
HAL Id: hal-02395227
https://hal.inria.fr/hal-02395227

Preprint submitted on 5 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Edge Collapse and Persistence of Flag Complexes
Jean-Daniel Boissonnat, Siddharth Pritam

To cite this version:
Jean-Daniel Boissonnat, Siddharth Pritam. Edge Collapse and Persistence of Flag Complexes. 2019.
�hal-02395227�

https://hal.inria.fr/hal-02395227
https://hal.archives-ouvertes.fr

Edge Collapse and Persistence of Flag Complexes∗

Jean-Daniel Boissonnat
Université Côte d’Azur, INRIA, Sophia Antipolis, France
Jean-Daniel.Boissonnat@inria.fr

Siddharth Pritam
Université Côte d’Azur, INRIA, Sophia Antipolis, France
siddharth.pritam@inria.fr

Abstract1

In this article, we extend the notions of dominated vertex and strong collapse of a simplicial complex2

as introduced by J. Barmak and E. Miniam. We say that a simplex (of any dimension) is dominated3

if its link is a simplicial cone. Domination of edges appear to be very powerful and we study it4

in the case of flag complexes in more detail. We show that edge collapse (removal of dominated5

edges) in a flag complex can be performed using only the 1-skeleton of the complex. Furthermore,6

the residual complex is a flag complex as well. Next we show that, similar to the case of strong7

collapses, we can use edge collapses to reduce a flag filtration F to a smaller flag filtration Fc with8

the same persistence. Here again, we only use the 1-skeletons of the complexes. The resulting9

method to compute Fc is simple and extremely efficient and, when used as a preprocessing for10

Persistence Computation, leads to gains of several orders of magnitude wrt the state-of-the-art11

methods (including our previous approach using strong collapse). The method is exact, irrespective12

of dimension, and improves performance of Persistence Computation even in low dimensions. This13

is demonstrated by numerous experiments on publicly available data.14

2012 ACM Subject Classification Mathematics of computing, Topological Data Analysis, Compu-
tational geometry

Keywords and phrases Computational Topology, Topological Data Analysis, Strong Collapse, Per-
sistent homology

Lines 500

1 Introduction15

Improving the performance of computing persistent homology has been a central goal in16

Topological Data Analysis (TDA) since the early days of the field about 20 years ago. Very17

significant progress has been obtained on the two main components of the overall pipeline :18

the actual computation of persistence homology (PH) and the preprocessing of the sequence19

of complexes given as input. The first line of research led to improvement of the persistence20

algorithm and of its analysis, to efficient implementations and optimizations, and to a new21

generation of software [37, 8, 6, 45]. The other and complementary direction has been22

intensively explored with the goal of reducing the size of the complexes in the input sequence23

while preserving (or approximating in a controlled way) the persistent homology of the24

sequence [44, 30, 18, 13, 51, 41, 20, 27]. Among the most widely used complexes in TDA25

∗ This research has received funding from the European Research Council (ERC) under the European
Union’s Seventh Framework Programme (FP/2007- 2013) / ERC Grant Agreement No. 339025 GUDHI
(Algorithmic Foundations of Geometry Understanding in Higher Dimensions).

© Jean-Daniel Boissonnat, and Siddharth Pritam,;
licensed under Creative Commons License CC-BY

36th International Symposium on Computational Geometry (SoCG 2019).
Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:Jean-Daniel.Boissonnat@inria.fr
mailto:siddharth.pritam@inria.fr
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Edge Collapse and Persistence of Flag Complexes

are the flag complexes and, in particular, the Vietoris-Rips complexes. These complexes are26

of great theoretical and practical interest since they are fully characterized by their graph27

(or 1-skeleton) and can thus be stored in a very compact way. Specific algorithms and very28

efficient codes have been developped for those complexes [6, 51]. Despite all these advances,29

further decisive progress was obtained very recently both for general simplicial complexes [12]30

and for flag complexes [11] using a special type of collapses, called strong collapses, introduced31

by J. Barmak and E. Miniam [5]. The basic idea is to simplify the complexes of the input32

sequence by using strong collapses and to compute the PH of an induced sequence of reduced33

simplicial complexes whose PH is the same or a close approximation of the PH of the initial34

sequence. In the case of flag complexes, the critical observation was that the construction35

of the reduced sequence can be done using only the 1-skeletons of the complexes, without36

constructing the full complexes, therefore saving time and space.37

This paper further improves on these last results. Although the general philosophy is the38

same, there are some new key features that make the new method several orders of magnitude39

more efficient than all known methods.40

1. Instead of strong collapses, we use the so-called edges collapses. In fact, we more generally41

define k-collapses that are identical to the extended collapses introduced in [4] (see also42

the early work of V. Welker [53]). When k = 0, we have strong collapses and when k = 143

edge collapses. Edge collapses share with strong collapses some important properties. Most44

notably, we can use edge collapses to reduce flag filtrations F to smaller flag filtrations Fc45

with the same persistence, using only the 1-skeletons of the complexes.46

2. The reduction is exact and the PH of the reduced sequence is identical to the PH of47

the input sequence. Our algorithm thus computes the exact PH as does [6] but differs48

from [51, 11] where provably good approximations were computed.49

3. In [12] and in [11], the reduced sequence associated to a filtration was usually a tower50

(a sequence of simplicial complexes connected through simplicial maps), and part of the51

computing time was devoted to transforming this tower in another equivalent filtration using52

ideas from [26, 40]. There is no such need in the algorithm presented in this paper, which is53

another main source of improvement.54

4. The resulting method is simple and extremely efficient. On the theory side, we show that55

the edge collapse of a flag filtration can be computed in time O(nnc k2), where n and nc are56

the number of edges in the input and output 1-skeletons respectively and k is the maximal57

degree of a vertex in the input graph. The algorithm has been implemented. Numerous58

experiments on publicly available data show that the PH computation of flag complexes59

using edge collapse is much faster than with previous methods, and can even solve cases that60

were out of reach before. The code will be soon released in the Gudhi library [37].61

An outline of this paper is as follows. Section 2 recalls some basic ideas and constructions62

related to simplicial complexes and simple collapses. We introduce k-collapse and then63

edge collapse in Section 3. In Section 4, we prove that simple collapse preserves persistence.64

