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Abstract. We consider geometric triangulations of surfaces, i.e., triangulations whose edges

can be realized by disjoint locally geodesic segments. We prove that the flip graph of geometric

triangulations with fixed vertices of a flat torus or a closed hyperbolic surface is connected. We
give upper bounds on the number of edge flips that are necessary to transform any geometric

triangulation on such a surface into a Delaunay triangulation.

1. Introduction

In this paper, we investigate triangulations of two categories of surfaces: flat tori, i.e., surfaces
of genus 1 with a locally Euclidean metric, and hyperbolic surfaces, i.e., surfaces of genus at least
2 with a locally hyperbolic metric (these surfaces will be introduced more formally in Section 2.1).

Triangulations of surfaces can be considered in a purely topological manner: a triangulation of
a surface is a graph whose vertices, edges and faces partition the surface and whose faces have
three (non-necessarily distinct) vertices. However, when the surface is equipped with a Euclidean
or hyperbolic structure, it is possible to consider geometric triangulations, i.e., triangulations
whose edges can be realized as interior disjoint locally geodesic segments (Definition 2.1). Note
that a geometric triangulation can still have loops and multiple edges, but no contractible loop
and no contractible cycle formed of two edges. We will prove that any Delaunay triangulation
(Definition 2.3) of the considered surfaces is geometric (Proposition 3.3).

The flip graph of triangulations of the Euclidean plane has been well studied. It is known to be
connected; moreover the number of edge flips that are needed to transform any given triangulation
with n vertices in the plane into the Delaunay triangulation has complexity Θ(n2) [HNU]. We are
interested in generalizations on this result to surfaces. Flips in triangulations of surfaces will be
defined precisely later (Definition 2.4), for now we can just think of them as similar to edge flips
in triangulations of the Euclidean plane. We emphasize that geodesics only locally minimize the
length, so the edges of a geometric triangulation are generally not shortest paths. We will prove
that the number of geometric triangulations on a set of points can be infinite, whereas the flip
graph of ”shortest path” triangulations is small but not connected in most situations [CGH+].

Definition 1.1. Let (M2, h) be either a torus (T2, h) equipped with a Euclidean structure h or
a closed oriented surface (S, h) equipped with a hyperbolic structure h. Let V ⊂ M2 be a set
of n points. The geometric flip graph FM2,h,V of (M2, h, V ) is the graph whose vertices are the
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2 FLIPPING GEOMETRIC TRIANGULATIONS ON HYPERBOLIC SURFACES

geometric triangulations of (M2, h) with vertex set V and where two vertices are connected by an
edge if and only if the corresponding triangulations are related by a flip.

Our results are mainly interesting in the hyperbolic setting, which is richer than the flat setting.
However, to help the readers’ intuition, we also present them for flat tori, where they are slightly
simpler to prove and might even be considered as folklore. The geometric flip graph is known to be
connected for the special case of flat surfaces with conical singularities and triangulations whose
vertices are these singularities [Tah].

The main results of this paper are:

• The geometric flip graph of (M2, h, V ) is connected (Theorems 4.4 and 4.6).
• The Delaunay triangulation can be reached from any geometric triangulation by a path

in the geometric flip graph FM2,h,V whose length is bounded by n2 times a quantity
measuring the quality of the input triangulation (Theorems 5.1 and 5.4).

If an initial triangulation of the surface only having one vertex is given, then the Delaunay trian-
gulation can thus be computed incrementally by inserting points one by one in a very standard
way: for each new point, the triangle containing it is split into three, then the Delaunay property is
restored by propagating flips. This approach, based on flips, can handle triangulations of a surface
with loops and multiarcs, which is not the case for the approach based on Bowyer’s incremental
algorithm [CT, BTV]. The work presented here can hardly be compared with broad results on
computing Delaunay triangulations on very general manifolds [BDG].

2. Background and notation

2.1. Surfaces. In this section, we first recall a few notions, then we illustrate them for the two
classes of surfaces (flat tori and hyperbolic surfaces) that we are interested in.

