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Abstract. In symmetric cryptanalysis, the model of superposition queries
has led to surprising results, with many constructions being broken in
polynomial time thanks to Simon’s period-finding algorithm. But the
practical implications of these attacks remain blurry. In contrast, the re-
sults obtained so far for a quantum adversary making classical queries
only are less impressive.

In this paper, we introduce a new quantum algorithm which uses Simon’s
subroutines in a novel way. We manage to leverage the algebraic struc-
ture of cryptosystems in the context of a quantum attacker limited to
classical queries and offline quantum computations. We obtain improved
quantum-time/classical-data tradeoffs with respect to the current liter-
ature, while using only as much hardware requirements (quantum and
classical) as a standard exhaustive search with Grover’s algorithm. In
particular, we are able to break the Even-Mansour construction in quan-
tum time O(2"/3), with O(2"/®) classical queries and O(n?) qubits only.
In addition, we improve some previous superposition attacks by reducing
the data complexity from exponential to polynomial, with the same time
complexity.

Our approach can be seen in two complementary ways: reusing superpo-
sition queries during the iteration of a search using Grover’s algorithm,
or alternatively, removing the memory requirement in some quantum
attacks based on a collision search, thanks to their algebraic structure.
We provide a list of cryptographic applications, including the Even-
Mansour construction, the FX construction, some Sponge authenticated
modes of encryption, and many more.

Keywords: Simon’s algorithm, classical queries, symmetric cryptography, quan-
tum cryptanalysis, Even-Mansour construction, FX construction.

1 Introduction

Ever since Shor [39] introduced his celebrated quantum polynomial-time algo-
rithm for solving factorization and Discrete Logarithms, both problems believed



to be classically intractable, post-quantum cryptography has become a subject
of wide interest. Indeed, the security of classical cryptosystems relies on compu-
tational assumptions, which until recently, were made with respect to classical
adversaries; if quantum adversaries are to be taken into account, the landscape
of security is bound to change dramatically.

While it is difficult to assert the precise power of quantum computers, which
are yet to come, it is still possible to study quantum algorithms for cryptographic
problems, and to estimate the computational cost of solving these problems for a
quantum adversary. The ongoing project by NIST [35] for post-quantum asym-
metric schemes aims to replace the current mostly used ones by new standards.

In symmetric cryptography, the impact of quantum computing seems, at first
sight, much more limited. This is because the security of most of symmetric-key
schemes is not predicated on structured problems. Symmetric-key schemes are
required to be computed extremely efficiently, and designers must avoid such
computationally expensive operations. Grover’s quantum search algorithm [22],
another cornerstone of quantum computing, speeds up by a quadratic factor
exhaustive search procedures. This has led to the common saying that “doubling
the key sizes” should ensure a similar level of post-quantum security.

However, the actual post-quantum security of symmetric-key schemes re-
quires more delicate treatment. Recovering the secret key via exhaustive search
is only one of all the possible approaches. The report of the National Academy
of Sciences on the advent of quantum computing [34] also states that “it is pos-
sible that there is some currently unknown clever quantum attack” that would
perform much better than Grover’s algorithm. Indeed, cryptographers are mak-
ing significant progress on quantum attackers with superposition queries, which
break many symmetric-key schemes in polynomial time.

Quantum Generic Attacks in Q1 and Q2 Models. Quantum attacks can be
mainly classified into two types [20,25,23], Q1 model and Q2 model, assum-
ing different abilities for the attacker. In the Q1 model, attackers have an access
to a quantum computer to perform any offline computation, while they are only
allowed to make online queries in a classical manner. In the Q2 model, besides
the offline quantum computation, attackers are allowed to make superposition
queries to a quantum cryptographic oracle. Here, we briefly review previous re-
sults in these models to introduce the context of our results.

The Q2 model is particularly interesting as it yields some attacks with a very
low cost. Kuwakado and Morii [29,30] showed that the Even-Mansour cipher
and the three-round Feistel networks, classically proven secure if their underly-
ing building blocks are ideal, were broken in polynomial time. This exponential
speedup, the first concerning symmetric cryptography, was obtained thanks to Si-
mon’s algorithm [40] for recovering a Boolean hidden shift. Later on, more results
have been obtained in this setting, with more generic constructions broken [24,
31], and an exponential acceleration of slide attacks, which target ciphers with a
self-similar structure. Versions of these attacks [5] for constructions with mod-
ular additions use Kuperberg’s algorithm [27], allowing a better than quadratic
speed-up. All these attacks, however, run in the model of superposition queries,



which models a quantum adversary having some inherently quantum access to
the primitives attacked. As such, they do not give any improvement when the
adversary only has classical access.

Stated differently, the attacks in the Q1 model are particularly relevant due to
their impact on current data communication technology. However, the quantum
algorithms that have been exploited for building attacks in the Q1 model are very
limited and have not allowed more than a quadratic speed-up. The most used
algortihm is the simple quantum exhaustive search with Grover’s algorithm. A
possible direction is the collision finding algorithm that is often said to achieve
“n/3 complexity” versus 2™/? classically. However, even in this direction, there
are several debatable points; basic quantum algorithms for finding collisions
have massive quantum hardware requirements [9]. There is a quantum-hardware-
friendly variant [12], but then the time complexity becomes suboptimal.

In summary, attacks using Simon’s algorithm could achieve a very low com-
plexity but could only be applied in the Q2 model, a very strong model. In
contrast, attacks in the Q1 model are practically more relevant, but for now the
obtained speed-ups were not surprising.

Another model to consider when designing quantum attacks is whether the
attacker has or not a big amount of quantum memory available. Small quantum
computers seem like the most plausible scenario, and therefore attacks needing a
polynomial amount of qubits are more practically relevant. Therefore, the most
realistic scenario is Q1 with small quantum memory.

Our Main Contribution. The breakthrough we present in this paper is the first
application of Simon’s algorithm [40] in the Q1 model, which requires signif-
icantly less than O (2"/ 2) classical queries and offline quantum computations,
only with poly(n) qubits, and no qRAM access (where n is the size of the secret).
Namely, we remove the superposition queries in previous attacks. The new idea
can be applied to a long list of ciphers and modes of operation. Let us illustrate
the impact of our attacks by focusing on two applications:

The first application is the key recovery on the Even-Mansour construction,
which is one of the simplest attacks using Simon’s algorithm. Besides the polyno-
mial time attacks in the Q2 model, Kuwakado and Morii also developed an attack
in the Q1 model with O (2”/ 3) classical queries, quantum computations, qubits,
and classical memory [30]. The extension of this Q1 attack by Hosoyamada and
Sasaki [23] recovers the key with O (23”/ 7) classical queries, O (23"/ 7) quantum
computations, polynomially many qubits and O (2”/ 7) classical memory (to bal-
ance classical queries and quantum computations). Our attack in the Q1 model
only uses polynomially many qubits, yet only requires O (2"/ 3) classical queries,
o (n32"/ 3) quantum computations and poly(n) classical memory.

The second application is the key recovery on the FX-construction FXy, i, kours
which computes a ciphertext ¢ from a plaintext p by ¢ + Er(p ® kin) ® kout,
where F is a block cipher, k is an m-bit key and k;,, kot are two n-bit keys.
Leander and May proposed an attack in the Q2 model with O (n2m/ 2) super-
position queries, O (n32m/2) quantum computations, poly(n) qubits and poly(n)



classical memory [31]. ! They combined Simon’s algorithm and Grover’s algo-
rithm in a clever way, while it became inevitable to make queries in an adaptive
manner. For the Q1 model, the meet-in-the-middle attack [23] can recover the
key with O (23(m+”)/ 7) complexities. Our results can improve the previous at-
tacks in two directions. One is to reduce the amount of superposition queries in
the Q2 model to the polynomial order and convert the adaptive attack to a non-
adaptive one. The other is to completely remove the superposition queries. The
comparison of previous quantum attacks and our attacks on Even-Mansour and
the FX construction is shown in Table 1. Other interesting complexity trade-offs
are possible, as shown in detail in sections 5 and 4.

Table 1. Previous and New Quantum Attacks on Even-Mansour and FX, assuming
that m = O (n).

Target‘ Model Queries Time Q-memory C-memory Reference
Q2 O (n) O (n?) O (n) O (n?) [30]
QUL o (2"/3) o (2"/3) o (2"/3) o (273 [30]
EM | Q1 © (23"/ 7) o (23”/ 7) om o2 [23]
Q1 (@) (2"/3) @) (n32"/3) O (n?) O (n) Section 5
Q@ o(n2™?)  o(n'27?) 0@ 0 [31]
FX | Q2 O (n) O (n®2m/? O (n?) O (n) Section 4
QL O (23(m+n)/7) o (23(m+n)/7> om o (2(m+n)/7> [23]
Q1 O (2(m+")/3) o (n32<m+">/3) O (n?) O (n) Section 5

Our New Observation. Here we describe our new algorithm used in the Q1 model
with the Even-Mansour construction as an example. Recall that the encryption
Ek, i, of the Even-Mansour construction is defined as Ex, x,(z) = P(z®k1) Dk,
where P is a public permutation and k1, ko € {0, 1}™ are the secret keys. Roughly
speaking, our attack guesses (2n/3)-bit of k; (denoted by k&z) in Fig. 1) by
using the Grover search, and checks if the guess is correct by applying Simon’s
algorithm to the remaining (n/3)-bit of k1 (denoted by k‘gl) in Fig. 1). If we were
in the Q2 model, we could recover k; by using the technique by Leander and
May [31] in time O(2"/3). However, their technique is not applicable in the Q1
setting since quantum queries are required.

Our core observation that realizes the above idea in the Q1 model is that,
we can judge whether a function f @ g has a period (i.e., we can apply Simon’s
algorithm) without any quantum query to g, if we have the quantum state [¢4) :=

! Here we are assuming that m is in O (n), which is the case for usual block ciphers.



>, lx) 9(2)))®" (cis a small constant): If we have the quantum state |1,), then
we can make the quantum state [¢re,) = (3, [2)|(f ® ¢)(x)))®“" by making
O (n) quantum queries to f. Once we obtain [¢ta,), by applying the Hadamard
operation H®™ to each |r) register, we obtain the quantum state

(Z(1>"l‘fl|ul>|<f@g><x1>>>®~~~®< > <1>“m%wm><f@g><zm>>>

T1,U1 TensUen

Then, roughly speaking, dim(Span(uq, ..., ue,)) < n always holds if f @ g has a
secret period s, while dim(Span(uy, ..., ue,)) = n holds with a high probability
if f® g does not have any period. Since the dimension of the vector space can be
computed in time O (n3), we can judge if f @ ¢ has a period in time O (ns) Note
that we can reconstruct the quantum data [¢)4) after judging whether (f @ g)
has a period (with some errors) by appropriately performing uncomputations,
which help us use these procedures as a subroutine without measurement in
other quantum algorithms.