In Section 5, we provide the main algorithm that reduces a flag filtration to another flag65

filtration using edge collapse. Experiments are discussed in Section 6.66

J-D. Boissonnat and S. Pritam XX:3

2 Preliminaries67

In this section we provide some background material. Readers can refer to [38] for a68

comprehensive introduction to these topics.69

Simplex, simplicial complex and simplicial map. An abstract simplicial complex K is70

a collection of subsets of a non-empty finite set X, such that for every subset A in K, all71

the subsets of A are in K. From now on, we will call an abstract simplicial complex simply72

a simplicial complex or just a complex. An element of K is called a simplex. An element73

of cardinality k + 1 is called a k-simplex and k is called its dimension. Given a simplicial74

complex K, we denote its geometric realization as |K|. A simplex is called maximal if75

it is not a proper subset of any other simplex in K. A sub-collection L of K is called a76

subcomplex, if it is a simplicial complex itself.77

A map ψ : K → L between two simplicial complexes is called a simplicial map, if it always78

maps a simplex in K to a simplex in L. Simplicial maps are induced by vertex-to-vertex79

maps. A simplicial map ψ : K → L between two simplicial complexes K and L induces80

a continuous map |ψ| : |K| → |L| between the underlying geometric realizations. Any81

general simplicial map can be decomposed into more elementary simplicial maps, namely82

elementary inclusions (i.e., inclusions of a single simplex) and elementary contractions83

{{u, v} 7→ u} (where a vertex is mapped onto another vertex). The inverse operation of84

inclusion is called simplicial removal denoted as K ←↩ L, where L is a subcomplex of K.85

Flag complex and Neighborhood. A complex K is a flag or a clique complex if, when a86

subset of its vertices has pairwise edges between them, they span a simplex. It follows that87

the full structure of K is determined by its 1-skeleton (or graph) we denote by G. For a vertex88

v in G, the open neighborhood NG(v) of v in G is defined as NG(v) := {u ∈ G | [uv] ∈ E},89

here E is the set of edges of G. The closed neighborhood NG[v] is NG[v] := NG(v) ∪ {v}.90

Similarly we define the closed and open neighborhood of an edge [xy] ∈ G, NG[xy] and91

NG(xy) as NG[xy] := N [x] ∩ N [y] and NG(xy) := N(x) ∩ N(y), respectively. The above92

definitions can be extended to any k-clique σ = [v1, v2, ..., vk] of G; NG[σ] :=
⋂
vi∈σ N [vi]93

and NG(σ) :=
⋂
vi∈σ N(vi).94

Star, Link and Simplicial Cone. Let σ be a simplex of a simplicial complex K, the closed95

star of σ in K, stK(σ) is a subcomplex of K which is defined as follows, stK(σ) := {τ ∈96

K| τ ∪σ ∈ K}. The link of σ in K, lkK(σ) is defined as the set of simplices in stK(σ) which97

do not intersect with σ, lkK(σ) := {τ ∈ stK(σ)|τ ∩σ = ∅}. The open star of σ in K, stoK(σ)98

is defined as the set stK(σ) \ lkK(σ). It is not a subcomplex of K.99

Let L be a simplicial complex and a a vertex not in L. Then the simplicial cone aL is defined100

as aL := {a, τ | τ ∈ L or τ = σ ∪ a; where σ ∈ L}.101

Sequences of complexes. A sequence of simplicial complexes T : {K1
f1−→ K2

f2−→ K3
f3−→102

· · ·
f(m−1)−−−−→ Km}, connected through simplicial maps fi is called a simplicial tower or103

simply a tower. We call a tower a flag tower if all the simplicial complexes Ki are flag104

complexes. When all the simplicial maps the fi are inclusions, then the tower is called a105

filtration and a flag tower is called a flag filtration.106

SoCG 2020

XX:4 Edge Collapse and Persistence of Flag Complexes

Persistent homology. If we compute the homology classes of all the Ki, we get the sequence107

P(T) : {Hp(K1) f∗1−→ Hp(K2) f∗2−→ Hp(K3) f∗3−→ · · ·
f∗(m−1)−−−−→ Hp(Km)}. Here Hp() denotes the108

homology class of dimension p with coefficients from a field F and f∗i is the homomorphism109

induced from fi. P(T) is a sequence of vector spaces connected through the f∗i called a110

persistence module. More formally, a persistence module V is a sequence of vector spaces111

{V1 −→ V2 −→ V3 −→ · · · −→ Vm} connected with homomorphisms {−→} between them. A112

persistence module arising from a sequence of simplicial complexes captures the evolution of113

the topology of the sequence.114

Any persistence module can be decomposed into a collection of intervals of the form [i, j)115

[14]. The multiset of all the intervals [i, j) in this decomposition is called the persistence116

diagram of the persistence module. An interval of the form [i, j) in the persistence diagram117

of P(T) corresponds to a homological feature (a ‘cycle’) which appeared at i and disappeared118

at j. The persistence diagram (PD) completely characterizes the persistence module, that119

is, there is a bijective correspondence between the PD and the equivalence class of the120

persistence module [14, 58].121

Two different persistence modules V : {V1 −→ V2 −→ · · · −→ Vm} and W : {W1 −→W2 −→ · · · −→122

Wm}, connected through a set of homomorphisms φi : Vi →Wi are equivalent if the φi are123

isomorphisms and the following diagram commutes [14, 24]. Equivalent persistence modules124

have the same interval decomposition, hence the same diagram.125

V1 V2 · · · Vm−1 Vm

W1 W2 · · · Wm−1 Wm

φ1 φ2 φm−1 φm126

Simple collapse. Given a complex K, a simplex σ ∈ K is called a free simplex if σ has127

a unique coface τ ∈ K. The pair {σ, τ} is called a free pair. The action of removing a128

free pair: K → K \ {σ, τ} is called an elementary simple collapse. A series of such129

elementary simple collapses is called a simple collapse. We denote it as K ↘ L. This130

operation preserves the homotopy type of the simplicial complex K, which we write K ∼ L.131

In particular, there is a retraction map |r| : |K| → |L| between the underlying geometric132

realization of K and L which is a strong deformation retraction. A complex K ′ will be called133

simply-minimal if there is no free pair {σ, τ} in K ′. A subcomplex Kec of K is called134

elementary core of K if K↘Kec and Kec is simply-minimal.135

Removal of a simplex. We denote by K \ σ the subcomplex of K obtained by removing σ,136

i.e. the complex that has all the simplices of K except the faces and the cofaces of σ.137

3 Edge Collapse138

In this section, we first extend the definition of a dominated vertex introduced in [5] to139

simplices of any dimension. Given a simplex σ ∈ K, we denote by Σσ the set of maximal (for140

the inclusion) simplices of K that contain σ. The intersection of all the maximal simplices in141