Let M2 be a closed oriented surface, i.e., a compact connected oriented 2-manifold without

boundary. There is a unique simply connected surface M̃2, called the universal cover of M2,

equipped with a projection ρ : M̃2 → M2 that is a local diffeomorphism. There is a natural

action on M̃2 of the fundamental group π1(M2) of M2 so that for all p ∈M2, ρ−1(p) is an orbit
under the action of π1(M2). We will denote as p̃ a lift of p, i.e., one of the elements of the orbit

ρ−1(p). A fundamental domain in M̃2 for the action of π1(M2) on M̃2 is a connected subset Ω

of M̃2 that intersects each orbit in exactly one point, or, equivalently, such that the restriction of
ρ to Ω is a bijection from Ω to M2 [Mas]. The genus g of M2 is its number of handles. In this
paper, we consider surfaces with constant curvature (0 or −1). The value of the curvature is given
by Gauss-Bonnet Theorem and thus only depends on the genus: a surface of genus 0 only admits
spherical structures (not considered here); a flat torus is a surface of genus 1 and admits Euclidean
structures; a surface of genus 2 and above admits only hyperbolic structures (see below).

From now on, M2 will denote either a flat torus or a closed hyperbolic surface.
Flat tori. We denote by T2 the topological torus, that is, the product T2 = S1×S1 of two copies of
the circle. Flat tori are obtained by taking the quotient of the Euclidean plane by an Abelian group
generated by two independent translations. There are in fact many different Euclidean structures
on T2; if one considers Euclidean structures up to homothety – which is sufficient for our purposes
here – a Euclidean structure is uniquely determined by a vector u in the upper half-plane R×R>0:
to such a vector u is associated the Euclidean structure (T2, hu) ∼ R2/(Ze1+Zu) , where e1 = (1, 0)
and u = (ux, uy) ∈ R2 is linearly independent from e1. The orbit of a point of the plane is a lattice.
The area Ah of the surface is |uy|. The plane R2, equipped with the Euclidean metric, is then
isometric to the universal cover of the corresponding quotient surface.
Hyperbolic surfaces. We now consider a closed oriented surface S (a compact oriented surface
without boundary) of genus g ≥ 2. Such a surface does not admit any Euclidean structure, but
it admits many hyperbolic structures, corresponding to metrics of constant curvature −1, locally
modeled on the hyperbolic plane H2. Given a hyperbolic structure h on S, the surface (S, h) is
isometric to the quotient H2/G, where G is a (non-Abelian) discrete subgroup of the isometry

group PSL(2,R) of H2 isomorphic to the fundamental group π1(S). The universal cover S̃ is
isometric to the hyperbolic plane H2.

For completeness, we recall below some properties of the hyperbolic plane.

2.2. The Poincaré disk model of the hyperbolic plane. In the Poincaré disk model [Ber],
the hyperbolic plane is represented as the open unit disk D2 of R2. The points on the unit circle
represent points at infinity. The geodesic lines consist of circular arcs contained in the disk D2 and
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that are orthogonal to its boundary (Figure 1 (left)). The model is conformal, i.e., the Euclidean
angles measured in the plane are equal to the hyperbolic angles.

We won’t need the exact expression of the hyperbolic metric here. However, the notion of
hyperbolic circle is relevant to us. Three non-collinear points in the hyperbolic plane H2 determine
a circle, which is the restriction to the Poincaré disk of a Euclidean circle or line. If C is a Euclidean
circle or line and φ : D2 → D2 is an isometry of the hyperbolic plane, then φ(C ∩ D2) is still the
intersection with D2 of a Euclidean circle or a line.

A key difference with the Euclidean case is that the “circle” defined by 3 non-collinear points
in H2 is generally not compact (i.e., it is not included in the Poincaré disk). The compact circles
are sets of points at constant (hyperbolic) distance from a point. Non-compact circles are either
horocycles or hypercycles, i.e., connected components of the set of points at constant (hyperbolic)
distance from a hyperbolic line (Figure 1 (right)) [Gar].1 Therefore, the relatively elementary tools
that can be used for flat tori must be refined for hyperbolic surfaces. Still, some basic properties
of circles still hold for non-compact circles. A non-compact circle splits the hyperbolic plane into
two connected regions. We will call disk the region of the corresponding Euclidean disk that lies
in the Poincaré disk. When a non-compact circle is determined by the three vertices of a triangle,
its associated disk is convex (in the hyperbolic sense) and contains the whole triangle.

