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A palette of approaches for adiabatic elimination in bipartite open
quantum systems with Hamiltonian dynamics on target

Paolo Forni1, Timothée Launay1, Alain Sarlette2, and Pierre Rouchon1

Abstract— Adiabatic elimination is a model reduction tech-
nique commonly used by physicists to eliminate quickly dissi-
pating components from quantum physics equations. We revisit
this technique when the target non-dissipating component is
driven by Hamiltonian actuation at a fast timescale. Following
center manifold theory, we can still write reduced dynamics
for the target component, but there may be new conditions
to ensure that it takes the standard structure of quantum
dynamics, i.e. evolution equations of Lindblad type and co-
ordinate changes in Kraus map form. We here propose various
approaches to recover a Lindblad form up to third-order terms:
without conditions for finite-dimensional systems, and under
some finite set conditions for infinite-dimensional systems.

I. INTRODUCTION

The Lindblad master equation is the quantum equiva-
lent of dissipative systems, where in principle Hamiltonian
interactions with the large outside world are summarized
by dissipation operators (Born-Markov approximation, [4]).
When engineering quantum systems, dissipative components
are interconnected with Hamiltonian ones and the behavior of
interest is the one after the fast dissipative transient has stabi-
lized. We study the basic building block consisting of a target
system weakly coupled with a strongly dissipative ancillary
system. By exploiting a time-scale separation between the
fast uncoupled dynamics and the weak interaction dynamics,
the full system can be decoupled with high accuracy into
a fast decaying component, approximately corresponding to
the ancillary system, and a remaining component of lower
dimension corresponding closely to the quantum system of
interest. Physicists have routinely considered the dominant
term of this approximation as “adiabatic elimination” of the
fast dynamics.

This picture can be made more precise in a system theo-
retic context on the basis of geometric singular perturbation
theory and center manifold theory, as introduced in [3], [2].
From a mathematical viewpoint an asymptotic series expan-
sion at higher orders is clear since the Lindblad equation
is linear – we are thus approximating the slowly decaying
eigenvalues and eigenspaces of a linear system. However,
to preserve an intrinsic physical meaning for the reduced
system, the elimination should provide again a Lindblad form
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in the reduced equations; and to easily view it as a component
of the full world, the coordinate change mapping the reduced
model into the complete one should be a completely positive
trace preserving map, or Kraus map.

In [3], [2] general formulas are given that solve the series
expansion, with Lindblad and Kraus form, up to second
order included, when the center manifold (' target quantum
system) corresponds to a set of steady states at zero order.
However, quantum technology definitely aims to act on
the target systems, possibly at fast time scales. This fast
Hamiltonian action makes the center manifold correspond to
the eigenspace of imaginary eigenvalues at zero order, and
changes the computations towards recovering Lindblad form
reduced dynamics. A first generalization in [8] takes into
account fast Hamiltonian dynamics on target, under a precise
condition linking the actuation and interaction Hamiltonians.

In the present paper we remove this condition: the actua-
tion Hamiltonian, as well as the interaction Hamiltonian, are
arbitrary. We study how the actuation influences the reduced
model dynamics, and find an appropriate Kraus map.

The paper is organized as follows. Section II describes
the abstract problem setting and Section III provides the
adiabatic elimination formulas that can be used in presence
of fast actuation. Section IV completes the presentation
with two applications in ongoing quantum experiments. The
technical proofs are given in appendix.

II. SETTING

A. Bipartite system
Open quantum systems are typically described by dif-

ferential equations on the manifold of density operators
ρ ∈ D(H), namely the set of linear Hermitian nonnegative
operators of trace one on a Hilbert space H. We consider the
composite Hilbert space H = HA ⊗ HB , where HA is the
auxiliary space and HB is the target space. The evolution on
H is then described by the Lindblad master equation [4]:

dρ

dt
= LA(ρ) + εLint(ρ)− i[HB , ρ], (1)

where ε is a small parameter emphasizing the time-scale
separation; HB is a Hermitian operator acting on HB only;
LA is a Lindbladian super-operator acting on HA only:

LA(ρ) := −i [HA, ρ] +
∑
µ

D[LA,µ](ρ),

with LA,µ a decoherence operator on HA and D[.](.) the
decoherence super-operator:

D[X](ρ) := XρX† − 1

2

(
X†Xρ+ ρX†X

)
;



Lint is a Lindbladian super-operator that captures the inter-
action between HA and HB , and here we assume that this
interaction is Hamiltonian:

Lint(ρ) = −i
[∑

k

Ak ⊗B†k, ρ
]
. (2)

where Ak and Bk respectively are non-necessarily-
Hermitian operators acting on HA and HB only.

We assume that LA is strongly dissipative and that there
exists a unique density operator ρ̄A such that LA(ρ̄A) = 0.
For ε = 0, the system is uncoupled and the solutions stay
separable into HA and HB at all times.

