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Abstract
Accurate detection of objects in 3D point clouds is a central problem for
autonomous navigation. Most existing methods use techniques of hand-
crafted features representation or multi-modal approaches prone to sensor
failure. Approaches like PointNet that directly operate on sparse point data
have shown good accuracy in the classification of single 3D objects. However,
LiDAR sensors on Autonomous vehicles generate a large scale pointcloud.
Real-time object detection in such a cluttered environment still remains a
challenge. In this thesis, we propose Attentional PointNet, a novel end-to-
end trainable deep architecture for object detection in point clouds. We
extend the theory of visual attention mechanism to 3D point clouds and
introduce a new recurrent 3D Spatial Transformer Network module. Rather
than processing whole point cloud, the network learns "where to look" (find
regions of interest), thus significantly reducing the number of points and
hence, inference time. Evaluation on KITTI car detection benchmark shows
that our Attentional PointNet is notably faster and achieves comparable
results with state-of-the-art LiDAR-based 3D detection methods.

Résumé
La détection précise d’objets dans un nuage de points 3D est un problème
central pour la navigation autonome. La plupart des méthodes existantes
utilisent des caractéristiques sélectionnées à la main ou des approches multi-
modèles sujettes à une défaillance du capteur. Des approches, telles que
PointNet fonctionnant directement sur des données ponctuelles éparses, clas-
sifient précisément un nuage de points associé à un unique objet. Cependant,
les capteurs Lidars sur les véhicules autonomes génèrent un nuage de points
contenant de nombreux objets. Leurs détections en temps réel dans un envi-
ronnement aussi encombré restent un défi. Dans cette thèse, nous proposons
une méthode appelée Attentional PointNet, une architecture profonde com-
plète, formable de bout en bout, destinée à la détection d’objets dans le nuage
de points. Nous étendons la théorie du mécanisme d’attention visuelle au
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nuage de points 3D et introduisons un nouveau module récurrent de réseau
de transformateur spatial 3D. Plutôt que de traiter le nuage de points dans
sont ensemble, il apprend à reconnaître des régions potentiellement intéres-
santes. Ensuite, localiser des objets dans ces régions réduit considérablement
le nombre de points à traiter et réduit le temps de calcul. L’évaluation avec les
données du jeu de données KITTI montre que notre méthode est plus rapide
et permet d’obtenir des résultats comparables avec les méthodes classiques
de détection 3D utilisant des nuages de points générés par des Lidars
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1Introduction

„The last thing that we find in making a book
is to know what we must put first.

— Blaise Pascal
(Mathematician, physicist, inventor)

From high-speed autonomous vehicles that navigate on busy crossroads
[1], to mobile robots that sweep the floor in your home [2], to humanoid
robots that serve you food at a restaurant, or quad-copters mapping and
inspecting a industrial factory rely on three-dimensional (3D) data of physical
surrounding. With a rapid upsurge in development of lasers, highly compact
and yet affordable laser scanners (LiDARs) are now available. These LiDARs
generate high quality and reliable 3D data in the form of point clouds.

Another popular approach of generating point clouds is from stereo cameras.
Most mobile phone now comes equipped with dual camera setup, allowing
them to generate point clouds for applications like Augmented Reality and
Virtual Reality [3]. Point clouds generated from cameras are comparatively
inferior to LiDARs [4].

Consider the application of humanoid robot, serving food in a restaurant,
which would require to first map the environment and localize itself. Then it
needs to detect various external obstacles like humans, tables and chairs to
plan its trajectory to avoid them. Many such real-world applications require
the localization of obstacles and characterization of their shape.

1.1 Motivation and Problem Statement
Navigation of Autonomous Vehicles is one such principle application where
high definition LiDARs are extensively used. One of the most common ap-
plications is to generate 2D occupancy grids using LiDAR data as in [5].
Occupancy Grids are then used by path planning algorithms to generate
trajectories for navigation. Occupancy grids are essential to finding navigable
and non-navigable spaces but each grid cell only contains sparse information

1



e.g. occupied or non-occupied. A method developed by Inria-Chroma, CM-
CDOT [6] also encodes other information like dynamic, static or unknown.
However, there is no semantic information, creating no distinction between
obstacles (e.g. pedestrian vs lamp post, both are classified as obstacles). The
planner generates the trajectories considering all types of objects with equal
weightage. From the theory of situational modelling [7], driving behaviour
near pedestrians differs from the lamp post, and that is the reason why
semantic information is an essential part of planning.

Incorporating semantic information into occupancy grids, multiple object
detection in 3D data and categorizing them into distinct objects is crucial to
this task. Ozgur et al. in [8] have used an approach of projecting semantically
segmented images on corresponding occupancy grid of the same scene and
fusing both using deep learning methods. However, the need for an additional
camera that is time synchronized and calibrated with the LiDAR restricts their
use and makes the solution more sensitive to sensor failure modes.

Fig. 1.1: Attentional PointNet: Multiple object detection in 3D point clouds

The research work in this thesis therefore seeks to address the following
problems:

• To detect and classify objects in 3D point clouds, obtained by high-
definition LiDARs in autonomous vehicles. This also aims at integrating
these detected objects into occupancy grid representation.

• To improve computational efficiency to enable real time perception for
high-speed autonomous vehicles.

1.1 Motivation and Problem Statement 2



• To avoid the limitations of multi-modal approaches such as sensor fail-
ure and affection to changes in environmental condition, the approach
must rely only on LiDAR data.

1.2 Deep Learning on Point Clouds
With the rapid development of 3D sensor technology, LiDARs are fastly
becoming a key sensor in many robotic applications. Also, the availability
of many open sourced, high quality annotated 3D point cloud data has
motivated researchers to develop efficient feature representations to detect
and localize objects in point clouds[9]. When point cloud data has rich
geometric information of the objects it is representing, the hand-crafted
features yield satisfactory results. However, their inability to generalize and
adapt to more complex shapes and unstructured environment resulted in
limited success for autonomous navigation.

To remove manual feature engineering for representation of point clouds,
many researchers are using Deep Learning (DL) leveraging its astonishing
success in multiple object detection and semantic segmentation in 2D im-
ages.

Point clouds represent the outer surface of objects in the scene. In contrast
to images where detailed texture information is available, point clouds are
sparse, unordered and have highly variable point density. To deal with such
challenges, prior work have been based on the following approaches:

• Converting point clouds into 2D images [10, 11] and reinstating the
state-of-art deep architectures to detect multiple objects and then pro-
jecting results back to 3D space. However, converting point clouds to
2D images results in losing essential 3D structural information of the
objects.

• Converting point clouds into volumetric forms like voxel grids [12, 13]
and generalizing image CNNs to 3D CNNs. However, for dense 3D
data, computational and memory requirements grow cubically with the
resolution of voxels. While Riegler et al in [14, 15] have used octrees
representation to exploit the sparsity of point clouds, these CNN based
methods still require quantization of point clouds with certain voxel
resolution.

1.2 Deep Learning on Point Clouds 3



• Another approach is inferring 3D bounding boxes directly from 2D
images [16]. However, the depth estimation greatly affects the accuracy
of image-based 3D detection.

Several other studies involve multi-modal fusion [17, 11, 8] that combine
images and LiDAR data to improve detection accuracy particularly for small
objects (pedestrians, cyclists).

Recent work [18, 19, 20, 21, 22] proposes novel types of network architec-
tures which directly consumes raw point clouds without converting them
to other formats. Among these PointNet [18], being simpler and real-time,
have shown encouraging results for single object classification and seman-
tic segmentation. In this thesis, we have also studied another 3D classifier
PointWise Convolution [20], and compared its performance with PointNet.