For the Even-Mansour construction, we set g : {0,1}"/3 — {0,1}" by g(z) :=
Ek, 1, (2]|0?"/3). Then we can make the quantum state |1,) by classically query-
ing x to g for all x € {0, 1}"/3, which requires 2"/2 classical queries. After obtain-
ing the state [1)4), we guess kf). Suppose that here our guess is &’ € {0,1}2"/3.
We define fir : {0,1}"/3 — {0,1}" by fu (z) := P(z||k"). Then, roughly speak-
ing, our guess is correct if and only if the function fi/ & ¢ has a period kil). Thus
we can judge whether the guess is correct without quantum queries to g, by
using our technique described above. Since kz§2) can be guessed in time (’5(2"/ 3)
by using the Grover search, we can recover the keys by making C’)(Z"/ 3) classical
queries and O(2"/3) offline quantum computations.

k) « : Grover search space
2n k2
o 1

n,
P N

Jany
7 NP
3

kS < Apply Simon’s algorithm

Fig. 1. Idea of our Q1 attack on the Even-Mansour construction.

We will show how we can similarly attack the FX construction in the Q1
model, by guessing additional key bits (see Fig. 2).

Moreover, our attack idea in the Q1 model can also be used to reduce the
number of quantum queries of attacks in the Q2 model. The Leander and May’s
attack on the FX construction in the Q2 model [31] guesses the m-bit key k
of the FX construction FXy, i, and checks whether the guess is correct by

'inykout
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Fig. 2. Idea of our Q1 attack on the FX construction.

using Simon’s algorithm, which requires ©(2™/2) online quantum queries and
o2/ %) offline quantum computations. Roughly speaking, the guess k' for the
key k is correct if and only if (fxr @ ¢)(z) has the secret period ki;,, where
frr(x) = Ey(x) and g(z) = FXk g, k... (). In the Q2 model, we can make the
quantum state [1g) = (>, |z)]g(2)))®“" by making O (n) quantum queries to g.
Thus, by our new attack idea described above, we can break the FX construction
with O (n) online quantum queries and @(Qm/ 2) offline quantum computations,
which exponentially improves the attack by Leander and May from the viewpoint
of quantum query complexity.

This exponential improvement on the quantum query complexity is due to
the separation of offline queries and online computations: In the previous attack
on the FX construction in the Q2 model by Leander and May, we have to do
online queries and offline computations alternately in each iteration of the Grover
search. Thus the number of online quantum queries becomes exponential in the
previous attack. On the other hand, in our new attack, the online queries (i.e.,
the procedures to make the quantum state |14)) are completely separated from
offline computations. This enables us to decrease the number of quantum queries
exponentially, while we still need exponentially many offline computations.

Paper organization. Section 2 gives preliminaries. Section 3 describes our
main algorithms. Section 4 shows applications of our algorithms in the Q2 model.
Section 5 shows applications of our algorithms in the Q1 model. Section 6 dis-
cusses further applications of our algorithm. Section 7 concludes the paper.

2 Preliminaries

In this section, we introduce some quantum computing notions and review Si-
mon’s and Grover’s algorithms. We refer to [36] for a broader presentation.



2.1 The Quantum Circuit Model

It has become standard in the cryptographic literature to write quantum al-
gorithms in the circuit model, which is universal for quantum computing. We
only consider the logical level of quantum circuits, with logical qubits, not their
implementation level (which requires physical qubits, quantum error-correction,
etc). Although it is difficult to estimate the cost of a physical implementation
which does not yet exist, we can compare security levels as quantum operation
counts in this model. For example, Grover search of the secret key for AES-128
is known to require approximately 264 quantum evaluations of the cipher, and
284 quantum operations [21].

Qubits and Operations. A quantum circuit represents a sequence of quantum
operations, denoted as quantum gates, applied to a set of qubits. An individual
qubit is a quantum object whose state is an element of a two-dimensional Hilbert
space, with basis |0),|1) (analogs of the classical logical 0 and 1). Hence, the
state is described as a linear combination of |0}, |1) with complex coefficients (a
superposition). We add to this a normalization condition: «|0)+ /5|1) is such that
|a|? +]8]> = 1. When it is clear from context, we dismiss common normalization
factors.

When n qubits are given, the computational basis has 2" vectors, which
are all n-bit strings. The qubits start in a state |0), for example a fixed spin
or polarization. The sequence of quantum gates that is applied modifies the
superposition, thanks to constructive and destructive interferences. In the end,
we measure the system, and obtain some n-bit vector in the computational basis,
which we expect to hold a meaningful result.

All computations are (linear) unitary operators of the Hilbert space, and as
such, are reversible (this holds for the individual gates, but also for the whole
circuit). In general, any classical computation can be made reversible (and so,
implemented as a quantum circuit) provided that one uses sufficiently many
ancilla qubits (which start in the state |0) and are brought back to |0) after the
computation). Generally, on input |z), we can perform some computation, copy
the result to an output register using CNOT gates, and uncompute (perform
backwards the same operations) to restore the initial state of the ancilla qubits.
Uncomputing a unitary U corresponds to applying its adjoint operator U*.

By the principle of deferred measurements, any measure that occurs inside
the quantum circuit can be deferred to the end of the computation.

Quantum Oracles. Many quantum algorithms require an oracle access. The dif-
ference they make with classical algorithms with this respect is that classical or-
acles (e.g. cryptographic oracles such as a cipher with unknown key) are queried
“classically”, with a single value, while quantum oracles are unitary operators.
We consider oracle calls of the type:

Oy




which XOR their output value to an output register (ensuring reversibility). If
we consider that |y) starts in the state |0), then f(x) is simply written here. If
the function f can be accessed through Oy, we say it has superposition oracle
access.

Quantum RAM. Additionally to the use of “plain” quantum circuits with univer-
sal quantum computation, many algorithms require quantum random-access, or
being able to access at runtime a superposition of memory cells. This is a strong
requirement, since this requires an extensive quantum hardware (the qRAM)
and a huge architecture that is harder to build than a quantum circuit with a
limited number of qubits. Shor’s algorithm, Simon’s algorithm, Grover’s algo-
rithm do not require qRAM, if their oracle calls do not either, contrary to, e.g.,
the algorithm for quantum collision search of [9], whose optimal speedup can be
realized only by using massive gqRAM.

Our algorithm has no such requirement, which puts it on the same level of
practicality as Grover’s algorithm for attacking symmetric primitives.

2.2 Simon’s Algorithm
Simon’s algorithm [40] gives an exponential speedup on the following problem.

Problem 1 (Simon’s problem). Suppose given access to a function f : {0,1}" —
{0,1}" that is either injective, or such that there exists s € {0,1}"™ with:

Vo, f(z) = fly) <= y=rory=10s,
then find «.

In other words, the function f has a hidden Boolean period. It is also easy to
extend this algorithm to a hidden Boolean shift, when we want to decide whether
two functions f and g are such that g(z) = f(z @ s) for all z. In practice, f
can fall in any set X provided that it can be represented efficiently, but in our
examples, we will consider functions producing bit strings.

Solving this problem with classical oracle access to f requires {2 (2”/ 2) queries,
as we need to find a collision of f (or none, if there is no hidden period). Si-
mon [40] gives an algorithm which only requires O (n) superposition queries. We
fix ¢ > 1 a small constant to ensure a good success probability and repeat cn
times Algorithm 1.

We obtain either:

e a list of cn random values of y;
e a list of cn random values of y in the hyperplane y - s = 0.

It becomes now easy to test whether s exists or not. If it doesn’t, the system
of equations obtained has full rank. If it does exist, we can find it by solving
the system. Judging whether there exists such an s and actually finding it (if it
exists) can be done in time O (n3) by Gaussian elimination.



Algorithm 1 Quantum subroutine of Simon’s algorithm.

1: Start in the all-zero state |0)|0) where the first register contains n qubits and the
second represents elements of X.
2: Apply Hadamard gates to obtain:

> @0
ze{0,1}™

3: Query Oy to obtain:

Yo @)= > |z) | la)

ze{0,1}m a€X \ze€{0,1}"|f(z)=a

4: Measure a (alternatively, we can defer this measurement), get a random value

a € X and:
> |)

z€{0,1}"|f(z)=a

5: Apply Hadamard gates:

> S =0T

y€{0,1}™ \z€{0,1}"|f(z)=a

6: Now measure the y register. There are two cases.
e Either f hides no period s, in which case we get a random y.
e Either f hides a period s, in which case the amplitude of |y) is:

S = a4 e
z€{0,1}"|f(z)=a

which is zero if y - s = 1 and non-zero otherwise.
e In that case, measuring gives a random y such that y-s = 0.

Simon’s Algorithm in Cryptography. This algorithm has been used in many at-
tacks on modes of operation and constructions where recovering a secret requires
to find a hidden shift between two functions having bit-string inputs. Generally,
the functions to which Simon’s algorithm is applied are not injective, and ran-
dom collisions can occur. But a quick analysis (as done e.g. in [24]) shows that
even in this case, a mild increase of the constant ¢ will increase the success
probability to a sufficient level. To be precise, the following proposition holds.

Proposition 1 (Theorem 2 in [24]). Suppose that f : {0,1}" — X has a
period s £ 0", i.e., f(x @ s) = f(z) for all x € {0,1}", and satisfies

max Pr(f( @) = f(z) <

. (1)

N | —

When we apply Simon’s algorithm to f, it returns s with a probability at least
1—2m.(3/4)".



2.3 Grover’s Algorithm

Grover’s algorithm [22] allows a quadratic speedup on classical exhaustive search.
Precisely, it solves the following problem:

Problem 2 (Grover’s problem). Consider a set X (the “search space”) whose
elements are represented on [log,(|X|)] qubits, such that the uniform superpo-
sition ) .y [7) is computable in O (1) time. Given oracle access to a function
f X —{0,1} (the “test”), find € X such that f(x) = 1.

Classically, if there are 2¢ preimages of 1, we expect one to be found in time
(and oracle accesses to f) O (]X|/2"). Quantumly, Grover’s algorithm finds one

in time (and oracle accesses to Of) O (\/ \X\/Qt). In particular, if there is one

preimage of 1, the running time is O (\/ | X \) If the superposition oracle for f

uses a ancilla qubits, then Grover’s algorithm requires a + [log,(|X|)] qubits
only.
Grover’s algorithm works first by producing the superposition } ¢ v |z). It

applies O (\/ | X/ 2’5) times an operator which, by querying Oy “moves” some

amplitude towards the preimages of 1.