B. Asymptotic expansion

Adiabatic elimination of the strongly dissipative compo-
nent LA can be approached via center manifold theory by ob-
serving that, for ε = 0, there exists an asymptotically stable
center manifold M0 of same dimension as HB . Therefore,
by virtue of Fenichel’s Invariant Manifold Theorem [7], the
existence of an asymptotically stable center manifold Mε is
persistent for all small enough ε 6= 0. An approximation of
Mε can be computed up to arbitrary precision (see Carr [5]).
The fact that (1) is linear in ρ further facilitates the obtention
of guarantees and bounds.

The quantum particularity to adiabatic elimination is to
preserve the structure of the reduced-order model, i.e. we
aim to find:
• a Kraus1 map Kε from ρs ∈ D(Hs) the reduced

space with dim[Hs] = dim[HB ] to the complete space
ρ ∈ D(H), such that K(D[Hs]) yields Mε. Such map
ensures that the reduced-order model ρs still corre-
sponds to density operators in the full physical space,
thus ρs retains physical meaning as directly describing
measurement probabilities;

• the reduced dynamics on Hs in Lindblad form, i.e.
d
dtρs = Ls,ε(ρs) for some Lindbladian superoperator
Ls,ε.

Invariance of Mε is then captured by the equation:

LA(Kε(ρs)) + εLint(Kε(ρs))− i[HB ,Kε(ρs))] = Kε(Ls,ε(ρs)).
(3)

Carr’s result [5] considers Kε, Ls,ε as infinite series in ε:

Kε(ρs) =

+∞∑
`=0

ε`K`(ρs), Ls,ε(ρs) =

+∞∑
`=0

ε`Ls,`(ρs) . (4)

By plugging (4) into (3) and identifying the terms of same
order, an invariance relation is obtained at all orders. At zero-
order, we have:

LA(K0(ρs))− i[HB ,K0(ρs)] = K0(Ls,0(ρs)). (5)

At first-order invariance, we get:

LA (K1(ρs)) + Lint (K0(ρs))− i[HB ,K1(ρs)]

= K0 (Ls,1(ρs)) +K1 (Ls,0(ρs)) ,
(6)

1A Kraus map takes the form K(ρs) =
∑
lMlρsM

†
l for some

operators Ml, to ensure complete positivity [6], with
∑
lM

†
l Ml =identity

for trace preservation.

and at second-order:

LA (K2(ρs)) + Lint (K1(ρs))− i[HB ,K2(ρs)]

= K0 (Ls,2(ρs)) +K1 (Ls,1(ρs)) +K2 (Ls,0(ρs)) .
(7)

III. REDUCED MODEL FORMULAS

In this section we provide solutions for the zero-, first-
and second-order invariance equations, and consequently
formulas for the reduced-order model of (1) up to third-
order terms, in quantum form. The presence of HB will be
resolved in two possible ways. A first solution is proposed for
systems where the spectrum of HB is finite, thus in particular
for any finite-dimensional systems. A second solution is
proposed, possibly for infinite-dimensional systems, if some
commutation relations end after a finite number of steps.

A. Case of finite spectrum of HB

In this section we make the following assumption.
Assumption 1: The spectrum of HB consists of a finite

set.
Assumption 1, together with hermiticity, implies the exis-
tence of an orthonormal basis of eigenvectors {xi}i∈I of
HB and its associated set of real eigenvalues {λi}i∈I , for
some index set I . It is then straightforward to show that the
family of operators {xix†j}i,j∈I represents an orthonormal
basis for the Liouville space End[HB ]. Moreover, each
C†(i,j) := xix

†
j is an eigenoperator of [HB , .] with associated

eigenvalue c(i,j) := λi − λj , in other words:

[HB ,C
†
(i,j)] = c(i,j)C

†
(i,j), C(i,j)C

†
(i′,j′) = δi,i′C

†
(j,j′).

where δh,j denotes the Kronecker delta. For brevity, we will
equivalently index the sets over one index: C†(i,j) = C†k and
c(i,j) = ck.

Without loss of generality, we can still consider a Hamil-
tonian interaction in form (2) with the operators Bk now
being (decomposed on the basis of) the eigenoperators of
[HB , ·] (, with possible weights factored into the Ak). The
zero-order (5) is immediately solved by setting:

Ls,0(ρs) = −i[HB , ρs], K0(ρs) = ρ̄A ⊗ ρs. (8)

At first order, let the Kraus map have the following structure:

K(ρs) =K0(ρs) + εK1(ρs) +O(ε2) (9)