Some very recent work [23, 24] explore how to extend the PointNet architec-
ture for the purpose of multiple 3D object detection in large-scale 3D point
cloud data obtained from high definition LiDARs. Charles et al. in frustum
PointNet [23] have used a multi-modal approach of first detecting objects in
2D images, reducing the search space and then regressing corresponding 3D
bounding boxes using variants of PointNet.

Currently, VoxelNet [24] from researchers at Apple, is the only end-to-end
trainable deep network which takes LiDAR point clouds directly and outputs
3D bounding box predictions for multiple objects in uncontrolled environ-
ments. VoxelNet outperforms the state-of-the-art LiDAR-based 3D detection
methods by a large margin. However, VoxelNet architecture is complex and
requires higher compute capability hardware for real-time implementation.

This thesis focuses on exploring alternate methods for LiDAR only detection.
We aim to design simpler architecture with real-time performance on lower
compute capability hardware.

1.3 Contributions
• We propose a novel deep architecture called Attentional PointNet for

3D object detection. The network directly operates on sparse 3D points
and is end-to-end trainable.

1.3 Contributions 4



• We extend the theory of Visual Attention Mechanism to 3-dimensional
space for multiple object detection. Given a cluttered environment,
we show that the network learns to attend to objects of interest thus
reducing the data needed to be processed.

• We experiment with various Spatial Transformer Network(STN) based
differentiable Visual Attention Mechanisms on the cluttered MNIST
dataset and evaluate their performance.

• We experiment with different 3D object Classifiers and evaluate their
performance. We also elaborate on how to efficiently Implement the
PointWise Convolution Network in PyTorch Framework.

• We conduct experiments on KITTI benchmark and show that Attentional
PointNet achieves real-time performance and comparable results in
LiDAR-based car detection methods.

1.4 Thesis Structure
Chapter 2

This chapter provides more general introduction to point clouds, their prop-
erties, feature representation and associated difficulties in context with Deep
Learning. Then we describe various approaches employed for multiple object
detection in 2D Images. We elaborate on one approach of Visual Attention
mechanism and its differentiable variants using spatial Transformer Network.
We comment on how using Attention mechanism in 3D space could save
computational efforts. Finally, we study the architectures of PointNet and
PointWise Convolution networks and discuss on their performance.

Chapter 4

This chapter briefs about the datasets used for the experimentation in this
thesis. Namely, Cluttered MNIST dataset for Attention Mechanisms in images,
ModelNet40, KITTI 3D dataset and ACFR urban dataset for comparison
between PointNet and PointWise Convolution Network. Finally, we explain
in detail the strategy used generating dataset to train proposed Attentional
PointNet architecture.

Chapter 3

1.4 Thesis Structure 5



In this chapter we explain the idea behind the proposed architecture of
Attentional PointNet. We then break down the architecture into smaller
functioning blocks and explain each block in detail. We also supplement each
block with mathematical analysis. Finally we discuss about the proposed loss
function to the train the network.

Chapter 5

This chapter describes three experiments, first for finding the best differ-
entiable Visual Attention Network. Second, the most suitable 3D Classifier.
Third, experimentation with proposed Attentional PointNet. We mention
corresponding values of hyper parameters chosen for each network. Finally
we evaluate our networks on standard parameters and provide comparison
results with other state of the art methods.

Chapter 6

In this chapter we argue about the contributions of this work, its scope and
give conclusions. We recommend ideas for future work and changes that
might lead to improved accuracy.

1.4 Thesis Structure 6



2Related Work and
Theoretical Background

„Know how to solve every problem that has
ever been solved.

— Richard Feynman
(Quantum physicist)

Object detection is a central task in computer vision, with applications rang-
ing across search, robotics, self-driving cars, and many others. It is a long-
standing field of research with researchers trying to formulate more compre-
hensive feature representations of images and 3D data structures. But most
progress has been done only in recent years with the emergence of DL on
imagery and its success owed to Convolutional Neural Networks (CNN).

Images are often stored as two-dimensional matrices of pixel values. Convo-
lution network use convolutions to abstract spatial features from the neigh-
bouring pixels. To apply the same principle to point clouds is non-trivial.
Point clouds are generally stored as an array of point records and are in no
particular order.

In section 2.1 we detail about the properties of point clouds and related issues
with using conventional deep learning techniques for object classification.
section 2.2 presents new architectures as 3D object classifiers designed to
work with point set. section 2.3 briefs about Region Proposal networks and
the current state-of-the-art methodology for multiple object detection in
images. section 2.4 presents the methodology of Visual attention Mechanism
and Spatial Transformer Network based variants. Finally, we try to convince
why attention is better and faster than region proposals for object detection
in large-scale point clouds.
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2.1 Properties of PointCloud
A point cloud is a set of data points in a 3D Euclidean space. In practice,
the term is used to refer to 3D points representing the external surface,
geometry and location of real-world objects. Every point in a point cloud
is represented by it’s X, Y and Z coordinate with respect to some reference
frame. Depending upon the sensor used to generate pointcloud each point
could also be associated with other common attributes like RGB for color or
intensity of the laser reflection. These attributes define the properties of the
scanned object and can be used for the classification.

Fig. 2.1: (a) Shows the principle of working of LiDAR; (b) Typical point cloud
generated by high-definition LiDAR; (c) Point cloud generated from stereo
cameras

Source: (a) TNO Research; (b) IST -TU Graz; (c) Cornell-RGBD-Dataset

Similar to [25] we list challenges associated with point clouds as follows:

2.1.1 Challenges with Neural Networks

• Unstructured data: Unlike in images where pixel values are stored in
defined 2D matrices, points in pointcloud are stored as a list without
any specific order. It means geometrically neighbouring point in 3D
space not necessarily be the neighbouring point in the list. This makes
the existing CNN filters impotent.

• Invariance to Permutation: The order of the points in the list doesn’t
matter geometrically as it still represents the same shape. However,
changing the point order changes underlying matrix structure. So, the
same point cloud can be represented by two very different matrices.
See Figure 2.2. In other words, a network which takes in N 3D point as
input needs to be invariant to N! permutations in order of feeding data.

2.1 Properties of PointCloud 8



• Different number of points: In images, depending upon the resolution
of the camera the number of pixels is constant. Whereas the number of
points may vary dramatically, depending on sensor and the changes in
the environment being scanned.

• Varying density of points: High definition LiDARs on Autonomous
Vehicles has an array of laser beams pointed at a certain angle and
revolving in 360 degrees as shown in Figure 2.2. Because of this sensor
model objects closer to the sensor have higher point count than the
same object at the farther distance.

• Invariance to Transformation: As a 3D dataset the geometric object
could be rotated and translated. The learned representation of object
should be invariant to these simple transformations and should not
modify its category.

• Interaction among points: Even though point set is in an unordered
list, these points are in Euclidean space and geometrically neighbouring
points form a meaningful subset. The network should encapsulate local
structures from nearby points and the combinatorial interactions among
them.

• Missing data and self occlusion: With the LiDARs because of ray
casting sensor model the scanned object would only have the points
on the part of the object facing the sensor. If the object is rotating
we will have different point clouds that represent the same object see
Figure 2.2.

Fig. 2.2: Issues with pointcloud: (a) Varying density of points representing object;
(b) Invariance to permutation; (c) Self occlusion with change in orientation

Source: (b) Itzi-blog [25]; (c) ACFR dataset

2.1 Properties of PointCloud 9



2.2 3D Classifiers
With increasing popularity and real-world applications of 3D data, there
has been a growing interest in the deep learning community for the tasks
like object classification and semantic segmentation of point clouds. Many
researchers are rising to the challenges associated with the properties of
pointcloud and have proposed novel architectures which directly consume
points set and learn shape descriptors. In this section we elaborate two such
recently proposed architecture PointNet [18] and PointWise Convolution Net-
work [20]. We implemented both the architecture in PyTorch framework and
evaluated their performances on different datasets detailed in section 5.1.