Σσ will be denoted as
⋂

Σσ :=
⋂
τ∈Σσ τ .142

J-D. Boissonnat and S. Pritam XX:5

Dominated simplex. A simplex σ in K is called a dominated simplex if the link lkK(σ)143

of σ in K is a simplicial cone, i.e. if there exists a vertex v′ /∈ σ and a subcomplex L of K,144

such that lkK(σ) = v′L. We say that the vertex v′ is dominating σ and that σ is dominated145

by v′, which we denote as σ ≺ v′.146

k-collapse. Given a complex K, the action of removing a dominated k-simplex σ from K147

is called an elementary k-collapse, denoted as K↘↘k{K \ σ}. A series of elementary148

k-collapses is called a k-collapse, denoted as K ↘↘k L. We further call a complex K149

k-minimal if it does not have any dominated k simplices. A subcomplex Ko of K is called150

a k-core if K ↘↘k Ko and Ko is k-minimal.151

The notion of k-collapse is the same as the notion of extended collapse introduced in [4].152

We give it a different name to indicate the dependency on the dimension. A 0-collapse is153

a strong collapse as introduced in [5]. A 1-collapse will be called an edge collapse. It is154

not hard to see that an elementary simple collapse of a k-simplex σ is a k-collapse, as it is155

dominated by the vertex v = τ \ σ, where τ is the unique coface containing σ.156

The following lemma extends a result in [5] to general k-collapse. It shows that the domination157

of a simplex can be characterized in terms of maximal simplices.158

I Lemma 1. A simplex σ ∈ K is dominated by a vertex v′ ∈ K, v′ /∈ σ, if and only if all159

the maximal simplices of K that contain σ also contain v′, i.e. v′ ∈
⋂

Σσ.160

Proof. Since σ ≺ v′, lkK(σ) = v′L by definition. This implies that for any maximal simplex161

τ in stK(σ), v′ ∈ τ . Therefore, v′ ∈
⋂

Σσ. For the reverse direction, let v′ ∈
⋂

Σσ. Therefore,162

for any maximal simplex τ in stK(σ), we have v′ ∈ τ . Now since v′ /∈ σ, v′ belong to all the163

simplices τ \ σ, therefore lkK(σ) = v′L. Hence σ ≺ v′ if and only if v′ ∈
⋂

Σσ. J164

Lemma 1 has important algorithmic consequences. To perform a k-collapse, one simply needs165

to store the adjacency matrix between the k-simplices and the maximal simplices of K.166

Next we study the special case of a flag complex K and characterize the domination of a167

simplex σ of a flag complex K in terms of its neighborhood.168

I Lemma 2. Let σ be a simplex of a flag complex K. Then σ will be dominated by a vertex169

v′ if and only if NG[σ] ⊆ NG[v′].170

Proof. Assume that NG[σ] ⊆ NG[v′] and let τ be a maximal simplex of K that contains σ.171

For a vertex x ∈ τ and for any vertex v ∈ σ, the edge [x, v] ∈ τ . Therefore x ∈ NG[σ] ⊆ NG[v′].172

Every vertex in τ is thus linked by an edge to v′ and, since K is a flag complex and τ is173

maximal, v′ must be in τ . This implies that all the maximal simplices that contains σ also174

contain v′. Hence σ is dominated by v′.175

Consider the other direction. If σ ≺ v′, by Lemma 1, all the maximal simplices containing σ176

also contains v′. This implies NG[σ] ⊆ NG[v′]. J177

The above lemma is a generalisation of Lemma 1 in [11]. The next lemma, though trivial, is of178

crucial significance. Both lemmas show that edge collapses are well suited to flag complexes.179

I Lemma 3. Let K be a flag complex and let L be any subcomplex of K obtained by edge180

collapse. Then L is also a flag complex.181

SoCG 2020

XX:6 Edge Collapse and Persistence of Flag Complexes

1

2

3
4

5
6

7

Figure 1 The above complex does not have any dominated vertex. However, by proceeding from
the edges at the boundary one can edge collapse this complex to a 1-dimensional complex. The
1-core obtained in this way can be further reduced to a point using 0-collapse.

182

183

184

1

2

3

4

5

6

1

2

3

4

5

6

1

2

3

4

5

6

Figure 2 The complex in the left has two different 1-cores, the one in the middle is obtained
after removing the inner edges [1, 3] and [4, 6], and the one in the right by removing outer edges
[1, 2] and [4, 5]. Note that the one in the right has further possibility of strong collapse (0-collapse).

188

189

190

Efficiency of reduction. In the practical cases we have considered (see Section 6), the185

ability of edge collapse to reduce the size of a complex is either comparable or superior than186

that of vertex collapse. This is llustrated in Figure 1, see also the torus example in Section 6.187

NP Completeness. Unlike strong collapses (0-collapses), edge collapses (1-collapses) do191

not guarantee to have a unique core as illustrated in Figure 2. This leads to the natural192

optimization problem of computing an optimal sequence of edge collapses. However, this193

problem is difficult. More precisely, the following variant : Given a simplicial complex K, is194

it possible to compute a smallest 1-core (in terms of the number of edges), is strongly NP-195

complete as shown below. To prove this, we will first recall a result of Egeciglu and Gonzalez196

[33]. Let K be a connected pure 2-dimensional simplicial complex that is embeddable in R3
197

and consider the following decision problem: given an integer k, does there exist a subset198

S of 2-simplices of K with |S| ≤ k such that K \ S simply collapses to a 1-dimensional199

subcomplex of K. This problem is strongly NP-complete [33].200

We will show that, for a 2-dimensional complex, elementary edge collapses and elementary201

simple collapses are equivalent. It will then follow that finding an optimal edge collapse is202

NP-complete as well.203

I Lemma 4. Let e be an edge of a 2-dimensional complex K. Then e is dominated in K if204

and only if it is free, i.e. if it has a unique coface.205

Proof. Let e = [xy] be a dominated edge of K. By Lemma 1, there exists a vertex v′ /∈ e of206

J-D. Boissonnat and S. Pritam XX:7

K such that v′ ∈
⋂

Σe. Hence, the 2-simplex [x, y, v′] ∈
⋂

Σe. Now, as K is 2 dimensional,207

the maximal simplices are 2-dimensional and we must have [x, y, v′] = Σe. This implies that208

e is a free edge. The other direction is obvious since a free edge is always dominated. J209