:=(I − iε
∑
k

Mk)(ρ̄A ⊗ ρs)(I − iε
∑
k

Mk)† +O(ε2),

where the Mk are operators to be defined in Theorem 1.
Theorem 1: Consider model (1)-(2). Let Assumption 1

hold and, without loss of generality, Bk = Ck. Let H1

be an arbitrary Hermitian operator in End[HB ], and (fk) its
coordinates in the basis {C†k}. Then the first order invariance
equation (6) is satisfied by the Lindbladian:

Ls,1(ρs) = −i
[∑

k

Tr(Akρ̄a)B†k − i[HB ,H1], ρs
]

and by a map of the form (9) where Mk := Fk ⊗B†k and
Fk is the unique solution of:

LA(Fkρ̄a) + S (−ickFkρ̄a + Akρ̄a) = 0 , (10)



Tr(Fkρ̄a) = fk ,

where S(X) := X − Tr[X]ρ̄A.
Proof: See Appendix A.

To provide formulas for the second-order adiabatic elimi-
nation of model (1), we will build on a decomposition similar
to [2]. Let X,Y ,Z be the matrices whose entries are defined
by (here ? denotes complex conjugate):

xk′,k :=zk′,k + z?k,k′ (11a)

yk′,k :=
1

2i
(zk′,k − z?k,k′) (11b)

zk′,k := Tr(Pk′,kρ̄a)− i

2
(ck − ck′) Tr(Fkρ̄aF

†
k′) (11c)

Pk′,k =A†k′Fk − (Tr(Akρ̄a)− ickfk)Fk̄′ (11d)
k̄ :=(j, i) when k = (i, j) , (11e)

and the Fk are solutions to (10). It is possible to show along
the lines of [3, Lemma 7] that:

xk′,k = Tr

[∑
µ

[LA,µ,Fk]ρ̄A[LA,µ,Fk′ ]
†

]
, (12)

and thus X � 0 which implies that there exists Λ ∈ CK×K
such that X = ΛΛ†, i.e. xk′,k =

∑
pΛk′,p(Λk,p)

?.
Theorem 2: Consider model (1)-(2). Let Assumption 1

hold and, without loss of generality, Bk = Ck. Select Ls,1
and K1 according to Theorem 1. Let H2 be an arbitrary
Hermitian operator in End[HB ]. Then the second order
invariance equation is satisfied by the Lindbladian:

Ls,2(ρs) = −i [Hs,2 − i[HB ,H2] , ρs] +
∑
p

D[Lp](ρs),

where Hs,2 :=
∑
k′,k yk′,kBk′B

†
k and Lp :=

∑
kΛ

?
k,pB

†
k.

Furthermore, there exists an associated map K2 such that
K(ρs) = K0(ρs)+ εK1(ρs)+ ε2K2(ρs) is CPTP up to third-
order terms.

Proof: See Appendix B.
Remark 1: When solving the invariance equations, the

choice of coordinate mapping between Hs and H is not
unique. This offers various possibilities to be leveraged in
jointly determining the final forms of Kε and of the reduced
dynamics Ls,ε, and similarly in the series expansion. The
Hamiltonians H1 and H2 in the above theorems explicitly
express some possibilities offered by this gauge degree of
freedom. We will by default take them zero in the below
applications.

B. Case of vanishing commutators

Assumption 1 is often not feasible with infinite-
dimensional systems, like the quantum harmonic oscillator
which is nevertheless a canonical system of interest. In these
cases, one typically resorts to operator properties, typically
commutation relations, and we propose to do the same for
adiabatic elimination. In [8] we have exploited the particular
property ∀k ∃ck : [HB ,B

†
k] = ckB

†
k. In this section,

we propose a complementary approach motivated by the

example in Section IV-B. Let Ch(·, ·) denote the repeated
commutator:

Ch(X1,X2) := [X1, [X1, [. . . ,X2]]]︸ ︷︷ ︸
h times

.

Assumption 2: There exists a finite h ∈ N such that
Ch(HB ,Bk) = 0 for all k ∈ {1, . . .K}.
For clarity of presentation, we will focus on the case h =
3. Assumption 2 induces the following definitions: Ck :=
[HB ,Bk] and Dk := [HB ,Ck], and for brevity (h)Bk :=
Ch(HB ,Bk), e.g. Dk =(2) Bk.

Theorem 3: Consider model (1)-(2). Let Assumption 2
hold with h = 3. Then, the first-order invariance equation
(6) is satisfied by the Lindbladian

Ls,1(ρs) = −i [Hs,1, ρs] , (13)

with Hs,1 :=
∑
k Tr(Akρ̄a)B†k, and by a map K1 of the

form (9) where Mk :=
∑
h F

h
k ⊗ (h)B†k and F h

k is the
unique solution of:

LA(F `
k ρ̄A) + δ`,0S(Akρ̄A) + i(1− δ`,0)F `−1

k ρ̄A =0 , (14)

Tr[F `
k ρ̄A] =0

for ` = 0, 1, ..., h. Furthermore, K(ρs) is a CPTP map up
to second-order terms.

