Skip to Main content Skip to Navigation
Conference papers

Cliques in high-dimensional random geometric graphs

Konstantin Avrachenkov 1 Andrei Bobu 1
1 NEO - Network Engineering and Operations
CRISAM - Inria Sophia Antipolis - Méditerranée
Abstract : Random geometric graphs are good examples of random graphs with a tendency to demonstrate community structure. Vertices of such a graph are represented by points in Euclid space $R^d$ , and edge appearance depends on the distance between the points. Random geometric graphs were extensively explored and many of their basic properties are revealed. However, in the case of growing dimension $d → ∞$ practically nothing is known; this regime corresponds to the case of data with many features, a case commonly appearing in practice. In this paper, we focus on the cliques of these graphs in the situation when average vertex degree grows significantly slower than the number of vertices n with $n → ∞$ and $d → ∞$. We show that under these conditions random geometric graphs do not contain cliques of size 4 a.s. As for the size 3, we will present new bounds on the expected number of triangles in the case $log^2(n) << d << log^3(n)$ that improve previously known results.
Complete list of metadata

Cited literature [20 references]  Display  Hide  Download
Contributor : Konstantin Avrachenkov Connect in order to contact the contributor
Submitted on : Friday, December 6, 2019 - 2:56:18 PM
Last modification on : Tuesday, November 17, 2020 - 12:10:13 PM
Long-term archiving on: : Saturday, March 7, 2020 - 5:07:42 PM


Files produced by the author(s)




Konstantin Avrachenkov, Andrei Bobu. Cliques in high-dimensional random geometric graphs. COMPLEX NETWORKS 2019 - 8th International Conference on Complex Networks and Their Applications, Dec 2019, Lisbon, Portugal. ⟨10.1007/978-3-030-36687-2_49⟩. ⟨hal-02397338⟩



Record views


Files downloads