Using the above lemma and the result by Egeciglu and Gonzalez [33], we get:210

I Theorem 5. Let K be a simplicial complex that is connected, pure, 2-dimensional and211

embeddable in R3, and let k be an integer. It is strongly NP-complete to decide whether212

there exists a subset S of 2-simplices of K, with |S| ≤ k, such that there is an edge collapse213

from K \ S to a 1-dimensional subcomplex of K.214

4 Simple Collapse and Persistence215

In this section we provide one of the main result of this article. This can be seen as a216

generalization of Theorem 2 of [12].217

I Theorem 6. Let f : K → L be a simplicial map between two complexes K and L and let Kec
218

and Lec be the associated elementary cores. Then there exists a map fec : Kec ↔ Lec, induced219

by f , such that the persistence of f∗ : Hp(K)→ Hp(L) and fec∗ : Hp(Kec)↔ Hp(Lec) are220

the same for any integer p ≥ 0. The induced map fec may not be simplicial. Nevertheless, it221

can be expressed as a combination of inclusions, contractions and removals of simplices.222

Proof. Let us consider the following diagram between the geometric realizations of the223

complex |K|, |L|, |Kec| and |Lec|.224

|K| |L|

|Kec| |Lec|

|f |

|rk| |rl|
|fec|

|ik| |il|225

and the associated diagram after computing the p-th singular homology groups226

Ho
p(|K|) Ho

p(|L|)

Ho
p(|Kec|) Ho

p(|Lec|)

|f |∗

|rk|∗ |rl|∗

|fec|∗
|ik|∗ |il|∗227

Here |rk| and |rl| are the deformation retractions on the geometric realizations associated228

with the simple collapse and |ik| and |il| are the inclusion maps. Ho
p() denotes the singular229

homology and * is the induced homomorphisms by the corresponding continuous maps. The230

map |fec| is defined as |fec| := |rl||f ||ik|. Now by definition |fec||rk| = |rl||f ||ik||rk|. And231

|rl||f ||ik||rk| ∼ |rl||f | (homotopic) since |rk| is a deformation retraction, therefore |ik||rk| is232

homotopic to the identity over |K|. Since homotopic maps induce identical homomorphisms233

on the corresponding homology groups, we have |fec|∗|rk|∗ = |rl|∗|f |∗ (commutativity) [38,234

Proposition 2.19]. Also, since |rk|∗, |rl|∗ are induced by deformation retractions, they are235

isomorphisms on their respective singular homology groups. This proves that the two maps236

|f | : |K| → |L| and |fec| : |Kec| → |Lec| have the same singular persistent homology. Now for237

simplicial complexes, singular homology is isomorphic to simplicial homology [38, Theorem238

SoCG 2020

XX:8 Edge Collapse and Persistence of Flag Complexes

2.27]. Since |fec| = |rl||f ||ik| and the inclusion ik and f are simplicial except rl which239

is removal of simplices, fec can be expressed as composition of inclusions, contractions240

and removals of simplices. Therefore, we deduce that the persistent simplicial homologies241

f∗ : Hp(K)→ Hp(L) and fec∗ : Hp(Kec)↔ Hp(Lec) are equivalent. J242

The use of singular homology in the proof is due to the lack of a simplicial map associated243

with the retraction (|r|) of simple collapse. Due to the same reason, the induced map244

fec : Kec ↔ Lec between the elementary cores may not be necessarily simplicial. Nevertheless,245

the proof explicitly constructs this map and shows that it can be expressed as a combination246

of inclusions, contractions and removals of simplices. When a sequence of simplicial complexes247

contains removals of simplices, it is called a zigzag sequence. There are algorithms [45, 42] to248

compute zigzag persistence but they are not as efficient as the usual algorithms for filtrations249

and towers.250

In the next section, we consider the case of flag filtrations and show that we can restrict the251

way the edge collapses are performed so that the reduced filtration is also a flag filtration.252

5 Edge collapse of a flag filtration253

In Section 3, we have introduced edge collapse for general simplicial complexes and provided254

an easy criterion for edge-domination in a flag complex using only the 1-skeleton of the255

complex. In this section, we provide an algorithm to simplify a flag filtration using edge256

collapse and again using only the 1-skeleton of the complex.257

The correctness of the following algorithm rely on the notion of removable edge. Let G258

be a graph and K be the associated flag complex. We say that an edge e in a graph G is259

removable either if it is dominated in K or if there exists a sequence of edge collapses in260

K such that e is dominated in the reduced complex Kc. Let Gc ⊆ G be the 1-skeleton of261

Kc. The flag complexes K and Kc are homotopy equivalent and we say that G and Gc are262

edge-equivalent, which we denote as G ∼e Gc.263

Algorithm. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→ G2 ↪→264

· · · ↪→ Gn be the associated sequence of 1-skeletons. We further assume that Gi ↪→ Gi+1 is265

an elementary inclusion, namely the inclusion of a single edge we name ei+1. The edges in266

E := {e1, ..., en} are thus indexed by their order in the filtration and we denote by Gi the267

subset {e1, ..., ei}. Our algorithm computes a subset of edges Ec ⊆ E and attach to each268

edge in Ec a new index. We thus obtain a new sequence of flag complexes Fc, we call the269

core sequence. The construction of Ec and of the new indices is done so that Fc has the270

same persistence diagram as F .271

We now explain how to compute Ec. See [Algorithm 1] for the pseudo-code. The main272

for loop on line 6 (called the forward loop) iterates over the edges in the filtration F by273

increasing filtration values, i.e. in the forward direction, and check whether or not the current274

edge ei is dominated in the graph Gi. If not, we insert ei in the set Ec and assign i as the275

new index of ei (i.e. we keep the original index). Note that we check the domination of ei276

in Gi, not in the final graph Gn. The non-domination of ei in Gi implies that Gi and Gi−1277

are not edge equivalent and therefore the status of some edges that were dominated in Gi−1278

can change to non-dominated. This is why, after the insertion of edge ei in Ec, we trigger279

J-D. Boissonnat and S. Pritam XX:9

another search in Gi by decreasing filtration values, i.e. in the reverse direction ([Line 9-26]),280

called the backward loop).281

If e = [u, v], we define the edge-neighborhood of an edge e ∈ G as NEIGHBORS(e,G) =282

{[x, y], x ∈ {u, v}, y ∈ NG([uv])}. Notice that the only edges that can change their status283

are in the edge-neighbourhood of an edge that has been inserted in Ec (Lemma 8). To284

benefit from this fact and to restrict the search, we assign Gi to a temporary graph G, and285

we assign the edge-neighborhood of ei in the graph Gi to Enbd [Line 9-10]. Thereafter, we286

iterate through the edges of Gi in decreasing order of their indices [Line 12-26]. Specifically,287

we proceed as follows. If an edge ej 6∈ Ec and ej /∈ Enbd [Line 13-14], ej is still dominated288

and we remove it from G [Line 22]. If ej 6∈ Ec and ej ∈ Enbd, then we check whether it is289

dominated or not. If ej is dominated, we remove it from G [Line 19]. Otherwise, we insert290

ej in Ec and assign to it the new index i, i.e. the index of the edge ei that has triggered291

the backward search in Gi. Next we enlarge the edge-neighborhood Enbd by inserting the292

edge-neighbors of ej in G. We then repeat this process [Line 12-26] until the last index293