2.2.1 PointNet

PointNet [18] proposed by Qi et al. is one of the first deep network architec-
ture that can handle point cloud data directly without converting it into other
forms of representation. PointNet can take point clouds of arbitrary orders as
input and is robust to permutations and transformations. PointNet architec-
ture as shown in Figure 2.3 being simpler have shown impressive results on
several tasks such as object classification and semantic segmentation.

Fig. 2.3: Network architecture of PointNet [18].

PointNet consists of two networks a Joint Alignment Network or T-net and
classification Network. The T-net predicts an affine transformation matrix and
directly apply this transformation to the coordinates of input points. T-net
can be seen as Spatial Transformer Network(STN) [26]for 3D point sets. The
T-net itself resembles the big classification network and is a miniature version
of it. The T-net is composed of three basic modules of point independent
feature extraction, max pooling and fully connected layers.

2.2 3D Classifiers 10



To be invariant to the permutation of input, PointNet proposes the idea
to approximate a general function defined on a point set by applying a
symmetric function on transformed elements in the set.

f({x1, x2, ..., xn}) ≈ g(h(x1), h(x2), ..., h(xn)) (2.1)

where f : 2RN → R, h : RN → RK and g : RK × ... × RK → R is a
symmetric function.

A series of multi-layered perceptron approximate h by extracting independent
point features. While a maxpooling function approximate symmetric function
g and aggregate all input point features into one common global-feature in-
variant to permutations. Finally, a fully connected layer regresses parameters
of a (3× 3) affine Transformation matrix from the global feature.

The classification Network is stacked after T-net. It takes input as the trans-
formed point sets from T-net and is composed of the same basic modules as
T-net. The only difference being that in the end the independent point wise
features are concatenated with the global feature aggregated by maxpooling
layer. Fully connected layers at the end outputs per class probability scores in
case of classification task or per point class score for semantic segmentation
task.

2.2.2 PointWise Convolution Network

Hua et al. in [20] proposes another network architecture that directly works
with point sets. PointNet uses a series of multi-layered perceptrons to gener-
ate point feature set, it does not exploit completely an important property of
point cloud of interaction among points. As point cloud represent geometrical
shapes, neighbouring points encodes essential information to understand the
3D structure.

Hua et al. focuses on designing new convolution operator, called point-wise
convolution, which can be applied at each point in a point cloud to learn
point-wise features. The network design as shown in Figure 2.4 is fully
convolutional. Multiple pointwise convolution layers can be stacked together
to form very deep networks.

2.2 3D Classifiers 11



Fig. 2.4: Architecture of Point-wise convolution network [20].

PointWise Convolution Operator: A convolution kernel can be thought as
a sphere in 3D space and is centred at each point. All the neighbour points
within spherical kernel support contribute to the center point. The spherical
kernel is further subdivided into the sub-domains as shown in Figure 2.5. All
the points within a sub-domain share same weight values. The goal is to learn
these weight values. The radius of the kernel and number of sub-domains are
important hyperparameters and can be adjusted to account for the different
number of neighbour points in each convolution layer.

xli =
∑
k

wk
1

|ωi(k)|
∑

pj∈ωi(k)
xl−1
j (2.2)

where k iterates over all sub-domains in the kernel support, ωi(k) is the k-th
sub-domain of the kernel centered at point i; pi is the coordinate of point
i; |.| counts all points within the sub-domain; wk is the kernel weight at the
k-th subdomain, xi and xj the value at point i and j, and l−1 and l the index
of the input and output layer.

However, unlike PointNet which rely on a prefix network to learn a symmetric
function to turn a point cloud into a set before performing their further
learning and predictions. Point-wise convolution network show that it is
possible to perform scene understanding tasks such as semantic segmentation
and object recognition on ordered point clouds.

2.3 Multiple Object Detection in images
Multiple object detection is the field where the task is to classify and localize
all the object in a scene. Many successful work re-purpose single object

2.3 Multiple Object Detection in images 12



Fig. 2.5: (a)Spherical point-wise convolution operator centred at different points in
a point cloud; (b) Convolutions in images; (c) Pointwise kernel and sub-
domains; Images reproduced from ACFR dataset and guide to arithmetic
convolution

classifiers or localizers to perform multiple detections. For example, in sliding
window algorithms a classifier is applied to an image at multiple locations
and scales. Regions with high probability scores are considered as detections.
Being computationally expensive, yet do not yield accurate detections.

Fig. 2.6: Object Classification, object detection and multiple object detection in
images

Source: Google images

Overcoming these problems approaches like Faster R-CNN [27] use region
proposals methods where the network first generate potential bounding boxes
and then run a classifier only on these proposed boxes. This greatly saves
computation as classifiers are not applied to all locations in an image. After
classification and post-processing is used to eliminate duplicate detections

2.3 Multiple Object Detection in images 13



and refining bounding boxes. These networks still have complex pipelines
and are slow.

More recently other approaches like YOLO [28], SSD [29] have come with
approaches which directly predicts bounding boxes and class probabilities in a
single network with an end-to-end CNN architecture. While these approaches
have shown astonishing results and real-time performance adapting them for
detection in large-scale point clouds is not tangible. Difficulties are vastly
due to difference in the dataset and properties of point cloud as described in
section 2.1.

Above mentioned approaches, all consume and process whole image. In
contrast a typical point cloud consist of ≈ 100k points in each scan. Most
regions, being empty spaces only a few regions are of relevance. Discretizing
pointcloud into 3D grid and processing as in whole is futile when aiming for
real-time performance. As the computational complexity grows at least linear
in the number of pixels or voxels in case of 3D point clouds. In this thesis, we
propose to use the theory of visual attention mechanism to overcome these
challenges.

2.4 Visual Attention Mechanism
Visual search is extensively involved in everyday perception, and biological
systems like the human eye manage to perform it remarkably well. As in
[30] human perception does not process the whole scene in its entirety at
once. Humans focus to attend relevant parts in the scene acquiring necessary
information when and where it is needed. Eventually combining pieces of
informations from different fixations and build up representation of the scene
[31]. Focusing onto smaller relevant parts of the scene saves “computational
bandwidth” as only fewer pixels are needed to be processed. As irrelevant
parts in the scene are out of fixation, they are ignored, this reduces the
complexity of the task.

Taking Inspiration from human perception of sequentially recognizing objects
by moving fovea from one object to the next relevant object, Mnih et al. in
[32, 33] proposed a deep recurrent neural network that in each iteration
processes a multi-resolution crop (glimpse) of input image.
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Fig. 2.7: Network architecture of Visual attention mechanism [32].

To learn task-specific strategies like "where to look", the network is modelled
as a dynamic visual control problem and a glimpse can be seen as a partial
view of the state. Viewing the problem as a POMDP, the techniques from the
Reinforcement learning literature can be used here. Neural Network defines
a policy which it has to learn. Recurrent part of network plays a vital role as
it encapsulates the state history as the hidden state of Network.

This system not being, end to end differentiable, backpropagation is used
only to train the neural-network part. While RL based policy gradient is used
to address the non-differentiabilities due to the control problem.

2.4.1 Spatial Transformer Network

Selective attention and manipulation of the data by cropping is a non- dif-
ferentiable operation. Minh et al in [32] uses reinforcement learning to
avoid the need for a differentiable attention Mechanism. Jaderberg et al in
[26] proposed a new Spatial Transformer module which explicitly allows the
spatial manipulation of data within the network. Transformations including
scaling, cropping, rotations, as well as non-rigid deformations are performed
on the entire feature map (non-locally). Spatial transformers can be used to
select regions of an image that are most relevant (attention), and transform
those regions to expected pose to simplify recognition in subsequent layers.