3 Simon’s Algorithm with Asymmetric Queries

In this section, we introduce a problem that can be seen as a general combina-
tion of Simon’s and Grover’s problems, and that will be solved by an according
combination of algorithmic ideas. The problem has many cryptographic applica-
tions, and it will be at the core of our improved Q2 and Q1 time-memory-data
tradeoffs.

Problem 3 (Asymmetric Search of a Period). Let F : {0,1}™x {0,1}" — {0,1}*
and g : {0,1}™ — {0, 1} be two functions. We consider F as a family of functions
indexed by {0,1}™ and write F'(,-) = fi(+). Assume that we are given quantum
oracle access to F', and classical or quantum oracle access to g. (In the Q1 setting,
g will be a classical oracle. In the Q2 setting, g will be a quantum oracle.)

Assume that there exists exactly one ¢ € {0,1}™ such that f; @ g has a
hidden period, i.e.: Vx € {0,1}", fi,(z) ® g(z) = fi,(x ® s) ® g(z & s) for some
s. Furthermore, assume that:

1
ma. Pr T Dg)zdt)=(fiDg)(x)] < = 2
ie{071}m><\{io}%{0,1}n[(f get)=(fieg)(@)] <3 (2)
t€{0,1}™\{0"}

Then find iy and s.

In our cryptographic applications, g will be a keyed function such that adver-
saries have to make online queries to evaluate it, while F' will be a function such
that adversaries can evaluate it offline. For example, the problem of recovering

10



keys of the FX construction FXg .. kou, () = Ex(x®kin) B kout can be regarded
as a simple cryptographic instantiation of Problem 3: Set g(x) := FXg ;. kou: (Z)
and F(i,x) := E;(x). Then, roughly speaking, the function f; ® g has a period
ki if k = i, whereas it does not have any period if ¢ # k and Condition (2)
holds. Thus we can know whether ¢ = k£ by checking whether f; ® g has a period.

Justification of Condition (2). We added Condition (2) in Problem 3 because
the problem would be much harder to solve if we do not suppose any condition
on f;. Such assumptions are standard in the litterature of quantum attacks using
Simon’s algorithm (see for example [24, Sections 2.2 and 4] or [4, Section 3]).
This is reasonable for cryptographic applications, as a block cipher is expected
to behave like a random permutation, which makes the functions we construct in
our applications behave like random functions. This assumption is made in [24,
31], and such functions satisfy Condition (2) with an overwhelming probability.
Moreover, as remarked in [24], a cryptographic construction that fails to satisfy
Condition (2) would exhibit some poor differential properties which could be
used for cryptanalysis.

3.1 Existing Techniques to Solve the Problem

Here we explain existing algorithms to solve Problem 3 in both the Q1 model
and the Q2 model, with the algorithms to recover keys of the FX construction
as an example. Note that we consider the situation in which exponentially many
qubits are not available.

The model Q1. In the Q1 model, when we are allowed to make only classical
queries to g := FXj i, k..., there exists a Q1 algorithm to attack the FX con-
struction that uses a kind of meet-in-the-middle technique [23]. However, it does
not make use of the exponential speed-up of Simon’s algorithm, and its time
complexity and query complexity is O (23<n+m)/ 7) (for m < 4n/3).

The model Q2. Problem 3 can be solved with O (n2m/ 2) superposition queries
to F(i,x) = E;(z) and g(z) = FXy i, ko, (7), and in time O (n327/2), using the
Grover-meet-Simon algorithm of [31]. Indeed, we make a Grover search on index
i € {0,1}™. When testing whether a guess 4 for the key k is correct, we perform
O (n) queries to F and O (n) queries to g, to check whether f; & ¢g has a hidden
period, hence whether the guess i is correct. Moreover, since superposition access
to F' and g is allowed, we can test ¢ in superposition as well.

3.2 An Algorithm for Asymmetric Search of a Shift

Here we describe our new algorithms to solve Problem 3. We begin with ex-
plaining two observations on the Grover-meets-Simon algorithm in the Q2 model
described in Section 3.1, and how to improve it. Then we describe how to use
the idea to make a good algorithm to solve Problem 3 in the Q1 model.

11



Two observations. Our first observation is that, when doing the Grover search
over ¢ for Problem 3, each time a new 1 is tested, a new function f; is queried.
But, in contrast, the function g is always the same. We would like to take this
asymmetry into account, namely, to make less queries to g since it does not
change. This in turn has many advantages: queries to g can become more costly
than queries to f;.

Our second observation is that, for each ¢ € I, once we have a superposition

[V,) = Q" (Zwe{o,l}" |x>\g(x)>> and given a quantum oracle access to f;, we
can obtain the information if f; @ ¢ has a period or not without making queries
to g.

From [¢),), we can make the state |¢f,64) = Q" (er{o,l}" |z)| fi(x) ® g(m)))
by making queries to f;. By applying usual Simon’s procedures on [¢f,q4), We
can judge if f;@®g has a period. Moreover, by appropriately performing uncompu-
tations, we can recover |tby) (with some errors) and reuse it in other procedures.

With these observations in mind, below we give an intuitive description of
our algorithm Alg-PolyQ2 to solve Problem 3 in the Q2 model (we name our
algorithm Alg-PolyQ2 because it will be applied to make Q2 attacks with poly-
nomially many online queries in later sections). The main ideas of Alg-PolyQ2
are separating an online phase and offline computations, and iteratively reusing
the quantum data |¢4) obtained by the online phase.

Algorithm Alg-PolyQ2(informal).

1. Online phase: Make cn quantum queries to g to prepare |¢,).

2. Offline computations: Run the Grover search over i € {0, 1}™. For each fixed
i, run a testing procedure test such that: (a) test checks if 7 is a good element
(i.e., f; ® g has a period) by using |[¢4) and making queries to f;, and (b)
after checking if i is good, appropriately performs uncomputations to recover
the quantum data [1)g).

A formal description of Alg-PolyQ2 is given in Algorithm 2. We fix a constant
¢ > 1, to be set later depending on the probability of error wanted.

We show how to implement the testing procedure test in Algorithm 3 without
any new query to g, using only exactly 2cn superposition queries to F. To write
this procedure clearly, we consider a single function f in input, but remark that
it works as well if f is a superposition of f; (as will be the case when test is
called as the oracle of a Grover search).

In practice, Algorithm 3 works up to some error (see Remark 1), which is am-
plified at each iteration of Algorithm 2. The complexity and success probability
(including the errors) of Alg-PolyQ2 can be analyzed as below.

Proposition 2. Suppose that m is in O (n). Let ¢ be a sufficiently large con-
stant. 2 Consider the setting of Problem 3: let ig € {0,1}™ be the good ele-
ment such that g @ fi, is periodic and assume that (2) holds. Then Alg-PolyQ2

2 See Proposition 5 for a concrete estimate.
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Algorithm 2 Alg-PolyQ2.
1: Start in the all-zero state.
2: Using cn queries to g, create the state:

cn

W) =@ | > I2)lg())

z€{0,1}™

The circuit now contains |t¢4), the “g-database”, and additional registers on
which we can perform Grover search. Notice that |¢4) contains cn independent
(and disentangled) registers.

3: Create the uniform superposition over indices ¢ € {0,1}™:

W ® D 18

i€{0,1}m

4: Apply Grover iterations. The testing oracle is a unitary operator test that takes in
input a register for |¢) and the “g-database”, and tests in superposition whether
fi ® g has a hidden period. If this is the case, it returns |b@ 1) on input |b).
Otherwise it returns |b). (Algorithm 3 gives the details for test in the case that 7 is
fixed.)

g) — — )
|2) test —  |4)
b)) — — |borb®1)

The most important feature of test is that it does not change the g-database
(up to some errors). The registers holding |¢4) are disentangled before and after
the application of test.
5: After O (2m/2) Grover iterations, measure the index i.

6: If the hidden shift is also wanted, apply a single instance of Simon’s algorithm (or
re-use the database and perform a slightly extended computation of test to retrieve
the result).

finds ig with a probability in O(1) by making O (n) quantum queries to g and
@ (n2m/2) quantum queries to F. 3 The offline computation (the procedures
excluding the ones to prepare the state |¢,)) of Alg-PolyQ2 is done in time
O ((n3 + nTF)2m/2), where Tr is the time required to evaluate F' once.

See Section A in the Appendix for a proof.

Remark 1. Intuitively, the error produced in each iteration of Algorithm 3 is
bounded by the maximum, on i, of: p* := Pr[dim(Span(ui,...,uc)) < n],
when uy, ..., u., are produced with Simon’s algorithm, :.e. the probability that
Simon’s algorithm returns the incorrect answer “f; @ g is periodic” even though

3 In later applications, F will be instantiated with unkeyed primitives, and quantum
queries to I’ are emulated with offline computations of primitives such as block
ciphers.
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Algorithm 3 The procedure test that checks if a function f & g has a period
against the g-database, without any new query to g.
1: We start with the g-database:

cn

W) =@ | > l2)lg())

ze{0,1}"
2: Using cn superposition queries to f, build the state:

cn

Wre) = Q| D I2)lg(2) @ f(2)

z€{0,1}™

We will now perform, in a reversible way, the exact computations of Simon’s
algorithm to find if g @ f has a hidden period or not (in which case f and g have
a hidden shift).
3: Apply (H®" @ I)™" ® I1 to |thsag) @ |b), to obtain

S ()T (f @ g)(@) | @

uy,z1€{0,1}m
- ® S (DR ) |(f @ g)en)) | @1B). (3)
Uen Ten €{0,1}7

4: Compute d := dim(Span(u1,...,ucn)), set r:=0if d=n and r := 1 if d < n, and
add r to b. Then uncompute d and r, and obtain

S D)) |(f @ g) (@) @ -

TY,..ey Ten

=@ (=1 uen)|(f @ g)(Ten)) @ (DB 7). (4)
Note that r in (4) depends on u1, . . ., ucn, and now the last register may be entangled
with the registers of u1, ..., Ucn.-

5: Uncompute (H®" ® Im)m ® I.
6: Using cn new superposition queries to f, revert |1rag4) to [1g).
There are two cases:
e If f & g has a hidden period, then » = 1 always holds. Hence, in the output
register, we always write 1.
o If f & g does not have a hidden period, then with high probability, r = 0.
Hence, in the output register, we write 0.

f; ® g is not periodic. From condition (2), we can show that p(*) < 2(+1/2((1 4
1)/2)¢"/2 holds (see Lemma 1 in the Appendix).

Remark 2. Alg-PolyQ2 finds the index i such that f; ® ¢g has a period, but does
not return the actual period of f; @& g. However, we can find the actual period of
fi: @ g (after finding ¢ with Alg-PolyQ2) by applying Simon’s algorithm to f; ® g.