(j = 1) in Gi. Upon termination of the forward loop [Line 6-30], we output Ec as the final294

set.295

We now prove the correctness of the above algorithm after some more definitions.329

Critical Edges: Edges in Ec are called critical while edges in E\Ec are called non-critical.330

All edges have an original index i given by the insertion order in the input filtration F . The331

critical edges received a second index j, called their critical index, when they are inserted332

in Ec. By convention, if an edge is not critical and thus has never been inserted in Ec, we333

will set its critical index to be ∞. Hence, at the end of Algorithm 1, each edge e ∈ E has334

two indices, an original and a critical index. To make this explicit, we denote e as eji . Clearly335

i ≤ j. We further distinguish the cases i = j and i < j. If i = j, ei has been put in Ec336

during a forward move (forward loop) and we call ei a primary critical edge. If i < j, ei337

has been put in Ec during a backward move (backward loop) and we call it a secondary338

critical edge.339

For i = 1, ..., n, we define the critical graph at index i, denoted Gci , whose edges are the340

edges in Ec with a critical index at most i. We denote the associated flag complex as Kc
i .341

Correctness. We now prove some lemmas to certify the correctness of our algorithm. The342

following simple lemma justifies the fact that the search for new critical edges during the343

backward loop of Algorithm 1 is restricted to the neighborhood of already found critical344

edges.345

I Lemma 7. Let e be an edge in a graph G and let e′ be a new edge. If e is dominated in G346

and does not belong to ENG′(e′), then it is still dominated in G′ = G ∪ e′.347

The following lemma characterizes non-critical and critical edges in terms of being dominated348

or removable in certain specific graphs Gi. It essentially says that a non-critical edge is349

always removable and that a critical edge is removable until it becomes critical.350

I Lemma 8. Let eji be an edge with i < j, then it is removable in all Gt, i ≤ t < min(n+1, j).351

Proof. According to the algorithm, if i < j, eji is dominated in Gi (j being finite or not).352

SoCG 2020

XX:10 Edge Collapse and Persistence of Flag Complexes

Algorithm 1 Core flag filtration algorithm296

1: procedure Core-Flag-Filtration(E)297

2: input : set of edges E of GF sorted by filtration value.298

3: Ec ← ∅; i← 1;299

4: Enbd ← ∅300

5: G← ∅301

6: for ei ∈ E do . For i = 1, ..., n in increasing order302

7: if ei is non-dominated in Gi then303

8: Insert {ei, i} in Ec.304

9: G← Gi305

10: Enbd ← NEIGHBORS(ei, Gi)306

11: j ← i− 1307

12: for ej in Gi do . For j = (i− 1), ..., 1 in decreasing order308

13: if ej /∈ Ec then309

14: if ej ∈ Enbd then310

15: if ej is non-dominated in G then311

16: Insert {ej , i} in Ec.312

17: Enbd ← Enbd ∪NEIGHBORS(ej , G)313

18: else314

19: G← G \ ej315

20: end if316

21: else317

22: G← G \ ej318

23: end if319

24: end if320

25: j ← j − 1321

26: end for322

27: end if323

28: G← ∅324

29: i← i+ 1325

30: end for326

31: return Ec . Ec is the 1-skeleton of the core flag filtration.327

32: end procedure328

Let us first consider the case i < j = ∞. Note that e∞i is non-critical and let ji be the353

smallest primary critical index greater than i. If no such index exists, set ji = n+ 1. We354

show by induction that e∞i remains removable in all Gt, i ≥ t < n+ 1. As shown above, it355

is true for t = i since eji is dominated in Gi. So assume that eji is removable in Gt−1 and356

consider the insertion of et in Gt, for some t < ji. By definition of ji, et is dominated in Gt,357

which implies that eji is removable in Gt.358

Consider now t = ji. Since eji is a primary critical edge, it is non-dominated in Gji .359

According to the algorithm, a backward loop has been triggered at ji. During this backward360

loop, e∞i has not been inserted in Ec since its second critical index is∞, This is only possible361

because e∞i has been found to be dominated in G. Since G is initialized as Gji , it follows362

that e∞i is removable in Gji . We can now proceed in a similar way for all t, ji < t < n+ 1.363

Consider now the case i < j ≤ n. The proof is very similar to the previous case. As eji has364

J-D. Boissonnat and S. Pritam XX:11

not been inserted in Ec until the backward loop triggered at index j, eji remains removable365

in all Gt, i ≤ t < j. J366

Note that our statement does not imply that a critical edge eji , i < j ≤ n, can never be367

removable in Gt, t ≥ j. It just means that we are sure that it will remain removable until368

the point it becomes critical. By definition, Gi \Gci = {emt | t ≤ i,m ≥ i} is the set of edges369

whose critical index m ≥ i, including the non-critical edges (m =∞). Using Lemma 8,370

I Lemma 9. For each i, Gci ∼e Gi.371

The proof of the following theorem certifying the correctness of our algorithm follows directly372

through the application of Lemma 9 and Theorem 6.373

I Theorem 10. Let F : K1 ↪→ K2 ↪→ · · · ↪→ Kn be a flag filtration and GF : G1 ↪→ G2 ↪→374

· · · ↪→ Gn be the associated sequence of 1-skeletons, such that Gi ↪→ Gi+1 is an elementary375

inclusion of an edge ei+1. Let Gci be the critical graph and Kc
i be its flag complex as defined376

before. Then the associated flag filtration of the critical edges, Fc : Kc
1 ↪→ Kc

2 ↪→ · · · ↪→ Kc
n377

is equivalent to F .378

Proof. Let us consider the following diagram of the flag complexes for any i ∈ {1, ..., n},379

where Kc
i is the flag complex of the critical graph Gci .380

Ki Ki+1

Kc
i Kc

i+1

ri ri+1381

Using Lemma 9, Ki is homotopic to Kc
i . And ri is a deformation retraction induced by the382

corresponding edge collapse. Now let us consider the following diagram after computing the383

homology groups.384

Hp(Ki) Hp(Ki+1)

Hp(Kc
i) Hp(Kc

i+1)

ri
∗ ri+1

∗385

The equivalence of the persistence then follows directly from the application of Theorem 6. J386