D

Oω

D

Figure 1. The Poincaré disk. Left: Geodesic lines (black) and compact circles
(red) centered at point ω. Right: A horocycle (green). A hypercycle (blue), whose
points have constant distance from the black geodesic line.

Triangulations of hyperbolic spaces have been studied [BDT] and implemented in cgal in
2D [BIT]. Note that that previous work was not considering non-compact circles as circles.

2.3. Triangulations on surfaces. Let (M2, h) be either a torus (T2, h) equipped with a Eu-
clidean structure h or a closed surface (S, h) equipped with a hyperbolic structure h. Let V ⊂M2

be a finite subset of points, and let T be a triangulation of M2 with vertex set V .
Recall that given two distinct points v, w ∈ M2, any homotopy class of paths on M2 with

endpoints v and w contains a unique locally geodesic segment. We can recall the following simple
notion of geometric triangulation.

Definition 2.1. A triangulation T on M2 is said to be geometric for h if it can be realized with
interior disjoint locally geodesic segments as edges.

If T is a triangulation of M2, its inverse image2 ρ−1(T ) is the (infinite) triangulation of M̃2

with vertices, edges and faces that are connected components of the lifted images by ρ−1 of the
vertices, edges and faces of T .

Definition 2.2. The diameter ∆(T ) of T is the smallest diameter of a fundamental domain that

is the union of lifts of the triangles of T (with geodesic edges) in M̃2.

The diameter ∆(T ) is not smaller than the diameter of (S, h). It is unclear how to compute
∆(T ) algorithmically and the problem looks difficult. However bounds are easy to obtain: ∆(T )

is at least equal to the maximum of the diameters of the triangles of ρ−1(T ) in M̃2 and is at most
the sum of the diameters of these triangles.

1A synthetic presentation can be found at http://en.wikipedia.org/wiki/Hypercycle_(geometry)
2the notion of pull-back would be more correct but we stay with inverse image for simplicity

http://en.wikipedia.org/wiki/Hypercycle_(geometry)
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Definition 2.3. We say that a triangulation T of M2 is a Delaunay triangulation if for each face

f of T and any face f̃ of ρ−1(T ), there exists an open disk in M̃2 inscribing f̃ that is empty, i.e.,
that contains no vertex of ρ−1(T ).

We will see in Section 3 that any Delaunay triangulation of M2 is geometric.
Remark that, even for a hyperbolic surface, every empty disk in the universal cover H2 is

compact. Indeed, any non-compact disk contains at least one disk of any diameter, so, at least
one disk of diameter ∆(T ), thus it contains a fundamental domain (actually, infinitely many
fundamental domains) and cannot be empty.

Let us now give a natural definition for flips in triangulations of surfaces. It is based on the
usual notion of flips in the Euclidean plane.

Definition 2.4. Let T be a triangulation of M2. Let (v1, v2, v3) and (v2, v1, v4) be two adjacent

triangles in T , sharing the edge e = (v1, v2). Let us lift the quadrilateral (v1, v2, v3, v4) to M̃2 so
that (ṽ1, ṽ2, ṽ3) and (ṽ2, ṽ1, ṽ4) form two adjacent triangles of ρ−1(T ) sharing the edge ẽ = (ṽ1, ṽ2).

Flipping e in T consists in replacing the diagonal ẽ in the quadrilateral (ṽ1, ṽ2, ṽ3, ṽ4) (which

lies in M̃2, i.e., R2 or H2) by the other diagonal (ṽ3, ṽ4), then projecting the two new triangles
(ṽ3, ṽ4, ṽ2) and (ṽ4, ṽ3, ṽ1) to M2 by ρ.

