈ cn such that f → y ∈ cn, f ′ → y ∈ cn and 
Scn(x) �= Scn(y). Then, x = x′ and f = f ′ .

Proof. This is a direct consequence of the construction of the synchronization graph, where we quotient the point-to graph 
of cn by H , putting every actor accessible from different processes in the same equivalence class. �
Lemma A.5. Given a runtime configuration cn and a process p = s; f such that cn = act(x, p′, q) cn′ with p ∈ p′ q. Then, for all 
A1 �= A2 ∈ Scn, there exists A′

1 �= A′
2 ∈ sschem(Scn, s) with A1 ⊂ A′

1 and A2 ⊂ A′
2 .

Proof. This is directly proven by induction on s, and by the fact that Scn is constructed by taking into account the depen-
dency between actors in p. �

Finally, the following definition and lemma show that the synchronization dependencies between processes have a simple 
tree structure. This property is important as when a process f synchronizes with a process f ′ , our analysis counts the cost of 
f ′ within f . Hence, if the dependencies between process was a more general graph and several processes could synchronize 
with f ′ , then its cost would be counted several times.

Definition A.9. The process graph of a runtime configuration cn is a graph (V , E) such that V = { f | f ∈ cn(x), x ∈ cn} and 
E = {( f , f ′) | f , f ′ ∈ V ∧ f → f ′ ∈ cn}.

Lemma A.6. The process graph G of a runtime configuration cn is a tree.

Proof. By induction on the reduction steps to reach cn from an initial configuration. Note that only the Async-Call reduction 
rule creates a link between futures; moreover, it creates this link to a fresh future name, so it is not possible to create loop. 
Hence, the process graph is a forest. Finally, because all futures must be synchronized, it is not possible to break a link 
towards a running process. Therefore, all nodes in the process graph are reachable. Thus, the process graph is a tree. �
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A.2.2. Properties of runtime evolution
The following Lemma simply states that the only part of I and � relevant for the computation of the cost of a statement 

s is the one about the future on which s will synchronize. This lemma is useful, as it states that if two processes f and f ′
have no dependencies between each other, then executing f will not change the cost of f ′ .

Lemma A.7. Suppose given S , I1, I2 , �, x, l, t, s such that: the sets of parameters S , Ii , �, x, l, t and s are consistent, for 1 ≤ i ≤ 2; and 
for all f free in s, we have f ∈ dom(I1) ∩ dom(I2) and I1( f ) = I2( f ). Then, we have

TS(I1,�, x, l, t, s) = TS(I2,�, x, l, t, s)

Proof. This is directly proven by induction on s, by remarking that all futures that are accessed in Ii (with 1 ≤ i ≤ 2) are 
the ones free in s (rules (4) and (5) of Fig. 3). �

The following lemma states two of the core properties of our analysis, and is used in all the rest of this appendix. First, 
this lemma discusses the structure of the cost expression generated by our analysis. Looking at the rules (3), (4), (5) of 
Fig. 3, and using Lemma A.2, we can see that the cost of every synchronization set in � has two parts: one that captures 
all the costs related to the execution of the analyzed statement (or local cost); and one that only refers to the cost of 
synchronization set’s processes, plus the initial time ε of rule (3) (or external cost). More precisely, for every synchronization 
sets A ∈ dom(�), we have [ [�(A)] ] = max(expA1 , expA2 ) where expA1 is the first part of the cost, and expA2 is its second 
part. Consequently, with rules (4) and (5) of Fig. 3, we can remark that the computed cost equation has the same structure.

Second, this lemma illustrates how changing the starting moment of the analyzed statement is integrated in its cost. 
Consider a moment t1 preceding by k units of time the moment t2: as time advance is triggered by the program waiting, 
these two moments can be described as costs, following the structure we just discussed. Hence, t1 can be written as 
max(exp1, exp2) where exp1 is the local cost and exp2 the external cost, while t2 can be written as max(exp1 +k, exp2) (time 
passes locally). The cost expression in the translation environment follows the same pattern. Starting from these initial 
times, the lemma shows that if the statement s start at time t2 instead of t1, its computed cost will have the same shape, 
but its local cost will have k additional units of time.