Complexity: Write nv for the total number of vertices, n for the total number of edges and387

k for the maximum degree of a vertex in Gn. We represent each graph Gi as an adjacency388

list, where every vertex stores a sorted list of at most k adjacent vertices. Additionally, we389

store the set of edges (E and Ec) as a separate data structure.390

The cost of inserting and removing an edge from such an adjacency list is O(k). Since the391

size of NG[v] is at most k for any vertex v, the cost of computing NG[e] for an edge e is392

O(k). Checking if an edge e is dominated by a vertex v ∈ NG[e] reduces to checking whether393

NG[e] ⊆ NG[v]. Since all the lists are sorted, this operation takes O(k) time per vertex v,394

hence O(k2) time in total.395

SoCG 2020

XX:12 Edge Collapse and Persistence of Flag Complexes

Let us now analyze the worst-case time complexity of Algorithm 1. At each step i of the396

forward loop [Line 6], either ei is dominated (which can be checked in O(k2) time) or an397

backward loop is triggered [Line 12]. The backward loop will consider all edges with (original)398

index at most i and check whether they are dominated or not. Writing nc for the number of399

primary critical edges, the worst-case time complexity is nk2 +
∑nc
i=1 nk

2 = O(nnck2). The400

space complexity is O(n). In practice, nc is a small fraction of n (see Table 1).401

6 Computational Experiments402

Our algorithm [Algorithm 1] has been implemented for VR filtrations as a C++ module403

named EdgeCollapser. Our previous preprocessing method described in [11] to simplify404

VR filtrations using strong collapse is called the VertexCollapser (previously called the405

RipsCollapser). Both EdgeCollapser and VertexCollapser take as input a VR filtration and406

return the reduced flag filtration according to their respective algorithms.407

We present results on five datasets netw-sc, senate, eleg, HIV and torus. The first four408

datasets are publicly available [22] and are given as the interpoint distance matrix of the points.409

The last dataset torus has 2000 points sampled in a spiraled fashion on a torus embedded in410

a 3-sphere of R4 [39]. The reported time includes the time of EdgeCollapser/VertexCollapser411

and the time to compute the persistent diagram (PD) using the Gudhi library [37].412

The code has been compiled using the compiler ‘clang-900.0.38’ and all computations were413

performed on a ‘2.8 GHz Intel Core i5’ machine with 16 GB of available RAM. Both414

EdgeCollapser and VertexCollapser work irrespective of the dimension of the complexes415

associated to the input datasets. However, the size of the complexes in the reduced filtration,416

even if much smaller than in the original filtration, might exceed the capacities of the PD417

computation algorithm. For this reason, we introduced, as in Ripser (a state of the art418

software to compute PH of VR complex [6]), a parameter dim and restricts the expansion of419

the flag complexes to a maximal dimension dim.420

The experimental results using EdgeCollapser are summarized in Table 1. Observe that422

the reduction in the number of edges done by EdgeCollapser is quite significant. The ratio423

between the number of initial edges and the number of critical edges is approximately 20. If424

the number of edges in a graph is |E| then the size of the (k+1)-cliques O(|E|k). Therefore the425

reduction in the size of k-simplices can be as large as O(20k). This is verified experimentally426

too, as the reduced complexes are small and of low dimension (column Size/Dim) compared427

to the input VR-complexes which are of dimensions respectively 57, 54 and 105 for the first428

three datasets netw-sc, senate and eleg. 1
429

Comparison with VertexCollapser. The same set of experimental results using Vertex-430

Collapser are summarized in Table 2. VertexCollapser can be used in two modes: in the431

exact mode (step=0), the output filtration has the same PD as the input filtration while,432

in the approximate mode (step>0), a certified approximation is returned. For appropriate433

comparison, we use VertexCollapser in exact mode. It can be seen that EdgeCollapser is faster434

than VertexCollapser by approximately two orders of magnitude. The main reason for this is435

the efficient preprocessing algorithm behind EdgeCollapser. As it can be noticed in some436

1 The sizes of the complexes are so big that we could not compute the exact number of simplices.421

J-D. Boissonnat and S. Pritam XX:13

cases, the reduction obtained using by VertexCollapser is better than using EdgeCollapser,437

but even in those cases EdgeCollapser is faster than VertexCollapser.438

In terms of size reduction, EdgeCollapser either outperforms VertexCollapser by a big439

amount or is comparable. Some intuition can be gained from the case of torus. This is a well440

distributed point sets sampled from a manifold without boundary. The fact that there is no441

boundary implies that there are only few dominated vertices, which dramatically reduces442

the capacity of VertexCollapser to collapse. To better grasp this fact, one can play with443

examples of well distributed points on a circle or a sphere (without boundary) and on a disk444

(with boundary). Remarkably, EdgeCollapser does not face this problem. in this case.445

EdgeCollapser computes the exact PD of the input filtration while VertexCollapser has an446

exact and an approximate modes, Results in Table 2 are obtained using the exact mode of447

VertexCollapser, while results in Table 1 [11] are obtained using the approximate mode. In448

both cases, EdgeCollapser performs much better than VertexCollapser. It would be easy to449

implement an approximate version of EdgeCollapser similarly to what has been done for450

VertexCollapser. Instead of triggering the backward loop of the algorithm [Line12-26] at each451

primary critical edge we find, we can trigger the backward loop at certain snapshot values452

only. See Section 5 of [11] for more details on the approximate methodology and description453

of snapshot.454

455 Data Pnt Thrsld EdgeCollapser +PD
456 Edge(I)/Edge(C) Size/Dim dim Pre-Time Tot-Time
457 netw-sc 379 5.5 8.4K/417 1K/6 ∞ 0.62 0.73
458 senate 103 0.415 2.7K/234 663/4 ∞ 0.21 0.24
459 eleg 297 0.3 9.8K/562 1.8K/6 ∞ 1.6 1.7
460 HIV 1088 1050 182K/6.9K 86.9M/? 6 491 2789
461 torus 2000 1.5 428K/14K 44K/3 ∞ 288 289

Table 1 The columns are, from left to right: dataset (Data), number of points (Pnt), max-
imum value of the scale parameter (Thrsld), Initial number of edges/Critical (final) number of
edges Edge(I)/Edge(C), number of simplices (Size) and dimension of the final filtration (Dim),
parameter (dim), time (in seconds) taken by Edge-Collapser and total time (in seconds) including
PD computation (Tot-Time).