We say that the flip of T along e is Delaunay if the triangulation is locally Delaunay in the
quadrilateral after the flip, i.e., the disk inscribing (ṽ3, ṽ4, ṽ2) does not contain ṽ1 (and the disk
inscribing (ṽ4, ṽ3, ṽ1) does not contain ṽ2).

An edge e is said to be Delaunay flippable if the flip along e is Delaunay.

Note that even if T is geometric, the triangulation after a flip is not necessarily geometric.
We will prove later (Lemma 4.1) that a Delaunay flip transforms a geometric triangulation into a
geometric triangulation.
Degenerate sets of points on a surface. Let us quickly examine here the case of degenerate sets of
points, i.e., sets of points V on M2 such that the infinite Delaunay triangulation of ρ−1(V ) is not
unique, i.e., at least two adjacent triangles in the possible Delaunay triangulations of ρ−1(V ) in

M̃2 have cocircular vertices. In such a case, any triangulation of the subset C of ρ−1(V ) consisting
of c cocircular points is a Delaunay triangulation. Any of these triangulations can be transformed
in any other by O(c) flips [HNU]. From now on, we can thus assume that the set of points V on
the surfaces that we consider is always non-degenerate.
Triangulations and polyhedral surfaces. The Euclidean plane can be identified with the plane (z =
1) in R3, while the Poincaré model of the hyperbolic plane can be identified with the unit disk
in that plane. We can now use the stereographic projection σ : S2 \ {s0} → R2 to send the unit
sphere S2 to this plane (z = 1), where s0 = (0, 0,−1) is the pole. In this projection, each point
p 6= s0 on the sphere is sent to the unique intersection with the plane (z = 1) of the line going
through s0 and p. The inverse image of the plane (z = 1) is S2 \ {s0}, while the inverse image of
the disk containing the Poincaré model of the hyperbolic plane is a disk, which is the set of points
of S2 above a horizontal plane.

Let T ? be a triangulation of the Euclidean or the hyperbolic plane – for instance, T ? could be
the inverse image ρ−1(T ) of a triangulation T of a surface (M2, h), in which case T ? has infinitely
many vertices. We associate to T ? a polyhedral surface Σ in R3, constructed as follows. The
construction is similar to the classic duality originally presented with a paraboloid in the case of
(finite) triangulations in a Euclidean space [ES]. It can also be seen as a simpler version, sufficient
for our purpose, of the construction presented for triangulations in hyperbolic spaces using the
space of spheres [BDT].

• The vertices of Σ are the inverse images on §2 by σ of the vertices of T ?.
• The edges of Σ are line segments in R3 corresponding to the edges of T ? and the faces of

Σ are triangles in R3 corresponding to the faces of T ?.

Note that Σ is not necessarily convex. We can make the following well-known remarks. Let t1
and t2 be two triangles of T ? sharing an edge e, and let tΣ1 and tΣ2 be corresponding faces of the
polyhedral surface Σ, sharing the edge eΣ. Then Σ is concave at eΣ if and only if e is Delaunay
flippable. Flipping e in the triangulation T ? in the plane corresponds to replacing the two faces tΣ1
and tΣ2 of Σ by the two other faces of the tetrahedron formed by their vertices. That tetrahedron

lies between Σ and S2. We obtain a new edge eΣ′
at which the new polyhedral surface Σ′ is convex,

and which is strictly closer to S2 than Σ. By an abuse of language, we will say that Σ′ contains Σ,
which we will denote as Σ ⊂ Σ′.
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As a consequence, Σ is convex if and only if T ? is Delaunay.
There is a direct corollary of this statement: Given a (non-degenerate, see above) discrete set

V of points in R2 or H2, there is a unique Delaunay triangulation with this set of vertices.
However we are going to see in the next two sections that there can be infinitely many geometric

(non-Delaunay) triangulations on a surface, with the same given finite vertex set.