14



Summary. With Alg-PolyQ2, we realize an “asymmetric” variant of Simon’s algo-
rithm, in which we store a “compressed” database for a single function g, which
is not modified (up to some errors) while we test whether another function f
has a hidden shift with g, or not. An immediate application of this algorithm
will be to achieve an exponential improvement of the query complexity of some
Q2 attacks on symmetric schemes. Indeed, in the context where Simon’s algo-
rithm and Grover’s algorithm are combined, it may be possible to perform the
queries to the secret-key cryptographic oracle only once, and so, to lower the
query complexity to O (n).

3.3 Asymmetric Search with Q1 Queries

In Alg-PolyQ2, (online) queries to g and (offline) queries to F are separated,
and only cn superposition queries to g are made. Hence another tradeoff is at
our reach, which was not possible when g was queried in each Grover iteration:
removing superposition queries to g completely.

Algorithm 4 Producing the g-database |1g).

Input: Classical query access to g
Output: The g-database:

cn

W)= | > I2)lg))

z€{0,1}™

1: Start with the all-zero state

&) [0)[0)
X 3 o)

z€{0,1}™

2: Apply Hadamard gates:

3: For each y € {0,1}", query (classically) g(y), then apply a unitary which writes
g(y) in the second register if the first contains the value y.

This requires now to query the whole codebook for g to prepare the quantum
state |¢g). Once |1)4) is built, the second offline phase runs in exactly the same
way. Building |tg) costs roughly 2" time (and classical queries), while going
through the search space for f takes 2/2 iterations (and quantum queries to
F). We call our new algorithm in the Q1 model Alg-ExpQ1l because it will be
applied to make Q1 attacks with ezponentially many online queries in later
sections. The optimal point arrives when m = 2n.

Below we give an intuitive description of our algorithm Alg-ExpQ1 to solve
Problem 3 in the Q1 model. As described above, the difference between Alg-ExpQ1
and Alg-PolyQ2 is the online phase to prepare |tg).
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Algorithm Alg-ExpQ1(informal).

1. Online phase: Make 2™ classical queries to g and prepare the state |1,).

2. Offline computations: Run the Grover search over ¢ € {0, 1}™. For each fixed
i, run a testing procedure test such that: (a) test checks if 7 is a good element
(i.e., f; ® g has a period) by using |¢)4) and making queries f;, and (b) after
checking if 7 is good, appropriately perform uncomputations to recover the
quantum data |i),).

A formal description of Alg-ExpQ1 is the same as that of Alg-PolyQ2 (Algo-
rithm 2) except that we make 2" classical queries to g to prepare the quan-
tum state [14). See Algorithm 4 for formal description of the online phase. The
complexity and success probability (including the errors) of Alg-ExpQ1l can be
analyzed as below.

Proposition 3. Suppose that m is in O (n). Let ¢ be a sufficiently large con-
stant. * Consider the setting of Problem 3: let ig € {0,1}™ be the good element
such that g f;, is periodic and assume that (2) holds. Then Alg-ExpQ1l finds ig
with a probability in O(1) by making O (2") classical queries to g and O (an/Q)
quantum queries to F. ® The offline computation (the procedures excluding the
ones to prepare the state |14) ) of Alg-ExpQ1 is done in time O ((n3 + nTF)2m/2) ,
where Tr is the time required to evaluate F' once.

A proof is given in Section A in the Appendix.

Finding actual periods. The above algorithm Alg-ExpQ1 returns the index ig
such that f;, @ ¢ has a period, but does not return the actual period. Therefore,
if we want to find the actual period of f;, ® g after finding iy, we have to ap-
ply Simon’s algorithm to f;, ® g again. Now we can make only classical queries
to g, though, we can use the same idea with Alg-ExpQ1 to make an algorithm
SimQ1 that finds the period of f;, & g. Again, let ¢ be a positive integer constant.

Algorithm SimQ1.

1. Make 2™ classical queries to g and prepare the quantum state [1)).
2. Make cn quantum queries to f;, to obtain the quantum state |d)fi0@g> =

K" (3, [2)1fio () © g()))-

3. Apply H®" to each |z) register to obtain the state

X (Z(—l)“'“IWIﬂO (z) @ g<w>>)

T,u
4. Measure all |u) registers to obtain cn vectors uq, ..., Ucn.

4 See Proposition 5 for a concrete estimate.

5 Again, in later applications, F will be instantiated with unkeyed primitives, and
quantum queries to F' are emulated with offline computations of primitives such as
block ciphers.
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5. Compute the dimension d of the vector space V spanned by uq, ..., ue,. If
d#mn—1, return L. If d =n — 1, compute the vector v # 0" € {0,1}" that
is orthogonal to V.

Obviously the probability that the above algorithm SimQ1 returns the period of
fi, @ g is the same as the probability that the original Simon’s algorithm returns
the period, under the condition that cn quantum queries can be made to the
function f;, ® g. Thus, from Proposition 1, the following proposition holds.

Proposition 4. Suppose that f;, © g has a period s # 0" and satisfies

max Pr[(fi, @ g)(a &) = (fiy ® 9)(@)] < = (5)

1#{s,07) @

N |

Then SimQ1 returns s with a probability at least 1—2™-(3/4)°"™ by making O (2™)
classical queries to g and cn quantum queries to f;,. The offline computation of
SimQ1 (the procedures excluding the ones to prepare the state |14)) runs in time
o (n3 + an), where Ty is the time required to evaluate f;, once.

Proposition 5 (Concrete cost estimates). In practice, for Propositions 2
and 3, c ~m/ (nlogy(4/3)) is sufficient.

Proof. We need to have 4|/ (4arcsin (27™/2)) |2(n+D/2(3/4)e/2 < 1/2.

In practice, arcsin(z) ~ = and the rounding has a negligible impact. Hence,
we need that m/2 + (n+1)/2 + logy(7) + log,(3/4)en/2 < —1.

This reduces to ¢ > log,(4/3)™! (m + 3 4 2logy (7)) /n ~ m/ (nlogy(4/3)n).

Remark 3. If m = n, this means ¢ ~ 2.5, and if m = 2n, ¢ >~ 5.

4 Q2 Attacks on Symmetric Schemes with Reduced
Query Complexity

This section shows that our new algorithm Alg-PolyQ2 can be used to construct
Q2 attacks on various symmetric schemes. By using Alg-PolyQ2 we can expo-
nentially reduce the number of quantum queries to the keyed oracle compared
to previous Q2 attacks, with the same time cost.

In each application, we consider that one evaluation of each primitive (e.g.,
a block cipher) can be done in time O (1), for simplicity. For our practical esti-
mates, we use the cost of the primitive as our unit, and consider that it is greater
than the cost of solving the linear equation system. In addition, we assume that
key lengths of n-bit block ciphers are in O (n), which is the case for usual block
ciphers.

4.1 An Attack on the FX construction

Here we show a Q2 attack on the FX construction. As described in Section 3,
the FX construction builds an n-bit block cipher FXj, & with (2n + m)-bit

in 7kout
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keys (Kin, kout € {0,1}™ and k € {0,1}") from another n-bit block cipher Ej
with m-bit keys as

FXkk (z) := Ex(z & kin) & kout- (6)

insKout

This construction is used to obtain a block cipher with long ((2n + m)-bit)
keys from another block cipher with short (m-bit) keys. Roughly speaking, in
the classical setting, the construction is proven to be secure up to O (2("+m)/2)
queries and computations if the underlying block cipher is secure [26].

Concrete block ciphers such as DESX, proposed by Rivest in 1984 and ana-
lyzed in [26], PRINCE [7], and PRIDE [1] are designed based on the FX construc-
tion. To estimate security of these block ciphers against quantum computers, it
is important to study quantum attacks on the FX construction.

As briefly explained in Section 3, the previous Q2 attack by Leander and
May [31] breaks the FX construction by making O (n2m/ 2) quantum queries,
and its time complexity is O (n?2m/2).

Application of our algorithm Alg-PolyQ2. Below we show that, by applying
our algorithm Alg-PolyQ2, we can recover keys of the FX construction with only
O (n) quantum queries. Time complexity of our attack remains O (n32m/ 2),
which is the same as Leander and May’s.

Attack idea. As explained in Section 3, the problem of recovering the keys k
and k;,, of the FX construction Fj can be reduced to Problem 3: Define

) irnkout
F:{0,1}™ x {0,1}* — {0,1}" and g : {0,1}" — {0,1}" by

9(®) = FXp ki koe (T) © FXp ki kg (7 D 1).

Then

Ji(@) ® g(z) = fi(x @ kin) ® g(x & kin) (7)
holds, i.e., fi @ g(x) has a period k;, (note that fy(z) = F(k,z)). If E is a
secure block cipher and F; is a random permutation for each ¢, intuitively, f; g
does not have any period for ¢ # k. Thus the problem of recovering k and k;,

is reduced to Problem 3 and we can apply our algorithm Alg-PolyQ2. Formally,
the attack procedure is as follows.

Attack description.

1. Run Alg-PolyQ2 for the above F' and g to recover k.
2. Apply Simon’s algorithm to fx @ g to recover k;,.
3. Compute koyr = Er(0™) @ FXk g1 ko, (07).

Next we give a complexity analysis of the above attack.
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Analysis. We assume that m = O (n), which is the case for usual block ciphers. If
E is a secure block cipher and F; is a random permutation for each i € {0,1}™,
we can assume that fr @ g =Ery ® Ep(- @ 1) B FXp ki ko B FXbo ks kou (- B 1)
is far from periodic for all ¢ # k, and that assumption (2) in Problem 3 holds.

Hence, by Proposition 2, Alg-PolyQ2 recovers k with a high probability by
making O (n) quantum queries to g and O (an/ 2) quantum queries to F', which
implies that k is recovered only with O (n) quantum queries made to FXp, 1., ko
and in time O (n32™/2). (Note that one evaluation of g (resp., F') can be done
by O (1) evaluations of FXy, .. k... (resp., E).)

From Proposition 1, the second step can be done with O (n) quantum queries
in time O (n3) It is obvious that the third step can be done efficiently.

In summary, our attack recovers the keys of the FX construction with a high
probability by making O (n) quantum queries to the (keyed) online oracle, and
it runs in time O (n32m/2).

Applications to DESX, PRINCE and PRIDE. DESX [26] has a 64-bit
state, two 64-bit whitening key and one 56-bit inner key. From Propositions 2
and 5, we can estimate that our attack needs roughly 135 quantum queries and
229 quantum computations of the cipher circuit.

PRINCE [7], and PRIDE [1] are two ciphers using the FX construction with
a 64-bit state, a 64-bit inner key and two 64-bit whitening keys. Hence, from
Propositions 2 and 5, we can estimate that our attack needs roughly 155 quantum
queries and 233 quantum computations of the cipher circuit.