462

463

464

465

466

467 Data Pnt Thrsld VertexCollapser +PD
468 Size/Dim dim Pre-Time Tot-Time Step Snaps
469 netw-sc 379 5.5 175/3 ∞ 366.46 366.56 0 8420
470 senate 103 0.415 417/4 ∞ 15.96 15.98 0 2728
471 eleg 297 0.3 835K/16 ∞ 518.36 540.40 0 9850
472 HIV 1088 1050 127.3M/? 4 660 3,955 4 184
473 torus 2000 1.5 4 ∞* ∞ 0 428K

Table 2 The columns are, from left to right: dataset (Data), number of points (Pnt), maximum
value of the scale parameter (Thrsld), number of simplices (Size) and dimension of the final
filtration (Dim), parameter (dim), time (in seconds) taken by VertexCollapser, total time (in
seconds) including PD computation (Tot-Time), parameter Step (linear approximation factor) and
the number of snapshots used (Snaps). *The last experiment (torus) could not finish (>12hrs) the
preprocessing due to large number of snapshots and the size of the complex.

474

475

476

477

478

479

SoCG 2020

XX:14 Edge Collapse and Persistence of Flag Complexes

Comparison with Ripser. Ripser [6] computes the exact PD associated to the input filtration481

up to dimension dim. EdgeCollapser (as well as VertexCollapser) are not really competitors482

of Ripser since they act more as a preprocessing of the input filtration and do not compute483

Persistence Homology. Hence they can be associated to any software computing flag filtrations.484

Nevertheless, we run Ripser2 on the same datasets as in Table 1 to demonstrate the benefit485

of using EdgeCollapser. Results are presented in Table 3. The main observation is that, in486

most of the cases, EdgeCollapser computes PD in all dimensions and outperforms Ripser,487

even when we restrict the dimension of the input filtration given to Ripser.488

489 Data Pnt Threshold Val Val Val
490 dim Time dim Time dim Time
491 netw-sc 379 5.5 4 25.3 5 231.2 6 ∞
492 senate 103 0.415 3 0.52 4 5.9 5 52.3
493 ” ” ” 6 406.8 7 ∞
494 eleg 297 0.3 3 8.9 4 217 5 ∞
495 HIV 1088 1050 2 31.35 3 ∞
496 torus 2000 1.5 2 193 3 ∞

Table 3 Time is the total time (in seconds) taken by Ripser. ∞ means that the experiment ran
longer than 12 hours or crashed due to memory overload.

497

498

Acknowledgements. We want to thank Marc Glisse for useful discussions and Vincent499

Rouvreau for his help with Gudhi.500

References501

1 M. Adamaszek and J. Stacho. Complexity of simplicial homology and independence complexes502

of chordal graphs. Computational Geometry: Theory and Applications, 57:8–18, 2016.503

2 D. Attali, A. Lieutier, and D. Salinas. Efficient data structure for representing and simplifying504

simplicial complexes in high dimensions. International Journal of Computational Geometry505

and Applications (IJCGA), 22:279–303, 2012.506

3 Dominique Attali and André Lieutier. Geometry-driven collapses for converting a čech complex507

into a triangulation of a nicely triangulable shape. Discrete & Computational Geometry,508

54(4):798–825, 2015.509

4 Dominique Attali, André Lieutier, and David Salinas. Vietoris-rips complexes also provide510

topologically correct reconstructions of sampled shapes. Computational Geometry, 46(4):448–511

465, 2013.512

5 J. A. Barmak and E. G. Minian. Discrete and Computational Geometry, pages 301–328.513

6 U. Bauer. Ripser. URL: https://github.com/Ripser/ripser.514

7 U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: Computing persistent homology515

in chunks. In Topological Methods in Data Analysis and Visualization III, Mathematics and516

Visualization, pages 103–117. 2014.517

8 U. Bauer, M. Kerber, J. Reininghaus, and H. Wagner. PHAT – persistent homology algorithms518

toolbox. Journal of Symbolic Computation, 78, 2017.519

9 J-D. Boissonnat and C. S. Karthik. An efficient representation for filtrations of simplicial520

complexes. In ACM Transactions on Algorithms, 2018.521

2 We used the command <./ripser inputData –format distances –threshold inputTh –dim inputDim >.480

https://github.com/Ripser/ripser

J-D. Boissonnat and S. Pritam XX:15

10 J-D. Boissonnat, C. S. Karthik, and S. Tavenas. Building efficient and compact data structures522

for simplicial complexes. Algorithmica, 79:530–567, 2017.523

11 J-D. Boissonnat and S. Pritam. Computing persistent homology of flag complexes via strong524

collapses. International Symposium on Computational Geometry (SoCG), 2019.525

12 J-D. Boissonnat, S.Pritam, and D. Pareek. Strong Collapse for Persistence. In 26th Annual526

European Symposium on Algorithms (ESA 2018), volume 112, 2018.527

13 M. Botnan and G. Spreemann. Approximating persistent homology in euclidean space through528

collapses. In: Applicable Algebra in Engineering, Communication and Computing, 26:73–101.529

14 G. Carlsson and V. de Silva. Zigzag persistence. Found Comput Math, 10, 2010.530

15 G. Carlsson, V. de Silva, and D. Morozov. Zigzag persistent homology and real-valued functions.531

International Symposium on Computational Geometry (SoCG), pages 247–256, 2009.532

16 G. Carlsson, T. Ishkhanov, V. de Silva, and A. Zomorodian. On the local behavior of spaces533

of natural images. In: International Journal of Computer Vision, 76:1–12, 2008.534

17 J. M. Chan, G. Carlsson, and R. Rabadan. Topology of viral evolution. In: Proceedings of the535

National Academy of Sciences, 110:18566–18571, 2013.536

18 F. Chazal and S. Oudot. Towards persistence-based reconstruction in Euclidean spaces.537

International Symposium on Computational Geometry (SoCG), 2008.538

19 C. Chen and M. Kerber. Persistent homology computation with a twist. In European Workshop539

on Computational Geometry (EuroCG), pages 197–200, 2011.540

20 A. Choudhary, M. Kerber, and S. Raghvendra:. In Polynomial-Sized Topological Approximations541

Using The Permutahedron. International Symposium on Computational Geometry (SoCG),542