Spatial Transformer can be seen as diffrentiable spatial attention as they can
be trained purely with backpropagation without reinforcement learning. As
mentioned earlier attention mechanism benefits from increased computa-
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Fig. 2.8: Working of spatial transformer network module and sampling grid [26]

tional efficiency as Transformed (and so attended) lower resolution crops
can be used in favour of higher resolution raw inputs

Fig. 2.9: Architecture of Spatial Transformer Network [26]

The spatial transformer module consist of three parts as shown in Fig-
ure 2.9.

1. The localisation network: It takes input feature map U ∈ RH×W×C of
width W , height H and C channels and regresses θ, the parameters of
the transformation T (θ) to be applied to the feature map:

T (θ) = floc(U)

2. Parameterised Sampling Grid: It takes the parameters of the transfor-
mation T (θ) from localisation network and computes a parameterised
output grid V ∈ RH′×W ′×C of width W’ , height H’ and C channels
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by applying a sampling kernel centered at a particular location in the
input feature map U as shown in Figure 2.8. Let Tθ be the affine trans-
formation Aθ then the pointwise transformation for 2D grid is given
by:


xsi
ysi
1

 = Tθ(Pi) = Aθ


xti
yti
1

 =


θ11 θ12 θ13

θ21 θ22 θ23

0 0 1



xti
yti
1

 (2.3)

where (xti, yti , zti) are the target coordinates of the reqular grid in output
feature map, (xsi ; ysi , zsi ) are the source coordinates of the input feature
map. The transform defined in the Equation 2.3 allows cropping,
translation, rotation, scale, and skew to be applied to the input feature
map, and requires only 6 parameters to be predicted by localization
Network.

3. Differentiable Image Sampling: Each (xsi ; ysi , zsi ) coordinate in Tθ(G)
defines the spatial location in the input where a sampling kernel is
applied to get the value at a particular pixel in the output V. But pixels
may not have one to one correspondence. To solve this problem, a
diffrentiable bilinear interpolation technique is used.

2.4.2 Differentiable Visual Attention Mechanism

Building upon the theory of Recurrent attention Mechanism and Spatial
Transformer network EDRAM [34] and Recurrent-STN [35] has proposed
two differentiable attention mechanism architecture as shown in Figure 2.10.
These improved attention-based architectures can localize and recognize
multiple object simultaneously and can be trained end to end by backpropa-
gation.

Key differences in both the architectures can be summarized as:

EDRAM architecture resembles [33] where cropping/attention module is
at the beginning and rest of the network only sees the cropped portion of
the original image. Based on available information network predicts new
location to attend.

Recurrent-STN network at first takes the whole image as input and with few
convolutions creates it’s smaller representation (context). This context vector
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Fig. 2.10: Network architecture of EDRAM [34] and recurrent-STN [35]

is then used by RNN to predict the locations to attend at every iteration.
Classification part of the network only sees attended regions.

Both the Network suggest that an attention-based model may be better than
an only CNN based model at both dealing with clutter and scaling up to large
input images.
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3Methodology

„Innovation distinguishes between a leader
and a follower.

— Steve Jobs
(CEO Apple Inc.)

This chapter presents the methodological approach employed, architecture
of Attentional PointNet (Attention in 3D), the loss function used for training,
and an efficient algorithm to implement the network. The chapter assumes
prior knowledge of Visual Attention Mechanism [36, 34, 32, 33], Spatial
Transformer Network [26], and Recurrent Neural Network [37] and Chapter
2. It is organized as follows: section 3.1 introduces the central idea upon
which the proposed Attentional PointNet, outlined in section 3.2, is based.

3.1 Approach
3D pointcloud can be perceived as similar to MNIST cluttered dataset. As
most of the space in pointcloud is empty (black in MNIST) and as described
in section 4.1.4 each cropped region of point cloud has 0-3 objects of interest
(handwritten digits in MNIST) along with clutter.

As in [30] we take inspiration from the human perception system to perform
visual sequence recognition task by moving focus from one relevant object to
another in the scene. Using the concepts of visual attention mechanism stud-
ied in section 2.4 and testing them on MNIST cluttered dataset in section 5.2,
we propose to use the same in 3D space applied to point clouds. Attention
Mechanism has proved to be very effective in many applications including
human activity recognition in videos (spatio-temporal 3D data) as shown in
glimpse cloud [38] or digit recognition in cluttered MNIST dataset [35]. It is
evident to go forward with attention mechanism.

The basic idea is simple, rather than processing whole point cloud, we propose
an approach to sequentially focuses on smaller, relevant regions in 3D space
for classification and localization of objects. This cuts down the computation
time drastically.
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3.2 Proposed Architecture
The proposed architecture of Attentional PointNet as shown in Figure 3.1
consist of four core functional blocks: Data Augmentation block section 3.3,
Context Network section 3.4, Recurrent 3D Spatial Transformer Network
section 3.5 and 3D object Classifier section 3.6. The network uses raw 3D
point clouds generated from high definition LiDARs and predicts bounding
boxes for detection of obstacles, such as cars for example. A special loss
function was designed for the network to be end to end trainable is elaborated
in section 3.7.

Fig. 3.1: Network architecture of Attentional PointNet

3.3 Data Augmentation Block
Data Augmentation block takes raw pointcloud as input typically consisting
of 100k points inR3. It returns 9 cropped regions of size 10m x 10m. Points
in each cropped region are quantified into voxels and re-sampled to contain
a fixed 4096 points. Similar strategy as described in section 4.1.4 is used
for re-sampling. Only 9 cropped regions are chosen, allowing the network
to operate in real-time. Locations of these 9 cropped regions are shown in
Figure 4.4.
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3.4 Context Network
Context Network is a network which provides contextual understanding of
the input point clouds, pointing towards possible objects of interest. Context
network using a series of 1D convolution layer (Multi-Layer Perceptron)
converts the point set into higher dimensional feature space. A final max
pooling layer is used as a symmetric function to aggregate information from
all the points. The architecture and training of our Context Network is similar
to the T-Net in [18] with some modifications as shown in figure:

Fig. 3.2: Architecture of Context Network; MLP -Multi-Layer Perceptron

Our Context Network takes 4096 points as inputs and outputs one single
vector of size 1024. We discovered that Batch Normalization in our case
tends to worsen the results. To increase the output accuracy(at the expense
of training speed), the batch normalization layers of the first and last blocks
are removed.

As our network directly works on point set, in contrast to pixel arrays in
images or voxel arrays in volumetric grids, point sets are unordered. Which
requires network taking N number of 3D points as input, needs to be invariant
to N! permutations. Furthermore, simple transformations like rotation and
transformation should not modify the higher level contextual understanding
of point cloud by the network.

To be invariant to permutation and simple transformations (as done in
PointNet [18]), we use a using Max Pooling layer as a symmetric function
applied to the transformed elements in the set. This render the order of input
of point cloud to be insignificant.

f({x1, x2, ..., xn}) ≈ g(h(x1), h(x2), ..., h(xn)) (3.1)
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where f : 2RN → R, h : RN → RK and g : RK × ... × RK → R is a
symmetric function.

3.5 Recurrent 3D Spatial Transformer
Network
3D recurrent STN is at the heart of proposed Attentional PointNet. It outputs
3D region proposals. This differs from region proposal networks, in a way
that the proposals are sequentially generated for different object at each
iteration step.