5 Q1 Attacks on Symmetric Schemes

This section shows that our new algorithm Alg-ExpQ1 can be used to construct
Q1 attacks on various symmetric schemes, with a tradeoff between online clas-
sical queries, denoted below by D, and offline quantum computations, denoted
below by T

All the algorithms that we consider run with a single processor, but they
can use quantum or classical memories, whose amount is respectively denoted
by @ (number of qubits) and M. Again, we consider that one evaluation of each
primitive (e.g. a block cipher) can be done in time O (1), for simplicity, and we
assume that key lengths of n-bit block ciphers are in O (n).

5.1 Tradeoffs for the Even-Mansour Construction

The Even-Mansour construction [19] is a simple construction to make an n-bit
block cipher Ej, 1, from an n-bit public permutation P and two n-bit keys k1, ko
(see Fig. 3). The encryption Ej, i, is defined as Ey, ,(z) 1= P(z & k1) & ko,
and the decryption is defined accordingly.

In the classical setting, roughly speaking, the Even-Mansour construction is
proven secure up to O (2”/ 2) online queries and offline computations [19]. In
fact there exists a classical attack with tradeoff TD = 2", which balances at
T =D =2"%15].
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k1 k2

z 4& p 4$—>Ek1,k2(m)

Fig. 3. The Even-Mansour construction.

Previous Q1 attacks on the Even-Mansour construction. Kuwakado
and Morii gave a Q1 attack that recovers keys of the Even-Mansour construc-
tion with O (2"/3) classical queries and qubits, and O (2"/3) offline quantum
computations [30]. Their attack is based on a claw-finding algorithm by Bras-
sard et al. [9], and gives the tradeoff T?D = 2", with additional Q = D qubits.
The balanced point 2"/2 is significantly smaller than the classical balanced point
2"/2 However, if we want to recover keys with this attack in time 7' < 2™/2, we
need an exponential amount of qubits.

Main previous attacks with polynomial qubits The best classical attacks allow a
trade-off of D - T = 2™ (see [18] for other trade-offs involving memory). With
Grover we could recover the keys with a complexity of 2*/2 and 2 plaintexts-
ciphertext pairs, (P, C1) and (P, C3), by performing an exhaustive search over
the value of k; that would verify P(P; ® k1) ® P(P, @ k1) = C1 & Cy. In [23],
Hosoyamada and Sasaki also gave a tradeoff D - T6 = 23" for D < 23"/7 under
the condition that only polynomially many qubits are available, by using the
multi-target preimage search by Chailloux et al [12]. D and T are balanced at
D =T = 23"/7 which is smaller than the classical balanced point 2"/2. The
attack uses only polynomially many qubits, but requires M = D3 = 2n/7
classical memory. At the balanced point, this still represents an exponentially
large storage. Note that this is the only previous work that recover keys in time
T < 2™/? with polynomially many qubits.

‘ Reference |Classical attack| ~ Grover | [23] | [30] | [Ours] |

Tradeoffof DT:2n T:2’ﬂ/2, D-T6:23n D:Qn/S,D'T2:2n

D and T D = constant | (D < 2°™/7) | T = 27/3
| Num. of qubits || - | poly(n) | poly(n) | 2** | poly(n) |
| Classical memory || D | poly(n) | DY® | poly(n) | poly(n) |
S N

Balanced point
of Dand T

Table 2. Tradeoffs for Q1 attacks on the Even-Mansour construction. In this table we
omit to write order notations, and ignore polynomial factors in the first and last rows.
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Application of Alg-ExpQ1l. We explain how to use our algorithm Alg-ExpQ1
to attack the Even-Mansour construction. The tradeoff that we obtain is T -
D = 2", the same as the attack by Kuwakado and Morii above. It balances at
T = D = 2"/3, but we use only poly(n) qubits and poly(n) classical memory. See
Table 2 for comparison of attack complexities under the condition that poly(n)
many qubits are available.

Attack idea. The core observation of Kuwakado and Morii’s polynomial-time
attack in the Q2 model [30] is that the n-bit secret key k; is the period of the
function Ej, x,(x)® P(z), and thus Simon’s algorithm can be applied if quantum
queries to Ej, x, are allowed. The key to this exponential speed up (compared
to the classical attack) is to exploit the algebraic structure of Fy, 1, (the hidden
period of the function) with Simon’s algorithm.

On the other hand, the previous Q1 (classical query) attacks described above
use only generic multi-target preimage search algorithms that do not exploit any
algebraic structures. Hence being able to exploit the algebraic structure in the
Q1 model should give us some advantage.

Our algorithm Alg-ExpQ1 realizes this idea. It first makes classical online
queries to emulate the quantum queries required by Simon’s algorithm (the g-
database above) and then runs a combination of Simon’s and Grover’s algorithms
offline (Grover search is used to find the additional m-bit secret information). A
naive way to attack in the Q1 model would be to immediately combine Kuwakado
and Morii’'s Q2 attack with Alg-ExpQ1l. However, we would have to query the
whole classical codebook to emulate quantum queries, which is too costly (and
there is no Grover search step).

Our new attack is as follows: We divide the n-bit key k; in k@ of u bits and
k£2) of n — u bits and apply Simon’s algorithm to recover k:gl), while we guess k?)
by the Grover search (see Fig. 4). Then, roughly speaking, Alg-ExpQ1 recovers
the key by making D = 2* classical queries and T = 2("~%)/2 offline Grover
search iterations (note that the offline computation cost for Simon’s algorithm
is poly(n) and we ignore polynomial factors here for simplicity), which yields the
tradeoff D - T? = 2™, only with poly(n) qubits and poly(n) classical space.

kf) < : Grover search space
| v
n—u A l
N n
P —D
Jan
T
k‘il) ¢ . Apply Simon’s algorithm

Fig. 4. Idea of our Q1 attack on the Even-Mansour construction.
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Attack description. Here we give the description of our Q1 attack. Let u be an
integer such that 0 < u < n. Define F': {0,1}"* x {0,1}* — {0,1}" by

F(i,z) = P(x[]i), (8)

and define g : {0,1}* — {0,1}" by g(x) = Ek, k, (|/0"™).

Note that F(k:f),x) @® g(z) has the period k:gl) since F(kgz),x) @ g(x) =
P(x||k£2)) @ P((z ® kgl))ka)) @ ky. Our attack is described as the following
procedure:

1. Run Alg-ExpQ1 for the above F' and g to recover k?).

2. Recover kil) by applying SimQ1 to f, ) and g.
1

3. Compute ky = Fy, ,(0™) & P(ky1).

Analysis. Below we assume that u is not too small, e.g., u > n/logyn. This
assumption is not an essential restriction since, if u is too small, then the com-
plexity of the first step becomes almost the same as the Grover search on kq,
which is not of interest.

If P is a random permutation, we can assume that f; & g = P(-||i) @
Ey, 1, (-]]0"%) is far from periodic for all i # k§2), and that assumption (2)
in Problem 3 holds.

Hence, by Proposition 3, Alg-ExpQ1 in Step 1 recovers k§2) with a high prob-
ability by making O (2%) classical queries to g and the offline computation of
Alg-ExpQ1 runs in time O (n32("~%)/2). Here, notice that one evaluation of g
(resp. F') can be done in O (1) evaluations of Ej, x, (resp. P). In addition, from
Proposition 4, SimQ1 in Step 2 recovers k%l) with a high probability by making
O (2%) classical queries to g and the offline computation of Alg-ExpQ1 runs in
time O (n?). Step 3 requires O (1) queries to Ej, », and O (1) offline computa-
tions.

In summary, our attack recovers keys of the Even-Mansour construction with
a high probability by making D = O (2*) classical queries to Ej, x, and doing
T = O (n*2(n=%/2) offline computations, which balances at T = D = O(2n/3).
By construction of Alg-ExpQl and SimQ1, our attack uses poly(n) qubits and
poly(n) classical memory.

Applications to concrete instances. The Even-Mansour construction is a
commonly used cryptographic construction. The masks used in Even-Mansour
are often derived from a smaller key, which can make a direct key-recovery using
Grover’s algorithm more efficient. This is for example the case in the CAESAR
candidate Minalpher [38]. In general, we need to have a secret key of at least
two thirds of the state size for our attack to beat the exhaustive search.

The Farfalle construction [2] degenerates to an Even-Mansour construction if
the input message is only 1 block long. Instances of this construction use variable
states and key sizes. The Kravatte instance [2] has a state size of 1600 bits, and
a key size between 256 and 320 bits, which leads to an attack at a whopping
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cost of 2°33 data and time, while the direct key exhaustive seach would cost at
most 2150, Xoofff [16] has a state size of 384 bits and a key size between 192 and
384 bits. Our attack needs 2'28 data, which is exactly the data limit of Xoofff.
Hence, it is relevant if the key size is greater than 256.

k’

o

m ——H—— Pe — Pd — Pe —P—— 2

Fig. 5. One-block Farfalle.

5.2 Tradeoffs for the FX Construction

The FX construction [26] FXj ;. k..., computes a ciphertext ¢ from a plaintext
p by ¢ + Ei(p ® kin) & kout, where E is a block cipher, k is an m-bit key
and k;,, koyur are two n-bit keys. In the classical setting, there exists a classical
attack with tradeoff 7D = 27+™ which balances at T = D = 2(»*+™)/2 (see, for
example, [17] for more details and memory trade-offs).

Previous Q1 attacks on the FX construction. Applying Grover as we did
before on Even-Mansour on the keys k;, and k, we can recover the keys with
only two pairs of plaintext-ciphertext and a time complexity of 2("+7)/2 while
only needing a polynomial number of qubits.

In [23], Hosoyamada and Sasaki proposed a tradeoff D - T6 = 23(ntm) for
D < min{2",23(*™)/7} with a polynomial amount of qubits, by using the multi-
target preimage search by Chailloux et al [12]. The balance occurs at D =T =
23(n+m)/T (if m < 4n/3), which is smaller than the classical balanced point
2(n+m)/2 The attack requires M = D'/3 classical memory, thus the attack still
requires exponentially large space at the balanced point. This was the only Q1
attack with time T' < 2(®*™)/2 and a polynomial amount of qubits.

Application of Alg-ExpQ1. We explain how to apply our algorithm Alg-ExpQ1
to the FX construction. Our new tradoff is 72 - D = 2"+™ for D < 2", which
balances at T = D = 2(»+™)/3 (for m < 2n), using only poly(n) qubits and
poly(n) classical memory. See Table 3 for comparison of attack complexities
under the condition that only poly(n) qubits are available.