3. Geometric triangulations of surfaces

We consider now Dehn twists, which are usually considered as acting on the space of metrics
on a surface [CB], but are defined here equivalently, for simplicity, as acting on triangulations of a
closed oriented surface (M2, h) equipped with a fixed Euclidean or hyperbolic structure (figures in
this section illustrate the flat case, but the results are proved for both flat and hyperbolic cases).
Let T be a triangulation of (M2, h), with vertex set V , and let c be an oriented homotopically non-
trivial simple closed curve onM2 \V . We define a new triangulation τc(T ) ofM2 by performing a
Dehn twist along c: whenever an edge e of T intersects c at a point p, we orient e so that the unit
vectors of the tangent plane along e and c form a positively oriented basis (see Figure 2 (left)), and
then replace e by the oriented path following e until p, then following c until it comes back to p,
then following e until its endpoint (see Figure 2 (right)). This defines a map τc from the space of
triangulations of T2 with vertex set V to itself. Note that, even if T is a geometric triangulation,
τc(T ) is not necessarily geometric. If we denote by −c the curve c with the opposite orientation,
then one easily checks that τ−c = τ−1

c .

ce
p

Figure 2. Transformation of an edge e by the Dehn twist along c on a flat torus
T2. Here the black parallelepiped is a fundamental domain, and the gray one,
used for the construction of the image of e by τc, is another fundamental domain,
image through an element of the the group Γ of isometries.

Lemma 3.1. There exists a geometric triangulation T of (M2, h) and a simple closed curve
c ⊂M2 such that for all k ∈ Z, τkc (T ) is geometric.

Proof. We choose a simple closed geodesic c on (M2, h) and ε > 0. We denote by c−, c+ the two
geodesics at distance ε from c on the positive and negative sides of c. The value of ε must be
sufficiently small so that the region between c− and c+ is an annulus drawn on M2. We then
choose a geometric triangulation T of (M2, h) with no vertex in the open annulus bounded by
c− and c+ and containing c, such that each edge crossing c intersects c exactly once, and has one
endpoint on c− and another on c+.

We realize the image by τc of an edge e of T as a geodesic segment – there is a unique choice in
the homotopy class of the path described above (Figure 3). Let e, e′ be two edges of T . If either e

c
c+ c−

e

Figure 3. Image of e by a Dehn twist (middle), realized as a geodesic edge (right).

or e′ does not intersect c, then their images by τc (or τ−c) remain disjoint, as they lie in different
regions separated by c− and c+. If e and e′ intersect c, then again their images by τc (or τ−c)
remain disjoint, as their endpoints appear in the same order on c− and c+ and two geodesic lines
cannot intersect more than once (Figure 4). As a consequence, τc(T ) (and τ−c(T )) are geometric.
The same result follows by induction for τkc (T ) for any k ∈ Z. �
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c

Figure 4. The Dehn twist of two edges along c for two edges intersecting c.

Corollary 3.2. For any closed oriented surface (M2, h), there exists a finite set of points V ⊂M2

such that the graph of geometric triangulations with vertex set V is infinite.

We can now prove the following result:

Proposition 3.3. Any Delaunay triangulation of a closed oriented surface (M2, h) is geometric.

Proof. Let V be a finite set of points on M2, and let T be the Delaunay triangulation of (M2, h)
with vertex set V . Realize every edge of T as a the unique geodesic segment in its homotopy class.
We argue by contradiction and suppose that T is not geometric, so that there are two edges e1

and e2 that intersect in their interiors. We then lift e1 and e2 to edges ẽ1 and ẽ2 of ρ−1(T ) whose
interiors still intersect at one point.

There are at least two distincts faces f̃1 and f̃2 of ρ−1(T ) such that ẽ1 is an edge of f̃1 and ẽ2

is an edge of f̃2. Let C̃1 and C̃2 be the circles inscribing f̃1 and f̃2, respectively. Since ρ−1(T ) is

Delaunay, C̃1 and C̃2 bound empty disks D̃1 and D̃2, i.e., open disks not containing any point of
ρ−1(V ). Recall that, as mentioned in Section 2.3, empty disks are compact even in the hyperbolic

case, and that ẽ1 ⊂ D̃1 and ẽ2 ⊂ D̃2 (edges are considered as open).