A 3D recurrent STN comprises of a Gated Recurrent Unit(GRU) cell, local-
isation network, 3D transformer and random sampler. Following sections
explain functioning of each block in detail:

3.5.1 Gated Recurrent Unit (GRU)

Gated recurrent units (GRUs) are a gating mechanism in recurrent neural net-
works (RNN). GRUs were preferred over vanilla RNNs to avoid the vanishing
gradient problems with the latter.

A GRU cell takes input I of size (B,1024) from the context network and ht−1

a hidden Tensor from the GRU cell in previous iteration (t − 1). It outputs
a tensor ht of shape (B,512) which is used as the input to GRU cell in next
Iteration and as the input to localization network.

GRU layer is trained to sequentially produce the location of new object at
every iteration step (t). The current hidden state ht encodes the information
about the location of the current and previous objects. This information is
passed down to GRU cell at next iteration step as ht−1. Values coming in from
I and ht−1 are then used to determine the new current hidden state ht, this
enables network to focus on object not seen in the previous iteration steps.
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3.5.2 Localization Network

Localization network is a 3 layered fully connected perceptron network. At
every iteration it takes an input ht from GRU cell and regress 7 variables
(θ11, θ12, θ21, θ22, θ14, θ24, θ34) ∈ Θt of a 3D transformation matrix, of which 4
parameters for rotation (θ11, θ12, θ21, θ22) whereas (θ14, θ24, θ34) are for transla-
tion along 3 axes.

The rotation matrix along z-axis and transformation matrix can be written
as:

Rz(γ) =


cos(γ) − sin(γ) 0
sin(γ) cos(γ) 0

0 0 1

 T (Θt) =


θ11 θ12 0 θ14

θ21 θ22 0 θ24

0 0 1 θ34

0 0 0 1

 (3.2)

where γ is angle of rotation along z-axis. γ = tan−1(θ21/θ11). We only
consider a subset of rigid 3D transformations since rotation about X and Y
axes is neglected along with the effects of scale and shear. This is in contrast
with images, as the scale/ size of the object does not change with respect to
the distance of the object from the sensor. Future work will include the scale
parameter to handle the cases when objects belonging to same class are of
varying sizes. For simplicity, we have only considered the orientation with
respect to z-axis. Unlike the original STN [26] that has no direct supervision
on transformation T (Θt), we explicitly supervise our localization network to
predict object locations.

This is mathematically formulated as:

C = fcontext(I) (3.3)

ht = fRNN(c, ht−1) (3.4)

T (Θt) = floc(ht) (3.5)

where fcontext is the context network taking I as input and outputs a context
vector C, fRNN is a GRU cell, and floc is localization Network. Here, a rigid
transformation T (Θt) is produced at each time-step from the hidden state of
the RNN. More importantly, the rigid transformations are conditioned on the
previous transformations through the time dependency of the RNN.
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3.5.3 3D Transformer

3D Transformer is one of the key contribution of this thesis. 3D transformer
can be seen as differentiable cropping mechanism for Hard Attention in 3D
space. Let the input point cloud in bounding box of size (W,L,H) centered at
(0, 0, 0) in R3 space be transformed such that the points belonging to object
of interest lie inside a smaller bounding box of size (W ′, L′, H ′) centered at
(0, 0, 0) in R3 space as illustrated in Figure 3.3:

Fig. 3.3: 2D illustration of working of 3D Transformer

As the network attends to the points falling inside the smaller bounding box, it
can be called as a 3D glimpse. The layers ahead only use the points contained
within this 3D glimpse for processing/classification. More information is
detailed in section 5.3.1

More formally, a 3D transformer takes transformation matrix parameters
as input from Localization Network and transforms the input pointcloud
P (4096, 3) → P ′(4096, 3). The pointwise rigid 3D transformation is given
by: 

xti
yti
zti
1

 = T (Θt)


xsi
ysi
zsi
1

 =


θ11 θ12 0 θ14

θ21 θ22 0 θ24

0 0 1 θ34

0 0 0 1




xsi
ysi
zsi
1

 (3.6)

where (xti, yti , zti) are the transformed coordinates of output pointcloud P ′,
(xsi ; ysi , zsi ) are the source coordinates of the input pointcloud P , and TΘ is the
rigid transformation matrix.
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3.5.4 Random Sampler

A random sampler extracts the points inside the 3D glimpse while discarding
all the points outside glimpse. Only a small subset of original point cloud is
passed further in the network for the classification. Aiding the network in
real-time performance by reducing the data needed to be processed.

The extraction of points in this manner is not a completely differentiable
operation as there are no gradients with respect to points outside glimpse,
but changing them slightly does not affect the output. This operation can
be seen as similar to Max Pooling where the gradient from the next layer is
passed back to only neuron which achieved the maximum, whereas all other
other neurons get zero gradients.

Furthermore, points inside glimpse are re-sampled to 512 points in a similar
strategy as described in section 4.1.4.

3.6 3D Classifier
3D Classifier is another key component of the network essential to categorize
the points attended by the network. This module can be replaced by any
classifier that directly works on 3D points [18, 20, 12, 39, 40]. In this thesis,
we compared PointNet and pointwise convolution Network as described in
section 5.1. We opt to use PointNet as our 3D classifier considering the
trade offs between accuracy and inference time. The simplicity of PointNet
architecture is another compelling reason for this choice.

3.7 Loss Function
For multiple object detection, the network should locate the objects in a
point cloud and successfully categorize them. Hence, the loss function should
penalize any false positives predictions along with any incorrect recognitions
at true positive locations.

For the network to be end to end trainable, a reformulated loss function
similar to [34] is proposed. It is an ensemble of two losses: ("loss what")
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binary cross-entropy loss for the given glimpse Ly and ("Loss where") mean
squared error of transformation matrix parameters LT (Θ).

Lyt = −(ygtlog(pt,ygt) + (1− ygt)log(1− pt,ygt)) (3.7)

LT (Θ)
t = δ ∗

7∑
k=1

(θk,t − θgtk,t) (3.8)

where ygt ∈ {0, 1} is binary ground truth class, pt,ygt is a predicted class
probability on a ground truth position, (θ1,t...θ7,t) are elements of predicted
transformation matrix T (Θt) and (θgt1,t...θ

gt
7,t) are elements of ground truth

transformation matrix for RNN iteration step t.

For binary classification of car detection, classification network has to be
trained on both positive and negative samples, although the localization
network should only learn to locate positive samples. To prevent localization
network learning to predict location of false samples, parameter δ = {1, 0} in
plays a key role.

δ =

0 ygt = 0
1 ygt = 1

(3.9)

In our augmented training datasetsection 4.1.4, each crop of the point cloud
is labelled with 3 locations. According to the number of cars in the crop, the
locations could be of a car or a random location (if number of cars less than
3). The locations are also associated with the corresponding class label.

We let our network run for 3 iterations, making 3 predictions. We assign
ground truth to predictions using Hungarian algorithm. We create a (3 x 3)
cost matrix based on the Euclidean distance between ground truth positions
and predicted positions. Assignments between them are found such that the
total cost of assignments is minimum. Losses of each iteration are calculated
and final loss is average of losses at each iteration.

L = 1
3

3∑
t=1

α ∗ LT (Θ)
t + β ∗ Lyt (3.10)

where LT (Θ) can be interpreted as “where to look” and Ly as “what to look”.
The hyperparameters α and β allows a trade-off between transformation and
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classification loss, forcing the model to simultaneously optimize between a
better patch extraction and better recognition.
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4Data, Software, Hardware

„Not everything that can be counted counts,
and not everything that counts can be
counted.

— Albert Einstein
(Theoretical physicist)

4.1 Dataset
In this section we describe about the datasets and data augmentation pro-
cesses used for the experimentations in this thesis.