Attack idea. Recall that, in the Q1 attack on the Even-Mansour construction in

Section 5.1, we divided the first key k; to two parts k%l) and k‘f) and applied
Simon’s algorithm to k;gl) while we performed Grover search on kf").
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| Reference [[Classical attack] ~ Grover | [23] \ [Ours] ‘

Tgade(zlff of D.T =ontm |p_gt+m)/2| .76 _ 93(ntm) | . T2 _ gntm
T
an (D <2") | D = constant | (D < min{2",23"/7})| (D <2")
| Num. of qubits || - | poly(n) | poly(n) ‘ poly(n) ‘
‘ Class. memory H D ‘ poly(n) ‘ D'/3 ‘ poly(n) ‘
Balanced point o(ntm)/2 93(n+m)/7 2(n+m)/3

of D and T (m <mn) (m < 4n/3) (m < 2n)

Table 3. Tradeoffs for Q1 attacks on the FX construction. In this table we omit to
write order notations, and ignore polynomial factors in the first and last rows.

inikou, We divide the n-bit
key kip in kD of 4 bits and k( of (n — u) bits. We apply Simon’s algorithm to

wm
recover kf ) while we perform Grover search on k in addition to kl(n) (see Fig. 6).

In a similar manner, for the FX construction FXj, j,

Grover search space

ae) k <
m kout
n—u A L l
N> n
E —D
fany
7 N
JACON Apply Simon’s algorithm

Fig. 6. Idea of our Q1 attack on the FX construction.

Then, roughly speaking, by applying Alg-ExpQ1l we can recover the key by
making D = 2% classical queries and T = 2(»~%)/2 offline Grover iterations
(note that the offline computation cost for the Simon’s algorithm is poly(n)
and we ignore polynomial factors here for simplicity), which yields the tradeoff
D -T? = 2(»+tm) for D < 2" with only poly(n) qubits and poly(n) classical
memories.

Attack description. Here we give the description of our Q1 attack. Let u be an
integer such that 0 < u < n. Define F : {0,1}"+(»=%) x {0,1}* — {0,1}" by

F(illj, ) = Ei(x[lj)( € {0,1}™,j € {0,1}"7%), (9)

and define g : {0,1}* — {0,1}" by g(x) = FXg k., ko, (2[1077%).
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Note that F(k:Hkl(i)7 x) @ g(z) has the period kl(}l) since F(k||l<:(2) z)Pg(x) =

m

Ek(x||kfi)) S Ep((z® kl(,ll))Hk(i)) @ kout- Our attack procedure runs as follows:

7

kY

mn

1. Run Alg-ExpQ1 for the above F' and ¢ to recover k and
2. Recover kf}l) by applying SimQ1 to fkuk(z) and g.

3. Compute koyr = FXp k00 ko0, (07) @ E, (kzm)

Analysis. We assume that m = O (n), which is the case for usual block ciphers. In
the same way as in the analysis for the attack on the Even-Mansour construction
in Section 5.1, if E is a (pseudo) random permutation family and u is not too
small (e.g. u > n/logyn), we observe that the assumption (2), rephrased as:

P [Ei Vo B (z @) E( A k@))
e 0B Gy e (z|ly) ® Ei (x @ t]]7) ® Ex (7 ® Ky’ || ks

OB (zota k) |IK) =0] <1/2 (10)

holds for all (i,7) # (k, k§2)) with overwhelming probability. This again implies
that the claims of Propositions 3 and 4 hold for Alg-ExpQ1 in Step 1 and SimQ1
in Step 2, respectively.

Thus our attack recovers keys of the FX construction with a high proba-
bility by making D = O (2%) classical queries to FXy, 1, k..., and doing T' =
(@) (n32(m+”_“)/2) offline computations for D < 2™, which balances at T = D =
O(2(+m)/3) if m, < 2n. Our attack uses only poly(n) qubits and poly(n) classical
memory by construction of Alg-ExpQ1 and SimQ1.

Application to concrete instances. DESX [26] has a 64-bit state, two 64-
bit whitening key and one 56-bit inner key. From Propositions 2 and 5, we can
estimate that our attack needs roughly 242 classical queries and 2%° quantum
computations of the cipher circuit.

PRINCE [7], and PRIDE [1] are two ciphers using the FX construction with
a 64-bit state, a 64-bit inner key and two 64-bit whitening keys. Hence, from
Propositions 2 and 5, we can estimate that our attack needs roughly 24° quantum
queries and 2*% quantum computations of the cipher circuit.

We can also see some encryption modes as an instance of the FX construction.
This is for example the case of the XTS mode [32], popular for disk encryption. It
is generally used with AES-256 and two whitening keys that depend on the block
number and another 256-bit key. Hence, with the full codebook of one block, we
can obtain the first key and the value of the whitening keys of the corresponding
block. Once the first key is known, the second can easily be brute-forced from a
few known plaintext-ciphertext couples in other blocks.

Adiantum [14] is another mode for disk encryption that uses a variant of
the FX construction with AES-256 and Chacha. There is however one slight
difference: the FX masking keys are added with a modular addition instead
of a xor. The FX construction is still vulnerable [5], but we will need to use

25



Kuperberg’s algorithm [28] instead of Simon’s algorthm. As before, with the full
codebook on one block, we can recover the AES and Chacha keys in a time
slightly larger than 22°6.

5.3 Other Applications

Chaskey. The lightweight MAC Chaskey [33] is very close to an Even-Mansour
construction (see Figure 7). Since the last message block (mg in Figure 7) is
XORed to the key K;j, we can immediately apply our Q1 attack and recover
K and the value of the state before the xoring of the last message block. As 7
is a permutation easy to invert, this allows to retrieve K. The Chaskey round
function applies on 128 bits. It contains 16 rounds with 4 modular additions on 32
bits, 4 XORs on 32 bits and some rotations. With a data limit of 24%, as advocated
in the specification, our attack would require roughly 2(128-48)/2 919 — 959
quantum gates, where the dominant cost is solving the 80-dimensional linear
system inside each iteration of Grover’s algorithm.

Trunk; — Tag

Fig. 7. Two-block Chaskey example.

Sponges Our attack can be used on sponges if there is an input injected on
a fixed state. In general, it has two drawbacks: the nonce has to be fixed, and
the cost of the attack is at least 2¢/2 with ¢ the capacity of the sponge, which is
often the classical security parameter. However, there are some cases where our
attack is of interest.

In particular, our attack needs a set of values that contains an affine space. If
a nonce was injected the same way the messages are, then we only need to know
the encryptions of identical messages, with a set of nonces that fills an affine
space. Nonce-respecting adversaries are generally allowed to choose the nonce,
but here, the mere assumption that the nonce is incremented for each message
(which is the standard way nonces are processed in practice) is sufficient: A set
of 2F consecutive values contains an affine space of (Z/(2))*~.

This is the case in the Beetle mode of lightweight authenticated encryp-
tion [13], whose initialization phase is described as (K1 @ N)|| K2 — f((K1 &
N)||K3), where K1, N € {0,1}", K5 € {0,1}¢, and f is a (r+c¢)-bit permutation.

Here, the nonce is directly added to the key K7, but as the key has the same
length as the state, the attack would still work if the nonce was added after the
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first permutation. In Beetle[Light+], the rate is » = 64 bits and the capacity
¢ = 80 bits. The rate is sufficiently large to embed 48 varying bits for the nonce;
in that case, by making 24® classical queries and 2*® Grover iterations, we can
recover the secret K1||Ks. In Beetle[Secure+], r = ¢ = 128 bits. We can recover
K1|| K2 with 2% messages and Grover iterations.

—~

K &N L
f

Koy .
/

Fig. 8. Beetle state initialization.

6 Discussion

In this section, we discuss on the application of our attack idea to related-
key attacks, to some slide attacks, and to an extension of Problem 3. See also
Section B in the Appendix for discussions on adaptive attacks and non-adaptive
attacks.

6.1 Related Keys

Consider a block cipher Ej, with a key and block size of n bits. In the related-key
setting, as introduced in [41], we are not only allowed to make chosen plaintext or
ciphertext queries to a secret-key oracle hiding k, but also to query Frge(m) for
any n-bit difference ¢ and message m. Classically, this is a very powerful model,
but it becomes especially meaningful when the block cipher is used inside a mode
of operation (e.g. a hash function) in which key differences can be controlled by
the attacker. It is shown in [41] that a secret key recovery in this model can
be performed in 2"%/2 operations, as it amounts to find a collision between some
query Eige(m) and some offline computation Ey(m) (we can use more than a
single plaintext m to ensure an overwhelming success probability).

Rotteler and Steinwandt [37] noticed that, if a quantum adversary has super-
position access to the oracle that maps £ to Exge(m), it can mount a key-recovery
in polynomial time using Simon’s algorithm. Indeed, one can define a function:

f(@) = Eyga(m) © Ex(m)

which has k as hidden period, apply Simon’s algorithm and recover k. This attack
works for any block cipher, even ideal. In contrast, in the Q2 quantum attacker
model, we know that some constructions are broken, but it does not seem to be
the case for all of them.
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With our algorithm Alg-ExpQ1, we are able to translate this related-key su-
perposition attack into an attack where the related-key oracle is queried only
classically, but the attacker has quantum computing power. We write k = k1 ||k
where ki has n/3 bits and ky has 2n/3 bits. We query E(y,|x,)e 6 j0)(m) for
a fixed m and all n/3-bit differences ¢;. Then we perform a Grover search on
ko. The classical security level in presence of a related-key oracle of this form,
which is 2/2, is reduced quantumly to 2*/3. This shows that the transition to
a quantum setting has an impact on the related-key security even if the oracle
remains classical.

As a consequence, we could complete the security claims of the 16-round
version of the block cipher SATURNIN [10], a submission to the ongoing NIST
lightweight cryptography competition®. The authors of SATURNIN gave security
claims against quantum attackers meeting the best generic attacks. No claims
were given regarding the Q1 model for related-key attacks. Our result gives the
best generic quantum related-key attack on ideal block ciphers without super-
position queries, and sets the level of security that should be expected from a
block cipher in this setting: the key can be recovered in quantum time O (2"/ 3)
for a block cipher of n bits (and using 27/3 classical related-key queries). The
corresponding security level for SATURNIN{g, which has blocks of 256 bits, lies at
2256/3 — 985: we can say that in the Qi related-key setting, SATURNIN;g should
have no attack with time complexity lower than 2%°.

6.2 Slide Attacks

Quantum slide attacks are a very efficient quantum counterpart of the classical
slide attacks [3]. They have been introduced in [24], with a polynomial-time
attack on 1-round self-similar ciphers. In many cases, our algorithm does not
improve these attacks, because they are already too efficient and do not rely on
a partial exhaustive search. Still, some of them use a partial exhaustive search.
This is the case of the slide attack against 2 round self-similar ciphers of [31]
and the slide attacks against whitened Feistels of [6].