Proof: See Appendix C.
Consider now the matrix X ∈ CKh×Kh defined as:

Xk`,k′`′ := Tr
[
[LA,µ,F

`
k ]ρ̄A[LA,µ,F

`′

k′ ]
†
]

=: x``
′

kk′ ,

for all k = 1, ...,K and l = 1, ..., h. It is possible to show
along the lines of [3, Lemma 7] that X � 0 and thus there
exists Λ ∈ CKh×Kh such that X = ΛΛ†, i.e. Xk`,k′`′ =∑
pΛk`,p(Λk′`′,p)

?.
Remark 2: By virtue of [3, Lemma 6] and equation (14),

matrix elements x``
′

kk′ may be also computed as follows:

x00
kk′ = Tr[F 0

k ρ̄AA
†
k′ + Akρ̄AF

0 †
k′ ]

x11
kk′ =iTr[F 0

k ρ̄AF
1 †
k′ − F 1

k ρ̄AF
0 †
k′ ]

x22
kk′ =iTr[F 1

k ρ̄AF
2 †
k′ − F 2

k ρ̄AF
1 †
k′ ]

x01
kk′ =iTr[F 0

k ρ̄AF
0 †
k′ ] + Tr[Akρ̄AF

1 †
k′ ]

x02
kk′ =iTr[F 0

k ρ̄AF
1 †
k′ ] + Tr[Akρ̄AF

2 †
k′ ]

x12
kk′ =iTr

[
F 0
k ρ̄AF

2 †
k′ − F 1

k ρ̄AF
1 †
k′

]
.

Theorem 4: Consider model (1)-(2). Let Assumption 2
hold with h = 3. Then, the second-order invariance equation
(7) is satisfied by Lindbladian:

Ls(ρs) =− i[HB + εHs,1 + ε2Hs,2, ρs]

+ ε2
∑
p

D[Lp](ρs) +O(ε3),

with Lp :=
∑
kΛ

?
k0,pB

†
k + Λ?

k1,pC
†
k + Λ?

k2,pD
†
k and

Hs,2 :=
1

2i

∑
k,k′,`

(
Tr[A†k′F

`
k ρ̄A]Bk′

(`)B†k − herm. conj.
)
,

with Hs,1 and the F `
k computed as in Theorem 3. There

exists an associated map K2, obtained from formula (28),



such that K(ρs) = (K0 + εK1 + εK2)(ρs) is a CP map up
to third-order terms and TP up to second-order terms.

Proof: See Appendix D.

IV. APPLICATIONS

We now present two examples of physical relevance that
can be treated with our new formulas.

A. Case of finite spectrum of HB

The following example comes from [9], where a drive is
applied to a so-called V three-level system and its transitions
are monitored indirectly by dispersive interaction with a
strongly dissipating harmonic oscillator (“cavity” or “res-
onator”).

Let HA and HB respectively be the Hilbert space of the
resonator and three-level system, respectively considered as
the auxiliary and target component. The three levels are
subsequently denoted as |G〉 ground, |D〉 dark, |B〉 bright.
The so-called dark state is decoupled from its environment,
and a small drive ΩDG allows the state to transition from |G〉
to |D〉 and back. At the same time, the possible presence on
|G〉 is monitored by a strong drive ΩBG on its transition
to |B〉, which is dispersively coupled with strength χB to
a strongly dissipative resonator. In this way the resonator,
probed at a frequency detuned by χB from its resonance,
responds resonantly when the system is on the “bright” state.
In the appropriate rotating frame and after rotating wave
approximation, this setting corresponds to

HB :=

 0 ΩDG ΩBG
ΩDG 0 0
ΩBG 0 0

 ,

Hint := a†a(|G〉 〈G|+ |D〉 〈D|)

with the matrix components ordered as |G〉, |D〉, |B〉; the
Lindblad dynamics writes

dρ

dt
= −i

[
u(a† + a) + HB + χBHint, ρ

]
+ κD[a](ρ) (15)

with u the strength of the coherent drive on the resonator
mode, κ the relaxation rate of the resonator and a the photon
loss operator on the resonator.

A well-resolved observation of being on |B〉 〈B|, corre-
sponds to χm > κ. In contrast, our formulas allow to check
what happens when this is not satisfied, i.e. when χm � κ
(in practice a factor of 2 or 5 is sufficient to apply our
formulas).

The commutator of (|G〉 〈G|+|D〉 〈D|) with HB does not
allow us to apply the result of [8], but since HB has finite
dimension we can apply the results of Section III-A. We have
ρ̄A = |α〉 〈α| a coherent state, satisfying a |α〉 = α |α〉, with
α = −2iu/κ. This already gives Hs,1 = χB

4u2

κ2 (|G〉 〈G| +
|D〉 〈D|) ' −χB 4u2

κ2 |B〉 〈B| at first order, to be added to
Hs,0 = HB .