4.1.1 Cluttered MNIST Dataset

We used Cluttered MNIST dataset Figure 4.2 from DeepMind for evaluating
differentiable Visual Attention Mechanism described in section 2.4.2. The
original MNIST Hand written digit dataset is augmented with additional
noise and distortion. Every image contains only one digit. The augmentation
process involve three steps:

Fig. 4.1: Sample images of cluttered MNIST dataset

1. Randomly select a position and orientation of the original 28x28 image
in a 100x100 canvas.
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2. Randomly crop 9x9 patch 8 times from a randomly selected 28 x 28
image from training/validation set. Then stitch all the 8 cropped images
to augment 100 x 100 image with distortion and noise.

4.1.2 ModelNet40 Dataset

In this thesis we use princeton’s ModelNet40 dataset [41] for evaluation of
3D classifiers (PointNet and PointWise Convolution). The dataset contains
CAD models of 40 most commonly found object categories. Every object has
corresponding point cloud consisting of 2048 points. Objects are centered
at origin but are rotated in random orientation. The total dataset is divide
as 9840 object point clouds for training and 2468 object point clouds for
testing.

Fig. 4.2: Sample images of ModelNet40 [41] dataset.

4.1.3 ACFR Sydney Urban Dataset

We also used ACFR Sydney Urban Dataset for evaluation of 3D classifiers.
This dataset contains common urban road objects scanned with a Velodyne
HDL-64E LiDAR, collected in Sydney, Australia. This dataset is comparatively
smaller consisting of only 10 categories and 631 individual scans of objects
across classes of vehicles, pedestrians, signs and trees. Interesting property of
the dataset is that it provides non-ideal sensing conditions that are represen-
tative of practical urban sensing systems. Objects are with a large variability
in viewpoint and occlusion and density of points.

To be able to use this dataset with our network, We first balance the dataset
by weighted sampling of the object categories. Also, to account for variability
in number of points in each scan of objects were randomly resampled them
with replacement to constant 2048 points.
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Fig. 4.3: ACFR Sydney Urban Dataset

4.1.4 KITTI 3D object detection Dataset

We use KITTI 3D object detection dataset[42] for evaluation of the proposed
Attentional PointNet architecture in this thesis. The KITTI dataset consists
of 7481 training images and 7518 test images as well as the corresponding
point clouds from Velodyne HDL-64E LiDAR, comprising a total of 80,256
labelled objects. For this thesis work, we only evaluate for ’Car’ detection
benchmark, as only for cars enough instances for a comprehensive evaluation
have been labelled. Each labelled object is associated with 3D object location
(x,y,z), 3D object dimensions (H,W,L) and orientation of object θ.

Augmentation of KITTI Dataset: For training of Attentional PointNet a cus-
tom dataset was generated by augmenting KITTI dataset. A typical point
cloud from High definition LiDAR is composed of ≈ 100k points and has
range of about 120m. The point density drastically reduces and data be-
comes unreliable as we go farther from the sensor. In this thesis we work
with high point density and feature rich 30m × 30m area in front of car as
shown in Figure 4.4. This is to save computation and demonstrate real-time
performance of the Network.

To generate our dataset we subdivide the working area form each scan into
equally spaced cropped regions of size 10m x 10m as shown in Figure 4.4.
We demonstrate working of our 3D Attention Mechanism on these cropped
regions.

Each cropped region consists, number of points ranging between 20,000
to none. Directly processing all the points imposes increase in memory/
efficiency burdens on the computing platform, and also highly variable point
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Fig. 4.4: 30m x 30m Working area in blue rectangle, 10m x 10m crops in red
squares

density throughout the space might bias the detection. We randomly sample
each cropped region to have fixed number, N = 4096, points. The re-sampling
strategy used is as described below.

1. To reduce the sampling bias we first voxelize the pointcloud keeping
the leaf size to 0.05m.

2. After voxelization step, the cropped regions having points more than
’N’ are randomly sampled without replacement to ’N’ number of points.

3. The cropped regions with less than ’N’ number of points are first mul-
tiplied with a factor ′S ′ and then they are randomly sampled without
replacement to ’N’ number of points. Where,

S = N

num of points in crop
+ 1

4. We discard the cropped regions with number of points less than a
certain threshold.

5. Finally, we recentre each cropped region with origin.

The next step involves generating the labels. Each cropped region is labelled
with 3 locations (in the form of 7 parameters of transformation T (Θ) ) and
corresponding class labels for the object at that location (see Figure 4.5).
For this thesis we assume that there could be maximum 3 cars in a cropped
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region of 10m x 10m area. We use information from KITTI dataset to check if
there are any cars inside each cropped regions and we note the position and
orientation of them (green bounding box). We discard the crops with more
number of cars. If there are less than 3 cars we generate bounding boxes at
random locations and mark them as non-car (red bounding box).

Fig. 4.5: Augmented KITTI dataset, each cropped region has 3 bounding boxes. The
green bounding boxes represent the locations of car and red bounding
boxes are random locations of non-car regions.

Our augmented KITTI dataset consist of 26,000 crops of 10m x 10m area
each having number of cars in a range of 3 to none. We divide the whole
dataset as 70/30 percent for training and validation respectively.

4.1.5 3D Pointcloud Dataset(Chroma-Inria)

For the visualization purpose and to demonstrate robustness of the network
we use point cloud data from Team Chroma (Inria). The data was acquired
using their autonomous vehicle platform, Renault Zoe car Figure 4.6, which
has been equipped with a Velodyne HDL-64 on the top, covering a 360-
degree field of view (FOV). The dataset contains various scenarios including
highways, city-center and busy cross-ways.
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Fig. 4.6: Autonomous vehicle platform, Renault Zoe car, equipped with a Velodyne
HDL-64 LiDAR

4.2 Software
The entire work in this thesis including proposed methodology, baseline
Network architectures, data augmentation codes were implemented in python
using PyTorch deep learning framework. Other libraries including Numpy
and Scipy for numerical processes, matplotlib for plotting, python-PCL from
StrawLab for pointcloud manipulation were also used.

The whole software was designed to be compatible with the Robot Operating
System (ROS). As ROS framework act as a bridge between autonomous
vehicle hardware and software in Chroma team. In the context of this work,
ROS was used to acquire data from LiDAR and connect it with the detection
algorithm. Also, ROS-Rviz was used for visualization of 3D pointcloud and
the bounding boxes.

4.3 Hardware
For training, validation and testing of proposed Attentional PointNet architec-
ture and other baseline architecture following configuration of the machine
was used:

• CPU Intel® Xeon(R) CPU W3520 @ 2.67GHz × 4
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• GPU GeForce GTX 1080 - 8GB

• Memory 8GB

• OS Ubuntu 16.04 Xenial LTS

• CUDA version 9.0

• PyTorch version 0.4.0
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5Experiments and Results

„A theory is merely a scientific idea controlled
by experiment.

— Claude Bernard
French physiologist, historian

The previous chapter 2 describes related works and chapter 3 describes
the proposed methodology. The networks detailed in those chapters have
multiple parameters and configurations. In this chapter we describe about
the network configurations and experiment with parameters and state the
results based on different evaluation criteria.

We perform three experiments: section 5.1 describes about experiments with
3D classifiers, section 5.2 describes experiments with differentiable attention
mechanism and section 5.3 describes experiments with proposed Attentional
PointNet architecture.

5.1 3D Classifier
In this section we evaluate and compare two architectures PointNet [18]
and PointWise Convolution Network [20]. As explained in the section 2.2
both the architecture directly consume pointcloud and classify 3D objects.
For comparison, we use the implementation of PointNet by Qi et al. in
PyTorch, whereas for Pointwise Convolution Network we implemented the
architecture in PyTorch for the fair comparison. In these experiments, no
attention mechanism was used and no localization was performed.