For example, we can see a 2 round self-similar cipher as an example of iterated
FX cipher, as in Figure 9. Define functions p;, F;, and g as

0,FE;(x))ifb=0 @z ifb=0
pi((b,2)) = {( (1,;5))) ifp—1 L)y = {E%y) Drifb=1"

and g((b,z)) = iFX(z). We have the property that iIFX(Ey, (z®k1))® (xDk1) =
Ey,(iFX(z)) @ x. Hence, we have the hidden period (1,%k;) in the function
fi, ((b,2)) = Fr, ((b,2), g(pr, (b, z))). To apply our attack, we need to compute
Yoeo DO fi((b,2))) from the state ) |z)|iFX(x)). We first need to add one
qubit to obtain > 12)(10) + 1)) [iFX(z)). Then, conditioned on the second regis-
ter to be 0, we transform z into E;” !(x). Next, conditioned on the second register
to be 1, we transform iFX(z) into F;(iFX(x)). Finally, we add the first regis-

ter to the third. Hence, we can apply our attack, and retrieve k1 and ko using
O (|k1|) queries and O (|k1[32/¥21/2) time, assuming |ki| = £2(|ks|).

5 https://csre.nist.gov/Projects/Lightweight-Cryptography
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k‘l k}l kl kl

Fig. 9. Iterated-FX cipher.

The above problem of recovering keys can be generalized as the following
problem, which can be solved by the same strategy as above.

Problem 4 (Constructing and Finding a Hidden Period). Let g : {0,1}" —
{0,1}* be a function, i € I, p; : {0,1}" — {0,1}" be a permutation and F; :
{0,1}" x {0,1}* — {0,1}¢ be a function such that Fj(z,-) is a permutation.
Assume that there exists ig € I such that f;,(z) = Fi, (x,9(pi,(x))) has a
period, i.e.: Vo € {0,1}", fi, () = fi,(x @ s) for some s. Assume that we are
given quantum oracle access to F; and p; and classical or quantum oracle access
to g. (In the Q1 setting, g will be a classical oracle. In the Q2 setting, g will be
a quantum oracle.) Then find ig and s.

This problem assumes that g is a keyed function, and that we can reversibly
transform (z, g(x)) into a couple (y, fi(y)), with f; a periodic function if i = .
We can see this transformation as a generalization of the CCZ equivalence [11],
where the function mapping the graph of g and the graph of f; do not need
to be an affine function. There may also be more than one solution (in which
case we just want to find one), or there may be none, just as Grover’s algorithm
can handle cases with many expected solutions, or distinguish whether there is
a solution or not. Note that Problem 3 is a special case of the above problem,
in the case where p; is the identity, and F; is only the xoring of g and another
function.

7 Conclusion

In this paper, we have introduced a new quantum algorithm, in which we make
use of Simon’s algorithm in an offline way. The idea of making poly(n) super-
position queries to the oracle (with, as input, a uniform superposition), storing
them as some compressed database on n? qubits, and reusing them during the
iterations of a Grover search, yielded surprising results. This idea, initially tar-
geting the query complexity of some Q2 attacks on cryptographic schemes, en-
abled us to find new quantum-time/classical-data tradeoffs. Our result has three
consequences, each of which answers a long-standing question in post-quantum

cryptography.
Simon’s Algorithm can be Used in An Offline Setting. We provided the first

example of use of Simon’s algorithm (or more precisely, its core idea) in an
offline setting, without quantum oracle queries.
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Improving More than the Time Complexity. Consider the example of our at-
tack on the Even-Mansour construction in quantum time O (2”/ 3) and classical
queries O (2"/ 3). With the same number of queries, the classical attack requires
O (227/3) time and O (2/3) classical memory to store the queries. In our at-
tack, we do not need this storage. To the best of our knowledge, this is the first
time that a quantum Q1 attack provides a quadratic speedup while the needs of
hardware are also reduced.

Q2 Attacks Make a Difference. Schemes which do not have an attack in the
superposition model cannot be attacked by our algorithm. We showed that their
algebraic structure, which makes the superposition attack possible, indeed made
a practical difference when it came to Q1 attacks. We believe that this question
needs further investigation.
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A Proofs for Propositions 2 and 3

Here we give error and complexity analyses for Alg-ExpQ1 and Alg-PolyQ2, and
give proofs for Propositions 2 and 3.

Recall that, in both of Alg-ExpQ1 and Alg-PolyQ2, we run a testing procedure
test in each iteration of the Grover search. For each ¢ € {0,1} ({0,1}™ is
the search space), we expect that test checks whether 4 is a good element by
using auxiliary quantum data |14), without changing |14). However, in fact test
outputs results only with some errors, and |1,) is slightly modified at each test.
Thus we have to do two kinds of analyses:

1. Analyses on the error of the procedure test.
2. Analyses on how much the error of test affects the success probability of the
entire Grover search.

In Section A.1, we give error analyses of the testing procedure test. In Sec-
tion A.2, we analyze how the error of test affects the success probability of the
Grover search, in a general setting. Actually we discuss about the quantum am-
plitude amplification (QAA) technique, which is a generalization of the entire
Grover search. Finally, in Section A.3, we prove Propositions 2 and 3 by using
the results in Sections A.1 and A.2.

A.1 Error Analyses for the testing procedure test

Recall that, for each function g : {0,1}" — {0,1}* and a fixed positive integer
¢, the quantum state |1p,) is defined as

be) =@ D |)lg()) (11)
ze{0,1}m

Roughly speaking, we expect that the unitary operator test satisfies

|3)|14)|b) if (fi @ g) does not have a period,

[i)|Yg) & 1)  if (f; @ g) has a period. (12)

test|i)[¢g)[b) = {

holds with a small error. Recall that test is defined as a unitary operator that
realizes the following procedures:

1. Query cn times to F' to obtain

e Do lalfieg)(@) |-

z1€4{0,1}™

R Z ‘xcn>|(fz © g)(Ten)) | ® |b> (13)

-'Ecne{oal}n
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2. Apply I,, ® (H®" ® I;)”" ® I; to obtain

i) ® S DT u)|(fi @ g) (@) | @

uy,z1€{0,1}"

- ® Yo D uen)|(fi @ g)(@en)) | @ [b).

Ucn,Ten €{0,1}7

(14)

3. Compute d := dim(Span(us,...,Uen)), set 7 := 0 if d = n and r := 1 if
d < n, and add r to b. Then uncompute d and r, and obtain

e > ()" )| (fi @ g) (@) @ -

UL,..sUen
T1,eesTen

@ (1) uen)|(fi @ g)(wen)) @ [bBT). (15)
4. Uncompute Steps 1 and 2.

Note that if (f; @ g) has a period, then r = 1 always holds and test|:)|t4)|b) =
[i)|1g)|b @ 1) follows. On the other hand, even if (f; @ g) does not have any
period, test|i)|1g)|b) is not necessarily equal to |i)]1)4)]b). However, we expect
that test|i)|10g)[b) = |i)|10g)|b) + |0) holds for some small error term |d).
Moreover, in our attack setting we apply the operator test to a superposition:

D aulidipg)b) + > Bili)g)[b), (16)

fi€Fo fi€Fy
where Y ;|2 + 37 |Bi|? = 1, and Fy, Fy are the subsets of F' defined as

Fy :={fi € F|f; ® g does not have any period},
Fy :={f; € F|f; ® g has a period}.

Roughly speaking, we expect that, when we apply test to the state (16), it

changes to
D aili)lgg)b) + Y Bili)lgg) b @ 1) (17)

fi€Fo fieF1

up to a small error term.
We can show the following lemma, which guarantees that the operator test
works as we expect if ¢ is sufficiently large.

Lemma 1. It holds that

test | > Bili)wgb) | = D Bili)lwg)lb e 1) (18)

fi€F1 fi€F1
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for b € {0,1}. In addition, suppose that there exists a constant 0 < € < 1 such
that the following condition holds:
o P (hegeen=(feg@<e  (9)
fz E€Fp
Then, for arbitrary b € {0,1}, there exists a vector |dp) such that |||dp)|| <
2+ D/2((1 4+ €)/2)/2 and

test (Y aald)wg)[b) | = D cild)lwg)[b) + 1) (20)

fi€Fo fi€Fo
holds.

Proof. (18) obviously follows from the definition of test and F;. Below we show
that (20) holds. Notice that (19) holds when the f; € Fy are almost random and
summarizes that each of them is far from periodic.

Let Uy, Us, and Us be the unitary operators that realize Steps 1, 2 and 3
of test, respectively. (U; and Us correspond to uncomputing U; and Us, respec-
tively, and test = U;UsUsUsU; holds.) Note that Uili)|tg)|b) = [i)|1f,q4)|b)
holds for each 4.

Let ‘1/1(1)> = UsUni)|10g)|b) = Uali) |9 f,e4)]b). In addition, let us decompose

)
[57) = 1) © [niona ) @ 1) + 1) © |2 ) © [8), (21)

where ‘né?od> and ‘7715?‘1> are the vectors projected to the subspaces that cor-
respond to the tuple (uj,...,us) such that dim(Span(uyg,...,ue,)) = n and

dim(Span(uy, ..., ue,)) < n, respectively, in Step 2 of test. In particular,
i) = S )l e g)) @
i)y
dim(Span(uy,...,ucn))<n
=@ (1) e luen ) |(fi ® 9)(Ten)) (22)
holds. Then

UsUsUL i)t ) = Us v ) = 1) [nions Y10} + 1) |ieu o 1) (28)

and
test|i) [1hg)|b) = Uy Uz UsUzUi[i)|1bg) |b)
= U7U; (1)@ |nfons ) © ) + 1) @ |12 ) 1)
+ U305 (10| )o@ 1) = 1) )10
= [2)|1g)[b) + [0b,:) (24)
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follows, where |0 ;) = Uy Uy (\2>’nl()?d>|b ®1) - |z>‘né?d>|b)) Therefore we have

test | D auli)ug)b) | = D auili)lg)[b) + 1), (25)

fi€Fo fi€Fo

where [6,) = >, c g @ildp,i). Note that

o) = V2| = ali)|nlh ) o) (26)

fi€Fo
holds.
By orthogonality of the |i), we have:
SIZ — 2|1, \||* < 2 O\ | < @ \|?
183112 =2 3 feul? |||y | <2 3 louf? max | miee)|” < 2 mae | m2e) |
Ji€Fo fi€Fo
(27)
. S 2
which means that it suffices to focus on a single f; and bound p"), := H ‘né?d>

This is the probability of obtaining, for this function f;, a tuple (ug,...,ucy)

such that dim(Span(ui,...,us)) < n upon measurement of the state ‘ él)> =

i) ® (‘néi)od> + ‘T]é?d>) ® |b). We just have to make sure that it is low for all f;.

dim(Span(us, ..., ue,)) < n holds if and only if there exists ¢ € {0,1}™\ {07}
such that ¢ L u; for all 1 < j < en. In addition, the registers |uq), ..., |ucn) of

)¢§i)> are unentangled from each other. Thus we have that

pffa)d =Pr [(ul, ey Uen) (measure‘¢§i)>) :

A0 st b Luy for 1< j < en]
w))

t Lo forlgjgcn}
= Z (Pr [u — (measure W(i)>> it L u} )cn

te{0,1}m\{0"}
) seia]) e

holds, where ’W(i)> = z:wﬁ(—l)“’5|u>|(fz & g)(z)).
Now we use the following claim as a fact, which is shown as a subordinate
result in the proof of Theorem 1 in [24].