2016.543

21 H. Edelsbrunner D. Cohen-Steiner and J. Harer. Stability of persistence diagrams. Discrete544

and Compututaional Geometry, 37:103–120, 2007.545

22 Datasets. URL: https://github.com/n-otter/PH-roadmap/’’.546

23 V. de Silva and R. Ghrist. Coverage in sensor networks via persistent homology. In: Algebraic547

and Geometric Topology, 7:339 – 358, 2007.548

24 H. Derksen and J. Weyman. Quiver representations. Notices of the American Mathematical549

Society, 52(2):200–206, February 2005.550

25 T. K. Dey, H. Edelsbrunner, S. Guha, and D. Nekhayev. Topology preserving edge contraction.551

Publications de l’Institut Mathematique (Beograd), 60:23–45, 1999.552

26 T. K. Dey, F. Fan, and Y. Wang. Computing topological persistence for simplicial maps. In553

International Symposium on Computational Geometry (SoCG), pages 345–354, 2014.554

27 T. K. Dey, D. Shi, and Y. Wang. SimBa: An efficient tool for approximating Rips-filtration555

persistence via Simplicial Batch-collapse. In European Symp. on Algorithms (ESA), pages556

35:1–35:16, 2016.557

28 T. K. Dey and R. Slechta. Filtration simplification for persistent homology via edge contraction.558

International Conference on Discrete Geometry for Computer Imagery, 2019.559

29 C. H. Dowker. Homology groups of relations. The Annals of Mathematics, 56:84–95, 1952.560

30 P. Dłotko and H. Wagner. Simplification of complexes for persistent homology computations,.561

Homology, Homotopy and Applications, 16:49–63, 2014.562

31 H. Edelsbrunner and J. Harer. Computational Topology: An Introduction. American Mathem-563

atical Society, 2010.564

32 H. Edelsbrunner, D. Letscher, and A. Zomorodian. Topological persistence and simplification.565

Discrete and Compututational Geometry, 28:511–533, 2002.566

33 Omer Egecioglu and Teofilo F. Gonzalez. A computationally intractable problem on simplicial567

complexes. Computational Geometry, 6:85–98, 1996.568

34 B. T. Fasy, J. Kim, F. Lecci, and C. Maria:. Introduction to the R-package tda. CoRR569

abs/1411.1830, 2014.570

35 E. Fieux and J. Lacaze. Foldings in graphs and relations with simplicial complexes and posets.571

Discrete Mathematics, 312(17):2639 – 2651, 2012.572

36 F. Le Gall. Powers of tensors and fast matrix multiplication. ISSAC ’, 14:296–303, 2014.573

SoCG 2020

https://github.com/n-otter/PH-roadmap/''

XX:16 Edge Collapse and Persistence of Flag Complexes

37 Gudhi: Geometry understanding in higher dimensions. URL: http://gudhi.gforge.inria.574

fr/.575

38 A. Hatcher. Algebraic Topology. Univ. Press Cambridge, 2001.576

39 Benoît Hudson, Gary L. Miller, Steve Oudot, and Donald R. Sheehy. Topological inference577

via meshing. International Symposium on Computational Geometry (SoCG), 2010.578

40 M. Kerber and H. Schreiber:. Barcodes of towers and a streaming algorithm for persistent579

homology. International Symposium on Computational Geometry (SoCG), 2017. arXiv:580

1701.02208.581

41 M. Kerber and R. Sharathkumar. Approximate Čech complex in low and high dimensions. In582

Algorithms and Computation, pages 666–676. by Leizhen Cai, Siu-Wing Cheng, and Tak-Wah583

Lam. Vol. 8283. Lecture Notes in Computer Science, 2013.584

42 C. Maria and S. Oudot. Zigzag persistence via reflections and transpositions. In Proc.585

ACM-SIAM Symposium on Discrete Algorithms (SODA) pp. 181–199, January 2015.586

43 N. Milosavljevic, D. Morozov, and P. Skraba. Zigzag persistent homology in matrix multiplic-587

ation time. In International Symposium on Computational Geometry (SoCG), 2011.588

44 K. Mischaikow and V. Nanda. Morse theory for filtrations and efficient computation of589

persistent homology. Discrete and Computational Geometry, 50:330–353, September 2013.590

45 D. Mozozov. Dionysus. URL: http://www.mrzv.org/software/dionysus/.591

46 J. Munkres. Elements of Algebraic Topology. Perseus Publishing, 1984.592

47 N. Otter, M. Porter, U. Tillmann, P. Grindrod, and H. Harrington. A roadmap for the593

computation of persistent homology. EPJ Data Science, Springer Nature, page 6:17, 2017.594

48 Steve Y. Oudot and Donald R. Sheehy. Zigzag zoology: Rips zigzags for homology inference.595

Foundations of Computational Mathematics, 15, 2015.596

49 J. Perea and G. Carlsson. A Klein-bottle-based dictionary for texture representation. In:597

International Journal of Computer Vision, 107:75–97, 2014.598

50 H. Schreiber. Sophia. URL: https://bitbucket.org/schreiberh/sophia/.599

51 D. Sheehy. Linear-size approximations to the Vietoris–Rips filtration. Discrete and Computa-600

tional Geometry, 49:778–796, 2013.601

52 M. Tancer. Recognition of collapsible complexes is NP-complete. Discrete and Computational602

Geometry, 55:21–38, 2016.603

53 Volkmar Welker. Constructions preserving evasiveness and collapsibility. Discrete Mathematics,604

207(1):243 – 255, 1999.605

54 J. H. C Whitehead. Simplicial spaces nuclei and m-groups. Proc. London Math. Soc, 45:243–327,606

1939.607

55 A. C. Wilkerson, H. Chintakunta, and H. Krim. Computing persistent features in big data: A608

distributed dimension reduction approach. In International Conference on Acoustics, Speech,609

and Signal Processing (ICASSP), pages 11–15, 2014.610

56 A. C. Wilkerson, T. J. Moore, A. Swami, and A. H. Krim. Simplifying the homology of611

networks via strong collapses. In International Conference on Acoustics, Speech, and Signal612

Processing (ICASSP), pages 11–15, 2013.613

57 A. Zomorodian. The tidy set: A minimal simplicial set for computing homology of clique614

complexes. In International Symposium on Computational Geometry (SoCG), pages 257–266,615

2010.616

58 A. Zomorodian and G. Carlsson. Computing persistent homology. Discrete and Computational617

Geometry, 33:249–274, 2005.618

http://gudhi.gforge.inria.fr/
http://gudhi.gforge.inria.fr/
http://gudhi.gforge.inria.fr/
http://arxiv.org/abs/1701.02208
http://arxiv.org/abs/1701.02208
http://arxiv.org/abs/1701.02208
http://www.mrzv.org/software/dionysus/
https://bitbucket.org/schreiberh/sophia/

	Introduction
	Preliminaries
	Edge Collapse
	Simple Collapse and Persistence
	Edge collapse of a flag filtration
	Computational Experiments