The two circles C̃1 and C̃2 do not intersect more than twice. Let L̃ be the geodesic line through

their two intersection points. The endpoints of ẽ1 are on C̃1 \ D̃2 and those of ẽ2 are on C̃2 \ D̃1, so

the two pairs of endpoints are on opposite sides of L̃. As a consequence, ẽ1 and ẽ2 are on opposite

sides of L̃, so they cannot intersect. This leads to a contradiction. �

4. The flip algorithm

Let us consider a closed oriented surface (M2, h). The flip algorithm consists in performing
Delaunay flips in any order, starting from a given input geometric triangulation ofM2, until there
is no more Delaunay flippable edge.

In this section, we first define a data structure that supports this algorithm, then we prove the
correctness of the algorithm.

4.1. Data structure. In both cases of a flat or hyperbolic surface, the group of isometries defining
the surface is denoted as G. We assume that a fundamental domain Ω0 is given. By definition

(Section 2.1), M̃2 is the union G(Ω0) of the images of Ω0 under the action of G.
To represent a triangulation on the surface, we propose a data structure generalizing the data

structure previously introduced for triangulations of flat orbifolds [CT] and triangulations of the
Bolza surface [IT]. The combinatorics of the triangulation is given by the set of its vertices V on the
surface and the set of its triangles, where each triangle gives access to its three vertices in V and its
three adjacent triangles, and each vertex gives access to one of its incident triangles. The geometry

of the triangulation is given by the set Ṽ 0 of the lifts of its vertices that lie in the fundamental

domain Ω0 and one lift t̃0 in M̃2 of each triangle t = (v0,t; v1,t; v2,t) of the triangulation, chosen

among the (one, two, or three) lifts of t in M̃2 having at least one vertex in Ω0: t̃0 has at least one

of its vertices ṽi,t
0

in Ω0 (i = 0, 1, or 2); then the other vertices of t̃0 are images gi+1,t · ṽi+1,t
0

and

gi+2,t · ṽi+2,t
0

of two vertices in Ṽ 0, where gi+1,t and gi+2,t are elements of G (indices are taken
modulo 3). In the data structure, each vertex v on the surface has access to its representative
ṽ0, and each triangle t on the surface has access to the isometries g0,t, g1,t, and g2,t allowing to

construct t̃0, at least one of the isometries being the identity 1G. Note that two triangles t and

t′ of T that are adjacent on the surface are represented by two triangles t̃0 and t̃′
0
, which are not

necessarily adjacent in M̃2 (Figure 5 (left)). However, there is an isometry g in G such that t̃0

and g · t̃′
0

are adjacent.
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Let T be an input triangulation given as such a data structure. Figure 5 illustrates a Delaunay

flip performed on two adjacent triangles t and t′ on the surface. The triangle t̃′
0

is first moved so
that the vertices of the edge to be flipped coincide. Then the edge is flipped. The isometries in the
two triangles created by the flip are easy to compute from the isometries stored in t and t′. Note
that the order in which isometries are composed is crucial in the hyperbolic case, as they do not
commute. We have shown that the data structure can be maintained through flips.

Ω0

t̃0
gi = 1Γ

gi+1

gi+2

gi+1g
′−1
j · t̃′

0

gi+1

gi+2

g′j

g′j+1

g′j+2

1Γ

1Γ

g′j+1gi+1g
′−1
j

t̃′
0

flip

Figure 5. A flip. Here (hyperbolic) triangles are represented schematically with

straight edges. Left: the two triangles t̃0 and t̃′
0

before the flip. Here gi = 1G.
Right: the isometries in the two triangles created by the flip.

4.2. Correctness of the algorithm. The following statement is a key starting point.

Lemma 4.1. Let T be a geometric triangulation of (M2, h), and let T ′ be obtained from T by a
Delaunay flip. Then T ′ is still geometric.

Proof. Let e be a Delaunay flippable edge and ẽ a lift in M̃2. Denote the vertices of ẽ by ṽ and ṽ′.
Let t̃1 and t̃2 be the triangles of ρ−1(T ) incident to ẽ. To prove that T ′ is geometric, it is sufficient

to prove that t̃1 ∪ t̃2 is a strictly convex quadrilateral.