< Z Pr [(ul, ey Uen) (measure
te{0,1}\ {0}

< 2m ( max Pr [u — (measure
te{0,1}7\{o"}
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Claim. Let h: {0,1}" — {0,1}* be a function and |®) := Yue(CD) W) | h(2)).
Then, for each t € {0,1}™\ {0"},

Pr[u < (measure |P)) : t L u] = % (1 + xeﬁ){‘l}" [hzot) = h(a:)]) (29)

holds.

Applying this claim with (f; ® g) and |W(i)> instead of h and |®), from (28) it
follows that pl()?d is upper bounded by

> (é (1 * te{OJm}é’LL)i{O”} zeﬁfl}" (fiogwen)=(fi® g)(x)])) - (0

In addition, by the condition (19),

P i t)=(fi < 31
te{o;fln}%;{{w}%{oﬂ}" (fi@g)zet)=(fi®g)(z)] <e (31)
i€Fo

holds for all f; € Fy. Thus

; . 1+6 cn
Poos <2 (2 ) . (32)
follows.
From (27) and (32),
. 1 +e cn
i < 2 (1) (33)
follows, which completes the proof. a

A.2 Error Propagation Analyses for QAA

Here we analyze how the error of testing procedures affects success probability
and complexity of the entire Grover search. For generality, we analyze the quan-
tum amplitude amplification (QAA) technique by Brassard et al. [8] rather than
the original Grover search. We first review the original QAA technique, and then
give error analyses in our setting, explaining the difference between our setting
and the original one.

The Original Quantum Amplitude Amplification Let A be a unitary
operator that acts on n-qubit states and x : {0,1}" — {0,1} be a function.
Suppose that we obtain x such that x(z) = 1 when we measure the state .4|0™)
with a probability a > 0. We say that € {0,1}" is good if x(z) = 1 and z
is bad otherwise. In addition, we say that a vector is good (resp. bad) if it is
in the space spanned by {|2)}s:g00a (resp., {|Z)}z:baa). Our goal is to amplify
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the probability a and get “good” x € {0,1}" such that x(z) = 1 with a high
probability.
Let Sy be the unitary operator defined as

NN ECT OIS
Sxlw) - { |x) if x(x) = 0.

(34)
Below we call S, checking procedure since it checks whether x(z) = 1 and changes
the phase accordingly. In addition, let Sy denote S, where xq is the function
such that yo(z) = 1 if and only if 2 = 0™. Define a unitary operator @ = Q(A, x)
by @ := —ASpA~1S,. Then the following proposition holds.

Proposition 6 (Theorem 2 in [8].). Set r := |7/40,], where 0, is the pa-
rameter such that sin?60, = a and 0 < 0, < 7/2 (note that r =~ \/1/a holds if
a is sufficiently small). When we measure Q"A|0™), we obtain x € {0,1}" such
that x(x) = 1 with a probability at least max (1 — a,a).

Here we give a rough overview of a proof of the above proposition. Let us put
|p) := A|0™), and decompose |@) as |¢p) = cosOy|do) +sin by |p1), where |¢o) and
|¢1) are good and bad vectors, respectively. Note that |¢g) and |¢1) are uniquely
determined from |¢). Then we can show the following lemma, which claims that
@ can be regarded as a rotation matrix on the space spanned by |¢g) and |¢1).

Lemma 2 (Lemma 1 in [8]). It holds that

Qld1) = c0820,|¢1) — sin 20, o),
Q|do) = sin20,|¢p1) + cos 20, |po).

From the above lemma, we have that
Q" A|0™) = sin((2r + 1)0,)|p1) + cos((2r + 1)6,)|do), (35)

which implies that we obtain = € {0,1}" such that x(z) = 1 since (2r + 1)6, ~
/2.

Our Setting: Uncertain Checking Procedures Unlike the original tech-
nique, in our setting we consider the situation that the checking procedure can
be done only with some errors. That is, we have access to a unitary operator Sj
such that

S0 [0 B) = [¢1) )b & 1) + [81,6), (36)
S2160) |9 [0) = |0} ) ]b) + |80.6), (37)

where |¢) is an auxiliary data and b € {0, 1}, and there exists an € > 0 such that
[da.0/| < € holds for a,b € {0,1}. (In our attack, the operator Sj, is denoted by
test.)
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Note that, given such g;, by using an ancilla qubit we can implement a
unitary operator S, such that

Sylon)e) = =|o1)[) + [61), (38)
Sildo)e) = |go)le) + 100), (39)

where |||d0)]|, ||01)]] < 2¢e holds, since
S8 1) = (<1161 + () = o) (10)

holds for a € {0,1}, here |—) := %HO) —|1)).

Let us define Q" := —((ASpA™") @ I)S].. Then the following lemma holds.

Lemma 3. There exist vectors |8}),[01) such that |||65)]], |||00) ] < 2€ and

Q'[é1)[¢) = (cos 204¢1) — sin26a|¢0)) [¢) + 197),
Q'[éo)|¥) = (sin204|¢1) + cos 20al¢0)) [¥) + |dp)

hold.
Proof. We have that
1Q|¢1)|4) = (@@ D¢n) ) || = Sy Ié1) 1) — (Sx @ Dga) ) || = [|01]] < 2¢ (41)

holds. Therefore the first equality follows from Lemma 2. We can show the second
equality in the same way. ad

By using this lemma we can show the following proposition.

Proposition 7 (QAA with uncertain checking procedures.). Let € be the
error of 8}, described above. Then we have that

’Pr [x +— (measure Q’jA\O"Hz/J)) cx(x) = 1}
— Pr [z + (measure Q7 A[0™)) : x(z) = 1]| < 4je (42)
holds for all x € {0,1}". In particular, for r := |7 /40, ], we obtain x € {0,1}"
such that x(x) = 1 with a probability at least max (1 — a,a) — 4re when we

measure Q" A|0™)[1)).

Proof. From Lemma 3, it follows that there exists a vector lé(j)> such that
1169)]| < 4je and

Q AJ0")[15) = (sin((2] + 1)6a)| 1) + cos((2] + 1))lgo)) @ [) + [0
= (@ Al0")[) + [0 (43)
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holds. Let us put

p =Pr [x — (measure Q’jA|O">|§>) cx(z) = 1} (44)
and .
p = Pr [z + (measure Q7 A|0")) : x(z) =1]. (45)
Then, since
p = Pr [z + (measure (Q7.A0™))[¢)) : x(z) = 1] (46)

holds, we have that

p— '] < Q7 AJ0™))[) — Q" AJ0™) |v)|
= [[69] < 4je, (47)

which completes the proof. a

A.3 Finishing the Proofs

Here we complete the proofs for Propositions 2 and 3. Since the number of queries
required to make the state |t)4) is obviously cn in the Q2 model and 2" in the
Q1 model, we give proofs for the statements on the offline computation (i.e.,
complexities and success probabilities for the procedures excluding the ones to
prepare the state |14)). Hence it suffices to show the following lemma to prove
Propositions 2 and 3.

Lemma 4. Suppose that m is in O (n). Let ¢ be a sufficiently large constant,”
and let ig € {0, 1}™ be the good element such that g® f; is periodic. Assume that

max Pr S D(zdt)=(f; ®g)(x)] <
ie{o,l}m\{io}me{o,l}n[(f gz ®t) = (fi ® g)(x)]

te{0,1}™\{0™}

(48)

DN | =

holds, and the quantum state |1pq) is given. Then, the offline phase of Alg-ExpQ1
and Alg-PolyQ2 finds a good i € {0,1}™ with a probability in O(1) by making
o (an/z) quantum queries to F. In addition, the offline computation is done
in time O((n® + nTp)2™/?), where is Tr the time required to evaluate F once.

Proof. Let |¢1) = lio)|vs,,a9) and |¢o) = Yicio1ym\ (o} var— 0|V s:09)-
Then, by the condition (48) and Lemma 1, we have that

test|¢1) = |(151>7 and
test|do) = |¢o) + [0), (49)

7 Strictly speaking, it is sufficient if ¢ satisfies 4|7/46|2("1/2(3/4)°"/? < 1/2, where
0 is a positive value such that 0 < 6 < 7/2 and sin? 0 = 1/2™.
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where |0) is a vector such that ||§| < 2(»T1/2(3/4)en/2,

Now, the offline phases of Alg-ExpQ1 and Alg-PolyQ2 correspond to the (mod-
ified) quantum amplitude amplification of Proposition 7 with A = H®™ 3’; =
test, e = 22+1/2(3/4)"/2 and a = 1/2™. Therefore, by applying the Grover’s
iteration (i.e., Q") O (2’”/2) times, we can obtain the good index iy with a proba-
bility at least 1 —27-™/2 —Q(2m/22(n+1)/2(3 /4)e"/2), Since we are assuming that
¢ is a sufficiently large constant and m = O (n), O (2m/22(”+1)/2(3/4)“"/2)) o(1)
holds. Thus we can obtain the good index iy with a probability in ©(1).

Since each Grover’s iteration (i.e., Q") makes O (en) = O (n) queries to F', the
total number of quantum queries to F' is O (n2m/2). In addition, each Grover’s
iteration runs in time O (n3 + nTp) since computing the dimension of the space
spanned by cn can be done in time O (n3) Thus the offline phase runs in time
O ((n® + nTF)2m/2). O

B Adaptive Attacks and Non-Adaptive Attacks

Our attack on the FX construction in the Q2 model is non-adaptive since the
online queries required to make the state [¢4) is just the uniform superposition
of plaintexts. On the other hand, the previous Q2 attack on the construction
by Leander and May is adaptive since quantum queries made to keyed online
oracles are changed depending on the results for previous quantum queries. For
Q1 attacks, both of existing quantum attacks and our attacks are non-adaptive.
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