For the evaluation, we used ModelNet4O and ACFR Sydney Urban dataset.
Every object in ModelNet40 dataset consists of 2048 points whereas in
ACFR dataset, for each object, 512 points were sampled from the object
with replacement. While ModelNet40 dataset object point clouds are clean
and uniform, the point clouds in the ACFR dataset are more realistic with
occlusions and missing data points. Using both the datasets we evaluate the
effectiveness and robustness of the architectures.
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Tab. 5.1: Evaluation of PointNet and Pointwise convolution network architecture

As inferred from the Table 5.1 the PointNet architecture has overall superior
performance in terms of both accuracy and computational time. Moreover,
PointWise convolution requires searching the nearest neighbours and sorting
them into subdomains which has the computational complexity of O(dN)
where N is the number of points and d is the dimensions. As point clouds
from high-definition LiDARS have a significantly larger number of points and
a real-time implementation is crucial. We decided to use PointNet as our 3D
classifier for proposed Attentional PointNet architecture.

Fig. 5.1: Working of implemented point-wise convolution operator on point cloud
of a table from ModelNet40 dataset. Shows partitioning of point cloud by
PointWise kernel into subdomains represented by different color. Points
within a subdomain share same weight.
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5.2 Visual Attention Mechanism
In this section, we evaluate and compare two architectures of differentiable
visual attention Mechanism EDRAM [34] and Recurrent-STN [35]. We
implemented both the architectures in PyTorch.

To evaluate the effectiveness of the architectures we first investigate a single
object detection tasks involving MNIST cluttered dataset. In this dataset, we
have 44800 training and 12600 testing images with a single handwritten digit
randomly placed along with the clutter. The networks have to learn to focus
on the digits (avoiding the clutter) and then classify the digit accurately.

Fig. 5.2: EDRAM Network: Each row shows a sequence of glimpses taken by the
network while recognizing MNIST Cluttered dataset.

Figure 5.2 illustrates working of EDRAM network. The original input image
is of 100 x 100 pixels while each glimpse is of 25 x 25 pixels. Here each
row shows how the Spatial Transformer based attention mechanism locates a
digit on the image across iterations. In the first glimpse, the network sees
the whole image then zooms in on the digit at every iteration. Results in
Figure 5.2 shows high training accuracy but low testing accuracy. On training
further, we found that though the classification accuracy is high the network
is not good in localizing the digit itself. One possible explanation of this is as
MNIST dataset is simpler the network could recognise the digit from the first
glimpse itself and do not learn to localize digit.

Figure 5.3 and Figure 5.4 shows the working of recurrent-STN [35] architec-
ture. To this network, we make minor modifications by adding localization
loss to final cross entropy classification loss. We then compare the results of
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Fig. 5.3: Recurrent-STN Network with supervised localization

Fig. 5.4: Recurrent-STN Network without supervised localization

the modified network (fully supervised localization) and original network
(unsupervised localization). The tables in Figure 5.3 and Figure 5.4 demon-
strate that with full supervision over localization the network accuracy is
higher and network tends to localize the digits well. In the other case, rather
than zooming on to the digits, it zooms out to sees the whole picture and
learns the class from it. This concludes that the supervision over localization,
network is essential.

5.3 Attentional PointNet
In this section, we explain the implementation details of proposed Attentional
PointNet and the training procedure.
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5.3.1 Network Details

For car detection task, we consider point clouds within a range of [0, 30]×
[−15, 15]× [−2, 1] meters along X, Y, Z axis respectively with X-axis is aligned
with the orientation of the car. We then divide this region into equally spaced
cropped regions of 10m x 10m as explained in section 4.1.4. Points in each
cropped region are randomly sampled to 4096 points and used as input for
Attentional PointNet.

The context network consists of three fully connected layers implemented
as 1D convolutions with input-output feature sizes as (3,64),(64,128) and
(128,1024) respectively for each layer. For each input point, we only use x,y,z
co-ordinate values as attributes. a ReLU layer and a batch normalization layer,
apart from the first layer. Finally, a Max Pooling layer aggregates features
from all 4096 points into one vector of feature size 1024. This vector act
as the context of input point cloud. At every iteration, GRU cell uses this
context vector as input. For the first iteration, input hidden state vector is
initialized with zeroes and GRU cell returns a vector of size 512.

The localization network uses this vector to regress 7 transformation parame-
ters {θ11, θ12, θ21, θ22, θ41, θ42, θ43} ∈ T (Θi). Localization Network also consists
of three fully connected layers with (input, output) size pairs as (512,256),
(256,128), (128,7) respectively. Only first two layers include ReLU whereas
only the first later includes batch normalization. Transformation matrix is
first initialised as an 4x4 identity matrix.

The 3D transformer uses these parameters to translate and rotate 4096 input
points. The random sampler then extracts all the points inside the sampling
box of size 2.5m x 5m x 2m centered at the origin as described in section 3.5.4.
This size was chosen to approximately represent the size of average cars.
Points inside the sampling box are randomly sampled to 512 points.

We use a cut downed version of PointNet [18] as a 3D classifier. We remove
the T-net and alignment network from PointNet architecture and use only
classification part. This is because our recurrent 3D STN module (as explained
in section 3.5.3) already performs the task of aligning object point cloud. The
final layer of PointNet is modified to output binary classification.

In the loss function values of hyperparameters α and β are set to 0.7 and 0.3
respectively giving more weightage to finding correct location of the object.
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For training of the network, we use stochastic gradient descent (SGD) algo-
rithm with momentum of 0.9 and batch size of 32. We keep learning rate
to 0.01 for first 30 epochs and then lower it to 0.001 for further epochs.
Training on our custom KITTI dataset takes 8 to 9 hours to converge (250
epochs) with PyTorch and GTX 1080GPU.

5.3.2 Training of Network

For the training of Attentional PointNet we use our augmented KITTI dataset
as described in section section 4.1.4. For training, we have 18,200 point
cloud samples of cropped regions of size 10m x 10m. Each sample point
cloud consist of 4096 points and each point is associated with its x, y, z
coordinates. Each sample point cloud is labelled with 3 locations (in a form
of 7 parameters for transformation T (Θt)). According to the number of cars
in the sample point cloud, the locations could be of a car or a random location
(if number of cars is less than 3). The locations are also associated with the
corresponding class label, 1 for car and 0 for random location.

With the batch size of 32, input to the network are the point cloud data of
size (32,4096,3) and corresponding labels of size (32,3,8). We allow network
to iterate 3 times, predicting location of new car at each iteration step. If
there are less than 3 cars in the sample point cloud, the network outputs a
random location in the remaining iterations. The network also outputs class
probability of object at predicted location. Final output of the network is of
the size (32,3,8).

In the loss function for each sample point cloud, ground truth and detections
are matched using Hungarian algorithm. We create a (3 x 3) cost matrix based
on the Euclidean distance between ground truth positions and predicted
positions. Assignments between them are found such that the total cost of
assignments is minimum.

For validation, we have 7800 sample point clouds and we optimise our
hyper-parameters on this subset of dataset.
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5.3.3 Evaluation on KITTI

We evaluate Attentional PointNet on the KITTI 3D object detection bench-
mark [42] which contains 7,481 training images/pointclouds and 7,518 test
images/point clouds. In this thesis work we only evaluate for Car category.
As KITTI dataset do not provide the ground truth for the test set and the
access to their test server is limited, we evaluate Attentional PointNet using
the protocol described in [17, 16].