To get the second order, the decomposition of HB into
eigenvectors can be easily done by hand. Furthermore, we
can observe that (10) is solved by

Fk = αχB
ick+κ/2 (a− α)† ,

with fk = 0. From there straightforward (yet tedious)
computations lead to the solution. Alternatively, we can use

the formula (12) to directly obtain X = ΛΛ† with Λ a vector.
This shows that we have a single decoherence channel, which
we can analyze numerically. When taking small drives, our
results are similar to those of previous papers, e.g. with
ΩDG = 2·10−5κ and ΩBG = 2·10−4κ we have a dissipation
operator

L1 =
2|α|
κ

 1 0 0
0 1 0
0 0 0

 .

Physically, this resembles the decoherence implied by a QND
measurement distinguishing |B〉 from the two other states.
When taking large drives, e.g. ΩDG = 0.2κ and ΩBG = 2κ,
our formulas are necessary and they indicate a switch in the
measurement behavior:

L1 =
2|α|
κ

 0.512 −0.011i 0.062i
0.011i 0.986 −0.043
−0.062i −0.043 0.501

 .

Now, in agreement with the intuitive measurement principle,
we are rather distinguishing whether the state is in |D〉, or
oscillating somewhere between the two other states. In both
cases, the measurement principle works according to this
model, even if the spectral lines are not well resolved.

B. Case of vanishing commutators

The continuous-variable approach for protecting quantum
information encodes a logical qubit (two-level system) in a
quantum resonator (infinite number of levels). In particular,
taking advantage of this redundancy via a reservoir engi-
neering scheme, so-called cat qubits are an experimentally
promising candidate [10]. More precisely, the target res-
onator is coupled via a two-photon process to an environment
resonator such that the overall Lindbladian stabilizes the sub-
space span(|β〉 , |−β〉) where |β〉 denotes the coherent state
of amplitude β, satisfying a |β〉 = β |β〉. Hamiltonians must
then be added to apply gates on this encoded information.
Our formulas allow to investigate what happens when we
push the speed of these gates to be as fast as the protection
process.

Let Ha and Hb respectively be the Hilbert spaces of two
resonators that are respectively modeling a highly dissipating
component – used to evacuate entropy in the stabilization
process – and the target “memory” component. Denote with
a and b the annihilation operators in the first and second
resonator mode respectively. By setting up an appropriate
coupling and a constant drive onHa [10], the coupled system
can be engineered to follow:

d

dt
ρ = κD[a](ρ)−ig[a(b2−β2)†+a†(b2−β2), ρ]−i[v?b+vb†, ρ]

(16)
where v is a drive meant to apply gates on the target system.

The standard situation corresponds to g, v � κ. In this case
all the small dynamics acts on Ha and we can apply the
result in [3], yielding the reduced model:

d

dt
ρs =

4g2

κ
D[b2 − β2](ρs)− i[v?b + vb†, ρs] . (17)

When v � 4g2/κ, these dynamics effectively operate a
gate [1] that rotates the interference fringes on the subspace



Fig. 1. Section IV-B: (a-d) Wigner functions of the state of resonator model (17) captured at four different times t = 0 µs, 0.36 µs, 1.08 µs2.16 µs, showing
convergence to a fixed point; (e) Wigner function of the state of model (18) captured at t = 0.36 µs, showing that interference fringes have been lost. In
both simulations, the initial density operator is: ρs(0) =

∣∣∣C+β 〉〈C+β ∣∣∣ with
∣∣∣C+β 〉 := (|β〉+ |−β〉)/N+ where N+ is a normalization constant and β = 2;

the parameter values are: κ = 1MHz, g = 200 kHz, v = 500 kHz.

span(|β〉 , |−β〉), at a rate proportional to v. The goal is
to investigate how new effects must be taken into account
when v becomes of the same order as κ, thus limiting the
achievable gate speed.

The model satisfies the hypothesis of Theorem 4 since
system (16)-(2) is in the form (1) with, taking units such
that κ is of order 1: LA := κD[a](ρ), ε := g � 1, HB :=
v?b+vb†, ρ̄A := |0〉 〈0|, A1 := a, A2 := a†, B1 := b2−β2,
B2 := (b2 − β2)†, C1 := −2vb, C2 := 2v?b†, D1 := 2v2,
D2 := 2v? 2, and thus [HB ,Dk] = 0. The associated F
operators are computed via (14) as follows:

F 0
1 = F 1

1 = F 2
1 = 0,F 0

2 =
2

κ
|1〉 〈0| ,

F 1
2 = i

4

κ2
|1〉 〈0| ,F 2

2 = − 8

κ3
|1〉 〈0| .