Lemma A.8. Suppose given S , I , �1, �2 , x, exp1 , exp2 , l, s and k with: S , I , �i , x, ti and l are coherent parameters for 1 ≤ i ≤ 2 where 
t1 = max(exp1, exp2) and t2 = max(exp1 + k, exp2); dom(�1) = dom(�2); and for all A ∈ dom(�1), there exists expA1 and expA2

such that [ [�2(A)] ] = max(expA1 + k, expA2 ) where [ [�1(A)] ] = max(expA1 , expA2 ). We then have

TS(I,�2, x, l, t2, s) = max(k + expr1 , expr2)

with

⎧⎨
⎩
TS(I,�1, x, l, t1, s) = max(expr1 , expr2)

expr1 = max(exp1 + exp1
′,maxA∈dom(�)(expA1 + expA1

′
)) for some exp1

′ and expA1
′

expr2 = max(exp2 + exp2
′,maxA∈dom(�)(expA2 + expA2

′
)) for some exp2

′ and expA2
′

Proof. We prove this result by induction on s:

(i) Case s = 0. By construction, the lemma holds: I , �1 and �2 are empty in this case (all the futures must be synchro-
nized at the end of a method), e′ = 0 (for the same reason), and

TS(∅,∅, x,0, t2,0) = t2

TS(∅,∅, x,0, t1,0) = t1

(ii) Case s = νx;s′ . By construction, we have that

TS(I,�2, x, l, t2, s) = TS(I,�2, x, l, t2, s′)
TS(I,�1, x, l, t1, s) = TS(I,�1, x, l, t1, s′)

Hence, with the induction hypothesis, we conclude the case.
(iii) Case s = ν f : m(y, z, e);s′ with y ∈ S(x). By rule (2) of Fig. 3, we have that

TS(I,�2, x, l, t2, s) = TS(I[ f �→ S(x)],�2, x, l + m(e), t2, s′)
TS(I,�1, x, l, t1, s) = TS(I[ f �→ S(x)],�1, x, l + m(e), t1, s′)

Hence, with the induction hypothesis, we conclude the case.
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(iv) Case s = ν f : m(y, z, e);s′ with y /∈ S(x). Let S = S(y). By rule (3) of Fig. 3, we have that

TS(I,�2, x, l, t2, s) = TS(I[ f �→ S],� f
2 , x, l, t2, s′)

TS(I,�1, x, l, t1, s) = TS(I[ f �→ S],� f
1 , x, l, t1, s′)

with �
f
2 = �2[S �→ ε2 · 〈m(e),0〉], �

f
1 = �1[S �→ ε1 · 〈m(e),0〉]

and

{
ε2 = �2(S), ε1 = �1(S) if S ∈ dom(�1)

ε2 = t2, ε1 = t1 else

It is easy to see that dom(�
f
2 ) = dom(�

f
1 ) and that{

[[� f
2 (S)]] = max(k + expS1 , expS2), [[� f

1 (S)]] = max(expS1 , expS2) if S ∈ dom(�1)

[[� f
2 (S)]] = max(k + exp1, exp2), [[� f

1 (S)]] = max(exp1, exp2) else

Hence, with the induction hypothesis, we conclude the case.
(v) Case s = f �;s′ with x ∈ I( f ). By rule (4) of Fig. 3, we have that

TS(I,�2, x, l, t2, s) = TS(I, (�2 + l), x,0, t2 + l, s′)
TS(I,�1, x, l, t1, s) = TS(I, (�1 + l), x,0, t1 + l, s′)

By construction, it is straightforward to see that dom(�2 + l) = dom(�1 + l) and that for all A ∈ dom(�1 + l), we have{ [[(�1 + l)(A)]] = max(expA1 + l, expA2 + l)
[[(�2 + l)(A)]] = max(k + expA1 + l, expA2 + l)

Hence, with the induction hypothesis we conclude the case.
(vi) Case s = f �;s′ with x /∈ I( f ). Let S = I( f ). By rule (5) of Fig. 3, we have that

TS(I,�2, x, l, t2, s) = TS(I \ F ,�
f
2 , x,0, exp3, s′)

TS(I,�1, x, l, t1, s) = TS(I \ F ,�
f
1 , x,0, exp4, s′)

with F = { f ′ | I( f ′) = S(x) or I( f ′) = I( f )}
and

{
exp3 = max(t2 + l, [[�2(I( f ))]]), exp4 = max(t1 + l, [[�1(I( f ))]])
�

f
2 = (�2 ‖ exp3) \ I( f ), �

f
1 = (�1 ‖ exp4) \ I( f )