Evaluation Metrics: We assess the performance of our network as per met-
rics defined in [42]. For jointly detecting objects and estimating their 3D
orientation we provide results for average orientation similarity (AOS), which
is defined as:

AOS = 1
11

∑
r∈{0,0.1,..1}

max
r̃:r̃≥r

s(r̃) (5.1)

Here, r = TP
TP+FN is the PASCAL object detection recall, where detected 2D

bounding boxes are correct if they overlap by at least 50% with a ground
truth bounding box. The orientation similarity s ∈ [0, 1] at recall r is a
normalized ([0..1]) variant of the cosine similarity defined as

s(r) = 1
|D(r)|

∑
i∈D(r)

1 + cos∆(i)
θ

2 δi (5.2)

where D(r) denotes the set of all object detections at recall rate r and ∆(i)
theta

is the difference in angle between estimated and ground truth orientation of
detection i. To penalize multiple detections which explain a single object, we
set δi = 1 if detection i has been assigned to a ground truth bounding box
(overlaps by at least 50%) and δi = 0 if it has not been assigned.

Finally we also provide Average Precision and pure binary classification
results for Car category.
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5.3.4 Results

3D detection is a more challenging task as it requires finer localization of
objects in 3D space. For the Car category, we compare the proposed method
with several top-performing algorithms, including image based approaches:
Mono3D [16] and 3DOP [43]; LiDAR based approaches: VeloFCN [44],and
VoxelNet [24]; and multi-modal approach: MV3D [17] and Frustum PointNet
[23]. We train Attentional-PointNet from scratch using only the LiDAR data
provided in KITTI.

b
Tab. 5.2: Performance comparison in 3D detection: average precision (in %) on

KITTI validation set. BV - Birdeye View, FV - Front view

Table 5.2 summarizes the comparison for the Car category, Attentional Point-
Net significantly outperforms all other approaches in terms of inference time.
Our network also achieves comparable Average Precision (AOS) of 63.52% at
recall rate of 0.54 on the subset of KITTI dataset we created for the testing.

Figure 5.5 illustrates the working of Attentional PointNet on 10m x10m
cropped regions we extracted from KITTI dataset. For each cropped region,
the network makes three predictions, sequentially classifying and localizing
the cars in the scene. It can be observed that the network is effective and
capable of attending/finding multiple Cars even in highly cluttered environ-
ment. When there are no cars in the scene network makes random location
predictions and appropriately classify them as negative detections.
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Fig. 5.5: Attentional PointNet: Each row shows a sequence of the predictions by the
network. First four rows illustrates scenarios where network successfully
identified and localised the car. Whereas last two rows shows failure cases.
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Convergence:

Figure 5.6 shows two graphs. First graph show the convergence of the
network, training loss reducing over the epochs. While the second graph
shows the Precision Vs Recall curve.

Fig. 5.6: (a)Training loss Vs epochs, (b)Precision Vs Recall curve.

Inference time:

To process an area of 30m x 30m consisting of ≈ 30K points the inference
time is 50ms. Network outputs bounding boxes at 20Hz with GTX 1080 GPU
and hardware specified in section 4.3.

5.3.5 Visualisation on Chroma-Inria dataset

For qualitative analysis, checking robustness and practicality of the network,
we visualised the network performance on Chroma-Inria dataset. The dataset
consist of continuous stream of point clouds at 10 Hz collected with a 64 lay-
ered high-definition LiDAR. Figure 5.7 shows network is capable of detecting
multiple cars in unstructured environment like highways and crossroads.

On this dataset, we observe many false positive detections by the network
mostly in the bushes and off-road areas. Also, when the cars are close to each
other, network struggles to distinguish between them and predicting their
orientations incorrectly.

5.3 Attentional PointNet 44



Fig. 5.7: Attentional PointNet on Team Chroma Inria dataset
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6Conclusions and
recommendations

„Problems worthy of attack / Prove their
worth by hitting back.

— Piet Hein
(Mathematician, physicist, inventor)

The motivation for this research was the challenge of multiple object detec-
tion in 3D pointcloud obtained from high-definition LiDAR on Autonomous
Vehicles. Aiming to translate the detected objects into semantic occupancy
grids. Real-time performance of perception system being crucial for high-
speed Autonomous Vehicles, adds up another challenge to design algorithms
efficient to process large data ≈ 100K points at 10 Hz.

In this thesis work, we analysed the properties of point clouds and surveyed
the existing methodologies for object classification and localization in 3D
point clouds. We implemented PointNet [18] and Point-Wise Convolution
Network [20] in PyTorch and evaluated them on ModelNet40 dataset. Upon
experimentation, we infer that PointNet shows superior performance than
pointwise convolution network in terms for overall classification accuracy
and inference time.

The next task was scaling PointNet classifier to detect multiple objects in
the cluttered environment by still being real-time. To this end, we explored
the techniques to save computational overhead for multiple object detection.
Inspiring from how humans perceive a scene, by sequentially focusing only
on the relevant regions and creating the understanding of the scene, we stud-
ied the use of Visual Attention mechanism in 2D images for multiple object
detections. We implemented Spatial Transformer based two differentiable
Attention Mechanisms, EDRAM and recurrent-STN in PyTorch and evalu-
ated them on cluttered MNIST dataset. we Inferred that the recurrent-STN
performs better at localizing and classifying the hand-written digits in the
cluttered MNIST dataset.
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As the research contribution of this thesis, we extended the theory of Visual
Attention Mechanism to 3-dimensional space.

In the conclusion section 6.1, we summaries our research work and experi-
ments and in recommendations section 6.2 we give insight about possible
future work and improvements in the Attentional PointNet architecture.

6.1 Conclusions
Most existing methods for LiDAR based 3D object detection either rely on
hand-crafted feature representations like bird’s eye view projection or multi-
modal approaches using cameras as additional sensor. In this thesis, we
present a novel end-to-end trainable deep architecture Attentional-PointNet
for 3D object detection in point clouds. The network directly consumes sparse
3D points and capture 3D geometric information effectively. We proposed
to use Attention Mechanism with 3D point clouds and introduce a new
differentiable module, recurrent 3D-STN, to find regions of interest in the
given point cloud. We conducted experiments with augmented KITTI dataset
for car detection. We demonstrate our network capability to sequentially
attend/locate to cars in the cluttered environments. For car detection on
KITTI dataset Attentional PointNet shows comparable results with existing
state-of-the-art LiDAR-based 3D detection methods whereas it significantly
outperforms them in terms of inference time.

6.2 Recommendations
There are several research avenues can be explored and improvements can
be incorporated as:

• Network currently iterates 3 times and predict detection even if there
are no objects in the scene. Instead, use of confidence parameter as
stopping criteria for the RNN iteration can save computation.

• The original STN paper shows that it helps the network to be inherited
/ compensated to a small transformation of input data. Thereby mak-
ing the network less susceptible to changes in viewpoints distortion of
input data, increasing the accuracy of the Network. But in our context,
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we used STN as a differentiable cropping mechanism for the visual
attention. Consequently STN has to predict for the large transformation
of the point cloud to focus on different objects. STN suffers at regress-
ing precise bounding box co-ordinate. A better approach could be to
increase the crop area of STN (i.e Finding the regions of interest) then
designing another network that works inside the cropped out region to
regress the bounding box co-ordinate.

• Points in each 10m x 10m cropped regions are randomly sampled to
4096 points, even if there are significantly less number of points in
the beginning. This means many points are picked multiple times, this
causes a worthless increase in data points to be processed. Design
of network that could adapt to the variable number of input points
without resampling them would be an interesting challenge to work
upon.

• Qualitative results of network show large number of false positives
mostly in the bushes. As understanding the shape from such highly
unstructured point clouds is difficult, addition of another modality
could help reducing number of false positives significantly.
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