Matrix X is computed via Remark 2 as follows:

X =

4/κ 0 0
0 16/κ3 −32i/κ4

0 32i/κ4 64/κ5

 .

By Theorem 4 and after regrouping terms, the reduced
model is:

Ls(ρs) =− i
(

1 +
32g2|v|2

κ4

)[
v?b + vb†, ρs

]
− i4g

2

κ2
[Hs,2,c, ρs]

+
4g2

κ
D[b2 − β2](ρs) +

32g2|v|2

κ3
D[b](ρs) +O(g3),

(18)

with Hs,2,c = (v(b2−β2)†b+v?b†(b2−β2))+ 2i
κ (v2b† 2−

v? 2b2). When v � κ, neglecting higher-order terms gives
back (17). For v of the same order as κ, we see not only
a modification of the Hamiltonian, which is reversible and
thus in principle could be countered, but also a significant
new decoherence channel in b. Since b |±β〉 = ±β |±β〉,
this contributes to further blurring the interference fringes, as
illustrated on Figure 1: model (18) converges to a fixed point
without fringes in about 0.36 microseconds, while model
(17) erroneously predicts that we would still have significant
fringes at this time, and only lose them much later. We thus
conclude that pushing with v as strongly as κ destroys the
interference fringes very quickly, resulting in information
loss.

V. CONCLUSIONS

We have provided formulas for adiabatic elimination of a
fast dissipating component connected to a target component,
when the target component is subject to maybe slow dissi-
pation but fast Hamiltonian actuation. Formulas are obtained
for two cases: when actuation has a finite spectrum, and
when it satisfies some iterated commutation relation. We
have illustrated those methods on two examples, showing
that they capture significant effects which should be taken
into account in experiment design.

APPENDIX

A. Proof of Theorem 1

From (9), the map K1 would take the form:

K1(ρ̄a ⊗ ρs) =
∑
k

−iFkρ̄a ⊗B†kρs + herm. conj.. (19)

Existence and uniqueness of solutions Fk is proved along
the lines of [3, Lemma 4] by observing that LA(·)− ickId(·)
is still a bijection on traceless operators. For a superoperator
Q define V(Q)(X) := −i ([HB ,Q(X)]−Q([HB ,X])).
Super-operator V satisfies the property:

V(X·)(ρ) = −i[HB ,X]ρ. (20)

By considering the zero-order solution (8) and K1 from (19),
and by making use of formulas (10) and (20), the first-order
invariance equation (6) simplifies to:

ρ̄A ⊗ Ls,1(ρs) = ρ̄A ⊗ TrA
[
V(K1)(ρs)

− i[
∑
k

Ak ⊗B†k,K0(ρs)]
]
. (21)

By taking the partial trace over HA over both sides of (21),
we obtain the Ls,1 in the statement of Theorem 1.

It is immediate to see from (9) that K0(ρs) + εK1(ρs) is
a completely positive map, as long as one can neglect the
terms of order ε2. It is also straightforward to see from (19)
and property fk ∈ R that Tr[K1(ρs)] = 0 for any ρs, thus
K0(ρs) + εK1(ρs) is TP up to second-order terms.



B. Proof of Theorem 2
First, we define the map K2(ρs) and show that satisfies

the second-order invariance equation (7). Let:

Fk,k′ =
∑
µ

[LA,µ,Fk]ρ̄a[LA,µ,Fk′ ]
†,

KQ2 (ρs) =

∫ ∞
0

etLA(.)
(∑
k,k′

S
(
e−i(ck−ck′ )tFk,k′

)
⊗B†kρsBk′

)
dt + τ̄ ρ̄A ⊗ G(ρs),

G(ρs) =
∑
k,k′

δck,ck′ Tr[Fk,k′ ]B†kρsBk′ , (22)

where S(X) := X−Tr[X]ρ̄A and δ is the Kronecker delta.
Now let d0, d1...dP be a numeration of the eigenvalues of
[HB , .] without repetitions with in particular d0 = 0 and
for any k let p(k) the index such that dp(k) = ck. Let t0=1
and define the integration variables t1, t2...tP . We can check
that:

G(ρs) = (23)

d1
2π

∫ 2π
d1

0

...
dP
2π

∫ 2π
dP

0

(∑
k,k′

Tr
(
e−i(cktp(k)−ck′ tp(k′))Fk,k′

)
B†kρsBk′

)
dt1...dtP .

Using this identity, it is possible to show along the lines
of [8, Claim 2] that there exists τ̄ > 0 large enough such
that KQ2 (·) is a completely positive map and the following
property holds true :

LA(KQ2 (ρs)) + SA(V(KQ2 )(ρs) +
∑
k,k′

Fk,k′ ⊗B†kρsBk′) = 0,

where SA(X) := X − ρ̄A ⊗ TrA[X]. Now let H2 be
an arbitrary Hermitian operator in HB and {gk}k ∈ R its
coordinates in the basis {B†k}k, and define :

uk′,k = u(i′,j′),(i,j) := δi′,0δi,0g(j′,j). (24)

Scalars uk′,k satisfy the property:
∑
k′,k uk′,kBk′B

†
k = H2.