It is straightforward to see that the following equalities hold:{
exp3 = max(k + max(exp1 + l, expI( f )1),max(exp2 + l, expI( f )2))

exp4 = max(max(exp1 + l, expI( f )1),max(exp2 + l, expI( f )2))

Additionally, we have that dom(�
f
2 ) = dom(�

f
1 ), and let us consider A ∈ dom(�

f
1 ), we then have{

[[� f
2 (A)]] = max(k + max(expA1 , exp1 + l, expI( f )1),max(expA2 , exp2 + l, expI( f )2))

[[� f
1 (A)]] = max(max(expA1 , exp1 + l, expI( f )1),max(expA2 , exp2 + l, expI( f )2))

Hence, with the induction hypothesis, we conclude the case.
(vii) Case s = wait(e);s′ . By rule (1) of Fig. 3, we have that

TS(I,�2, x, l, t2, s) = TS(I,�1 + e, x, l, t2 + e, s′)
TS(I,�1, x, l, t1, s) = TS(I,�1 + e, x, l, t1 + e, s′)

We can first remark that t2 + e = max(k + exp1 + e, exp2 + e) and t1 + e = max(exp1 + e, exp2 + e). By construction, it is 
straightforward to see that dom(�2 + e) = dom(�1 + e). We then have{ [[(�1 + e)(A)]] = max(expA1 + e, expA2 + e)

[[(�2 + e)(A)]] = max(k + expA1 + e, expA2 + e)

Hence, with the induction hypothesis, we conclude the case. �
Lemma A.9. Suppose given S , I , �, x, e, s, t and t′ with: S , I , �, x, e, 0 and s are coherent parameters; for all A ∈ dom(�), we have 
�(A) = 0 · 〈expA

x , 0〉; and 0 < t′ ≤ t. We then have

TS(I,�, x, expx,0,wait(t);s) = max(t′ + exp1
x ,maxA∈dom(�)(�(A) + expA

x ))

with max(exp1
x ,maxA∈dom(�)(�(A) + expA

x )) = TS(I,�, x, expx,0,wait(t − t′);s)
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Proof. By rule (7) of Fig. 3, we have that

TS(I,�, x, expx,0,wait(t);s) = TS(I,� + t, x, exp′
x, t, s)

TS(I,�, x, expx,0,wait(t − t′);s) = TS(I,� + (t − t′), x, exp′
x, (t − t′), s)

Hence, this lemma is a direct consequence of Lemma A.8. �
Lemma A.10. Suppose given S , I , �, x, e, f and s with: S , I , �, x, 0 e, and s are coherent parameters; for all A ∈ dom(�), we have 
�(A) = 0 · 〈e A, 0〉; and I( f ) = S(x). We then have

TS(I,�, x, e,0, f �;s) = max(e + e′,maxA∈dom(�)(�(A) + e A))

with max(e′,maxA∈dom(�)(�(A) + e A)) = TS(I,�, x, e,0, s)

Proof. By rules (4) and (7) of Fig. 3, we have that

TS(I,�, x, e,0, f �;s) = TS(I,� + e, x,0, e, s)

This result is thus a direct consequence of Lemma A.8. �
Lemma A.11. Suppose given S , I , �, x, e, f and s with: S , I , �, x, e, 0 and s are coherent parameters; for all A ∈ dom(�), we have 
�(A) = 0 · 〈e A, 0〉; and I( f ) �= S(x). We then have

TS(I,�, x, e,0, f �;s) = max(max(e, [[�(I( f ))]]) + e′,maxA∈dom(�)(�(A) + e A))

with

{
max(e′,maxA∈dom(�)(�(A) + e A)) = TS(I \ F ,� \ I( f ), x,0,0, s)
F = { f ′ ∈ dom(I) | I( f ′) = S(x) or I( f ′) = I( f )}

Proof. Let S = I( f ). By rule (5) of Fig. 3, we have that

TS(I,�, x, e,0, f �;s) = TS(I \ F ,�′, x,0, e′, s)

with F = { f ′ ∈ dom(I) | I( f ′) = S(x) or I( f ′) = S}
and e′ = max(e, [[�(S)]]), �′ = (� ‖ e′) \ S