Let C̃1 (resp. C̃2) be the circle through the three vertices of t̃1 (resp. t̃2). Note that C̃1 and C̃2

may be non-compact. Let D̃1 and D̃2 be the corresponding disks (as defined in Section 2.2 on case

of non-compact circles). The disk D̃1 (resp. D̃2) is convex (in the Euclidean plane if M2 is a flat

torus, or in the sense of hyperbolic geometry if M2 is a hyperbolic surface) and contains t̃1 (resp.

t̃2). The fact that e is Delaunay flippable then implies that t̃1 and t̃2 are contained in D̃1 ∩ D̃2

(see Figure 6). As a consequence, the sum of angles of t̃1 and t̃2 at ṽ is smaller than the interior

ẽ

D̃1

D̃2

t̃1 t̃2

ṽ

ṽ′

Figure 6. The quadrilateral is convex (edges are represented schematicaly as
straight line segments).

angle at ṽ of D̃1 ∩ D̃2, which is at most π, and similarly at ṽ′. As a consequence, the quadrilateral
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t̃1 ∪ t̃2 is strictly convex at ṽ and ṽ′. Since it is strictly convex at its other two vertices (as each of
these vertices is a vertex of a triangle), it is strictly convex, and the statement follows. �

The following lemma, using the diameter of the triangulation (Definition 2.2), is central in the
proof of the termination of the algorithm (Theorem 4.6) for hyperbolic surfaces and in its analysis
for both flat tori and hyperbolic surfaces (Section 5).

Lemma 4.2. Let T be a geometric triangulation of (M2, h). Then, the flip algorithm starting
from T will never insert an edge longer than 2∆(T ).

Note that the length of an edge can be measured on any or its lifts in the universal covering

space M̃2.

Proof. Let Tk be the triangulation obtained from T = T0 after k flips and let Σk be the corre-
sponding polyhedral surface of R3 as defined in Section 2.3. Since we perform only Delaunay flips,
Σ0 ⊂ . . . ⊂ Σk ⊂ Σk+1 (with the abuse of language mentioned in Section 2.3).

We will prove the result by contradiction. Let us assume that Tk has an edge e of length larger
than 2∆(T ). Let Ω be a fundamental domain of M2 having diameter ∆(T ), given as the union of
lifts of triangles of T = T0 (it is not clear how to compute such a fundamental domain efficiently
but its existence is clear). Let v be the midpoint of e and ṽ its lift in Ω. Let ẽ = (ṽ1, ṽ2) be the

unique lift of e whose midpoint is ṽ. The domain Ω is strictly included in the disk D̃ of radius
∆(T ) and centered at ṽ, by definition of ∆(T ) (see Figure 7 (left)).

Let PD denote the plane in R3 containing the circle on S2 that is the boundary of σ−1(D) (recall
that σ denotes the stereographic projection, see Section 2.3), and let p denote the point σ−1(ṽ) on

S2. As p ∈ σ−1(Ω) ⊂ σ−1(D̃), the projection pΣ0 of p onto Σ0 lies above PD (Figure 7 (right)).

S2

s0

R2
D ṽ1 ṽ2

p1

p2

D̃ ṽ

pΣk

p
pΣ0

Ω

D

ṽ

ṽ2

ṽ1

D̃

Ω

ẽ

PD

Figure 7. Illustration for the proof of Lemma 4.2 (for a hyperbolic surface). Left:
notation in H2. Right: contradiction seen in a cutting plane in R3.

Now, denote the edge σ−1(ẽ) on S2 as (p1, p2). The points p1 and p2 lie outside σ−1(D). So, the
corresponding edge eΣ = [p1, p2] of Σk lies below the plane PC , thus the projection pΣk ∈ [p1, p2]
of p onto Σk lies below PC .