Now define KL2 (ρs) = −N(ρ̄A ⊗ ρs) :=
∑
k,k′ Uk′,kρ̄A ⊗

Bk′B
†
kρs where Uk′,k is the unique operator satisfying:

LA(Uk′,kρ̄A) + S (−i(ck − ck′)Uk′,kρ̄A − Pk′,kρ̄A) = 0

Tr(Uk′,kρ̄A) = −1

2
Tr(Fkρ̄AF

†
k′) + iuk′,k − δck,ck′

τ̄

2
Tr[Fk,k′ ]

Consider the CP map:

K(ρs) =K0(ρs) + εK1(ρs) + ε2K2(ρs) +O(ε3)

:=(I − iε
∑
k

Mk − ε2N)(ρ̄A ⊗ ρs)(herm. conj.)

+ ε2KQ2 (ρs) +O(ε3). (25)

We can verify that:

Tr(K2) = Tr
(∑
k,k′

Uk′,kρ̄A ⊗Bk′B
†
kρs + herm. conj. (26)

+ τ̄ ρ̄A ⊗
∑
k,k′

δck, ck′ Tr[Fk,k′ ]B†kρsBk′

+
∑
k,k′

Fkρ̄AF
†
k′ ⊗B†kρsBk′

)
=
∑
k,k′

(
Tr(Uk′,kρ̄A) + Tr(Uk,k′ ρ̄A)? + Tr(Fkρ̄AF

†
k′)

+ τ̄ δck,ck′ Tr[Fk,k′ ]
)

Tr(Bk′B
†
kρs)

=0,

where we used the cycle property of the trace and then
the definition of Uk′,k and the hermiticity of H2. Hence
we proved K is trace preserving up to third order terms.
Moreover, it is possible to show that, by making use of
maps K0,K1,K2 as in (25), maps Ls,0,Ls,1 as in (1), and
[3, Lemma 6], the second-order invariance equation (7) is
satisfied with:

Ls,2(ρs) =
∑
k,k′

− (zk′,k + (ck − ck′)uk′,k)Bk′B
†
kρs

+ zk′,kB
†
kρsBk′ + herm. conj.

By making use of decomposition xk′,k =
∑
pΛk′,pΛ

?
k,p,

the previous expression simplifies into:

Ls,2(ρs) = −i

∑
k′,k

(yk′,k − i(ck − ck′)uk′,k)Bk′B
†
k , ρs


+
∑
k′,k,p

η?k,p ηk′,p

(
B†kρsBk′ −

1

2

(
Bk′B

†
kρs + ρsBk′B

†
k

))
,

which readily gives our expression for Ls,2 in Theorem 2.

C. Proof of Theorem 3

From the definitions of (h)Bk, Ck, and Dk, we have:
(h+1)Bk = [HB ,

(h)Bk] and (h+1)B†k = −[HB ,
(h)B†k].

By plugging the zero-order solution (8) and map K1(ρs)
from (9) into the first order invariance equation (6), and by
making use of (14), we obtain:∑

k

− iTr[Akρ̄A]⊗B†kρs

+ Tr[F 0
k ρ̄A]ρ̄A ⊗C†kρs

+ Tr[F 1
k ρ̄A]ρ̄A ⊗D†kρs

+ herm. conj. = ρ̄A ⊗ Ls,1(ρs). (27)

By considering Tr[F h
k ρ̄A] = 0 and by taking the partial trace

over HA in (27), we immediately obtain Ls,1(ρs) as in the
Theorem 3 and thus (6) is satisfied. By taking the trace of
K1(ρs) from (9) we also get: Tr[K1(ρs)]

= −i
∑
k,h

Tr[F h
k ρ̄A] Tr[(h)B†kρs] + herm. conj. = 0,

which proves that K is TP up to second-order terms.

D. Proof of Theorem 4
First, we define the map K2(ρs) and show that it satisfies

the second-order invariance equation (7). Let:

Qt(ρ̄A, ρs) :=
∑

k,k′∈{1,...,K}
h,h′∈{0,...,M}

µ

[
LA,µ, F

h
k

]
ρ̄A
[
LA,µ, F

h′

k′

]†

⊗ (h)B†k

(
e+i[HB ,... ]t(ρs)

)
(h′)Bk′

G(ρs) :=

∫ T

0

TrA [Qt(ρ̄A, ρs)] dt

KQ2 (ρs) =

∫ +∞

0

eLA(·)t−i[HB ,·]t
(
S
(
Qt(ρ̄A, ρs)

))
dt

+ τ̄ ρ̄A ⊗ G(ρs)



It is possible to show along the lines of [8, Claim 2] that
there exists T > 0 and τ̄ > 0 large enough such that KQ2 (·) is
a completely positive map and the following property holds
true:

LA(KQ2 (ρs))− i[HB , KQ2 (ρs)] + iKQ2 ([HB , ρs])

+ S
(∑

µ

∑
k,k′∈{1,...,K}
h,h′∈{0,1,2}

[
LA,µ, F

h
k

]
ρ̄A
[
LA,µ, F

h′
k′

]†

⊗ (h)B†k ρs
(h′)Bk′

)
= O(ε).