The result can thus be proven in a similar way to Lemma A.8. �
Lemma A.12. Suppose given S , I , �, x, expx, f and s with: S , I , �, x, e, 0 and s are coherent parameters; for all A ∈ dom(�), we have 
�(A) = 0 · 〈e A, 0〉; and f ∈ dom(I). We then have

TS(I,�, x, e,0, f �;s) ≥ TS(I \ { f },�, x, e,0, f �;s)

Proof. This is directly proven by induction on s, by remarking that �(I( f )) is a simple expression. �
A.2.3. Main results

Lemma A.13 (Upper Bound Stability 1/3). Suppose given a cost solution � of the cost program generated from an alt program 
P =

(
m1(x1)= s1, · · · , mn(xn)= sn, smain

)
. Then � is also a cost solution of the runtime configuration cn

def= act(start, smain; fstart, ∅).

Proof. Let us consider the cost program eq1 of the program P, and the cost configuration eq2 of the runtime configuration 
cn. By construction, eq1 and eq2 are identical, except maybe for the entry fstart: we indeed have:

eq1( fstart) = translatesschem({ {start} },smain)(∅,∅, start,0,0, smain)

eq2( fstart) = translatesschem(Scn,smain)(Icn,�cn \ Scn(start), start,0,0, smain)

with

⎧⎨
⎩

Scn = { {start} }
Icn = [ fstart �→ {start}]
�cn = [{start} �→ fstart]

Remark that �cn \ Scn(start) = ∅, by Lemma A.7, we thus have that

translatesschem(Scn,smain)(Icn,�cn \ Scn(start), start,0,0, smain)

= translatesschem({ {start} },smain)(∅,∅, start,0,0, smain)

which proves the result. �
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Lemma A.14 (Upper Bound Stability 2/3). Suppose given a runtime configuration cn such that there exists cn′ with cn
t→ cn′ . Suppose 

moreover given a solution � of the cost configuration of cn. Then, there exists a solution �′ of the cost configuration of cn′ such that 
for all f ∈ dom(�), we have �′( f ) + t ≤ �( f ).

Proof. Let eq1 be the cost configuration of cn and eq2 the cost configuration of cn′: we remark that dom(eq1) = dom(eq2), 
and we first prove by induction on cn that for all f ∈ dom(eq1), we either have that:

eq1( f ) = max(t′ + e1,maxA∈dom(�)(�(A) + e A))

with eq2( f ) = max(e1,maxA∈dom(�)(�(A) + e A))

or eq1( f ) = eq2( f ) = ∑
f ∈F f + e for some e and with F = { f ′ | f → f ′ ∈ cn} �= ∅. If the configuration is empty, then its cost 

configuration is empty and the result trivially holds. Now let us consider that cn is not empty. By the definition of cn
t→ cn, 

triggered by the rule (Tick), cn is strongly t-stable (see Definition 2.1). Let us consider f ∈ dom(�), we have three cases:

• Case cn = act(x, wait(e);s; f , q) cn′′ . By Definition 2.1, we have cn′ = act(x, wait(k);s; f , q) �(cn′′, t) with k = [ [e] ] − t . 
By Lemma A.9, we have that eq1( f ) = max(t′ +e1, maxA∈dom(�)(�(A) +e A)) with eq2( f ) = max(e1, maxA∈dom(�)(�(A) +
e A)).

• Case cn = act(x, f ′�;s; f , q) cn′ with Icn( f ) = Icn( f ′). By Definition 2.1, we have cn′ = act(x, f ′�;s; f , q) �(cn′′, t), 
which implies that eq1( f ) = eq2( f ). Using Lemma A.8, it is straightforward to see that eq2( f ) = ∑

f ∈F f + e for some 
e, with F = { f ′′ | Icn( f ) = Icn( f ′′), f → f ′′ ∈ cn} and f ′ ∈ F .

• Case cn = act(x, f ′�;s; f , q) cn′ with Icn( f ) �= Icn( f ′). By Definition 2.1, we have cn′ = act(x, f ′�;s; f , q) �(cn′′, t), 
which implies that eq1( f ) = eq2( f ). Using Lemma A.8, it is straightforward to see that eq2( f ) = ∑

f ∈F f + e for some 
e, with F = { f ′′ | Icn( f ′) = Icn( f ′′), f → f ′′ ∈ cn} and f ′ ∈ F .

