J. Argaud, B. Bouriquet, H. Gong, Y. Maday, and O. Mula, Stabilization of (G)EIM in presence of measurement noise: application to nuclear reactor physics, Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2016, pp.133-145, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01393704

I. Babuska, Error-bounds for finite element method, Numerische Mathematik, vol.16, pp.322-333, 1970.

P. Binev, A. Cohen, W. Dahmen, R. Devore, G. Petrova et al., Data assimilation in reduced modeling, SIAM/ASA Journal on Uncertainty Quantification, vol.5, issue.1, pp.1-29, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01352283

S. Chaturantabut and D. Sorensen, Nonlinear model reduction via discrete empirical interpolation, SIAM J. Sci. Comput, vol.32, issue.5, pp.2737-2764, 2010.

R. Everson and L. Sirovich, Karhunen-Loève procedure for gappy data, J. Opt. Soc. Am. A, vol.12, issue.8, pp.1657-1664, 1995.

L. Fick, Y. Maday, A. T. Patera, and T. Taddei, A Reduced Basis Technique for Long-Time Unsteady Turbulent Flows, 2017.

C. Herzet, M. Diallo, and P. Héas, Beyond petrov-galerkin projection by using multi-space prior, European Conference on Numerical Mathematics and Advanced Applications (Enumath'17, 2017.

C. Herzet, M. Diallo, and P. Héas, Beyond Petrov-Galerkin projection by using multispace prior, Model Reduction of Parametrized Systems IV (MoRePaS'18, 2018.

Y. Maday, O. Mula, A. T. Patera, and M. Yano, The generalized empirical interpolation method: Stability theory on hilbert spaces with an application to the stokes equation, Computer Methods in Applied Mechanics and Engineering, vol.287, pp.310-334, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01032168

Y. Maday, O. Mula, and G. Turinici, Convergence analysis of the generalized empirical interpolation method, SIAM Journal on Numerical Analysis, vol.54, issue.3, pp.1713-1731, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01032458

A. Quarteroni, A. Manzoni, and F. Negri, Reduced Basis Methods for Partial Differential Equations, vol.92, 2016.