Now let Ek be the possibly non-unique operator such
that: [HB ,Ek] = Bk. Denote fhh

′

kk′ := Tr[F h
k ρ̄AF

h′ †
k′ ] and

ChX := Ch (HB , X). Define the operator:

KL2 (ρs) = −N(ρ̄A ⊗ ρs) + herm. conj.

:=
∑
k,k′,w

−Uh
kk′,wρ̄A ⊗ CwBk′ (h)B

†
k

ρs

+ α?kV
h
k′,wρ̄A ⊗ Cw(h)B†

k′Bk
ρs − w1

kk′ ρ̄A ⊗Ek′D
†
kρs

− w2
kk′ ρ̄A ⊗Dk′E

†
kρs − y

1
kk′ ρ̄A ⊗Bk′D

†
kρs

− y2kk′ ρ̄A ⊗Dk′B
†
kρs − zkk′ ρ̄A ⊗Ck′D

†
kρs + herm. conj.,

where Uk,k′,w and Vk′,w are the unique operators satisfying:

LA(Uh
k,k′,wρ̄A) + δw,0S(A†k′F

h
k ρ̄A)

− i(1− δw,0)S(Uh
k,k′,w−1ρ̄A) = 0,

LA(V h
k′,wρ̄A) + δw,0F

h
k′ ρ̄A

− i(1− δw,0)S(V h
k′,wρ̄A) = 0,

Tr[U0
k,k′,0ρ̄A] = −1

2
f00
kk′ , Tr[U0

k,k′,1ρ̄A] =
1

4
(f01
kk′ − f10

kk′),

Tr[U0
k,k′,2ρ̄A] = Tr[U0

k,k′,3ρ̄A] = 0

Tr[U1
k,k′,?ρ̄A] = Tr[U2

k,k′,?ρ̄A] = 0,

and where:

w1
kk′ :=

3

4
f10
kk′ −

1

4
f01
kk′ , w

2
kk′ :=

3

4
f01
kk′ ,

zkk′ := −1

2
(f12
kk′ − f21

kk′), y
1
kk′ :=

1

2
ix21kk′ , y

2
kk′ := −1

2
ix12kk′ .

Consider the CP map:

K(ρs) =K0(ρs) + εK1(ρs) + ε2K2(ρs) +O(ε3) (28)

:=(I − iε
∑
k

Mk − ε2N)(ρ̄A ⊗ ρs)(herm. conj.)

+KQ2 (ρs) +O(ε3).

By making use of K0,K1,K2 as in (28),Ls,0,Ls,1 as in (3),
and [3, Lemma 6], the second-order invariance equation (7)
reads as:

ρ̄A ⊗ Ls,2(ρs) =

=−
∑
k,k′

h∈{0,1,2}

(
Tr[A†k′F

h
k ρ̄A]ρ̄A ⊗Bk′

(h)B†kρs + herm. conj.
)

+
∑

k,k′,w=0

(
+ iTr[Uh

kk′,wρ̄A]ρ̄A ⊗ Cw+1

Bk′
(h)B

†
k

ρs

+ iw1
kk′ ρ̄A ⊗Bk′D

†
kρs − iw

2
kk′ ρ̄A ⊗Dk′B

†
kρs

+ iy1kk′ ρ̄A ⊗Ck′D
†
kρs − iy

2
kk′ ρ̄A ⊗Dk′C

†
kρs

+ izkk′ ρ̄A ⊗Dk′D
†
kρs + herm. conj.

)

+
∑

k,k′∈{1,...,K}
h,h′∈{0,1,2}

xhh
′

kk′ ρ̄A ⊗ (h)B†k ρs
(h′)Bk′ . (29)

Taking the partial trace over HA on both sides of expression
(29) yields:

Ls,2(ρs) = −iHs,2 ρs

+
∑

k,k′∈{1,...,K}
h,h′∈{0,1,2}

xhh
′

kk′

2

((h)
B†k ρs

(h′)Bk′ − (h′)Bk′
(h)B†kρs

)
+ herm. conj..

which readily simplifies to the Ls,2 in Theorem 4 by using
the decomposition Xkh,k′h′ =

∑
pΛkh,pΛ

?
k′h′,p.
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