Using Lemma A.6, we have that the process graph G of cn is a tree, and so we can construct the solution �′ inductively, 
starting from the leaves of G . �
Lemma A.15 (Upper Bound Stability 3/3). Suppose given a configuration cn such that there exists cn′ with cn → cn′ . Suppose moreover 
given a solution � of the cost configuration of cn. Then, there exists a solution �′ of the cost configuration of cn′ such that for all 
f ∈ dom(�), we have �′( f ) ≤ �( f ).

Proof. Let us consider the cost configuration eq1 of cn and eq2 of cn′ . We prove that for all f ∈ dom(eq1), we have eq2( f ) ≤
eq1( f ), which thus proves the result. We construct our demonstration by case distinction on the reduction rule, modulo the 
rule Context.

• Case New. It is straightforward to see that, with the definition of Scn , that eq1 = eq2. Hence, the result holds for the 
case.

• Case Get-True. We have that cn = act(x, f1
�;p, q) cn′ , with p = s; f . We can first remark that for all (x : f ′) ∈ cn such 

that f ′ �= f , we have that eq1( f ) = eq2( f ). Moreover, from the construction of the future localization, we have that 
f1 /∈ dom(Icn). Hence, using the rule (6) of Fig. 3, we have that eq1( f ) = eq2( f ).

• Case Get-False. It is easy in this case to see that eq1 = eq2, which gives us the result.
• Case Async-Call. We have that cn = act(x, ν f1: m(z, e);p, q) cn′ , with p = s; f . Let f2 be the fresh future name created 

in this rule. We now have two sub-cases.
Let first consider that Scn(z) = Scn(x). By construction, we have �cn′ (Scn′ (z)) = �cn(Scn(z)), as f2 is free in p. Moreover, 
considering the rule (7) of Fig. 8, for all f ′ ∈ dom(eq1) \ { f2}, we have eq1( f ′) = eq2( f ′). Now, by rule (4) of Fig. 8, 
we have that eq2( f2) = m(z, e), and eq1( f ) = eq2( f ){m(z, e)/ f2

}. By stating that �′ = �[ f2 �→ �(m(z, e))], we have that 
�(eq1( f )) = �′(eq2( f )), which concludes this sub-case.
Second, consider that Scn(z) �= Scn(x). By Lemma A.4, we have that f is the only future name such that f → z ∈ cn. 
Hence, by construction, we have that for all f ′ ∈ (dom(eq1)) \ { f }, we have eq1( f ′) = eq2( f ′). Now, by rule (4) of Fig. 8, 
we have that eq2( f2) = m(z, e), and eq1( f ) = eq2( f ){m(z, e)/ f2

}. By stating that �′ = �[ f2 �→ �(m(z, e))], we have that 
�(eq1( f )) = �′(eq2( f )), which concludes this sub-case.

• Case Bind-Fun. Here, we have that eq1( f ) = m(x, v), and eq2( f ) = e where eq1(m(x, v)) = e. Thus, we conclude the case.
• Case Wait-0. It is easy in this case to see that eq1 = eq2, which gives us the result.
• Case Activate. It is easy in this case to see that eq1 = eq2, which gives us the result.
• Case Return. We have that cn = act(x, f , q) cn′ . By construction, we have that eq1( f ) = 0 = eq2( f ) (by rule (2.2) of 

Fig. 8). By Lemma A.6, either: i) f = fstart , and so we have the result, as eq2( f ) = 0 for all f ∈ dom(eq2); or ii) there 
exists exactly one f ′ such that f ′ → f ∈ cn. By construction, for all f ′′ ∈ dom(Icn) \ f ′ , we have eq1( f ′′) = eq2( f ′′). 
Finally, by Lemma A.12, we have that eq1( f ′) ≥ eq2( f ′), which concludes the case. �
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Theorem A.16 (Correction). Given an alt program P, and a solution � of the cost equation of P, we have that �( fstart) is an upper 
bound of the execution time of P.

Proof. By induction on the reduction time of P, using the three previous lemma. �
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