From what we have shown, pΣk is a point of Σk that lies strictly between the pole s0 and the
point pΣ0 of Σ0, which contradicts the inclusion Σ0 ⊂ Σk. �

We will now show that, for any order, the flip algorithm terminates and returns the Delaunay
triangulation of the surface. The proof given for the hyperbolic case would also work for the flat
case. However we propose a more elementary proof for the flat case.
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Flat tori. The case of flat tori is easy, and might be considered as folklore. However, as we have
not found a reference, we give the details here for completeness.

We define the weight of a triangle t of a geometric triangulation T of T2 as the number of
vertices of ρ−1(T ) that lie in the open circumdisk of a lift of t. The weight w(T ) of T is defined as
the sum of the weights of its triangles.

Lemma 4.3. The weight w(T ) of a triangulation T of a flat torus (T2, h) is finite. Let T ′ be the
triangulation obtained from a geometric triangulation T after performing a Delaunay flip. Then
w(T ′) ≤ w(T )− 2.

Proof. A circumdisk of any triangle in R2 is compact, so, it can only contain a finite number of
vertices of ρ−1(T ). The sum w(T ) of these numbers over triangles of T is clearly finite as the number
of triangles of T is finite. Let us now focus on a quadrilateral in R2 that is a lift of the quadrilateral

on T2 whose diagonal e is flipped. Let D̃1 and D̃2 denote the two open circumdisks in R2 before

the flip and D̃′1 and D̃′2 denote the two open circumdisks after the flip, then D̃′1 ∪ D̃′2 ⊂ D̃1 ∪ D̃2

and D̃′1 ∩ D̃′2 ⊂ D̃1 ∩ D̃2 (see Figure 8). Moreover, by definition of a Delaunay flip, the union

ẽ

D̃1

D̃2

D̃′
1

D̃′
2

Figure 8. Circumdisks D̃1 and D̃2 before flipping ẽ and D̃1 and D̃′2 after the
Delaunay flip.

D̃′1 ∪ D̃′2 contains at least two fewer vertices of ρ−1(T ) than D̃1 ∪ D̃2, which are the two vertices
of the quadrilateral that are not vertices of ẽ. This concludes the proof. �

The result follows trivially:

Theorem 4.4. Let T be a geometric triangulation of a flat torus with finite vertex set V . The flip
algorithm terminates and outputs the Delaunay triangulation of V .

Corollary 4.5. The geometric flip graph FT2,h,V is connected.

Hyperbolic surfaces. To show that the flip algorith terminates in the hyperbolic case, we cannot
mimic the proof presented for the flat tori since the circumcircle of a hyperbolic triangle can be
non-compact (see Section 2.2) and thus can have an infinite weight. Note also that the proof
cannot use a property on the angles of the Delaunay triangulation similar to what holds in the
Euclidean case: in H2, the locus of points seeing a segment with a given angle is not a circle arc,
and thus the Delaunay triangulation of a set of points in H2 does not maximize the smallest angle
of triangles. The proof relies on Lemma 4.2.

Theorem 4.6. Let T be a geometric triangulation of a closed hyperbolic surface with finite vertex
set V . The flip algorithm terminates and outputs the Delaunay triangulation of V .

Proof. We use the same notation as in the proof Lemma 4.2. Once an edge of Tk is flipped, it can
never reappear in the triangulation, as the corresponding segment in R3 becomes interior to the
polyhedral surface Σk+1 (see Section 2.3) and further surfaces Σk′ , k

′ ≥ k + 1. In addition, all the
introduced edges have length smaller than 2∆(T ) by Lemma 4.2. Moreover, there is only a finite
number of edges with vertices in V that are shorter than 2∆(T ) on S, as a circle given by a center
and a bounded radius is compact. So, the flip algorithm terminates. The output does not have
any Delaunay flippable edge, so, it is the Delaunay triangulation. �

Corollary 4.7. The geometric flip graph FS,h,V is connected.
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5. Algorithm analysis

For a triangulation on n vertices in the Euclidean plane, counting the weights of triangulations
leads to the optimal O(n2) bound. However the same argument does not yield a bound even for
the flat torus, since points must be counted in the universal cover.

Theorem 5.1. For any triangulation T with n vertices of a torus (T2, h), there is a sequence of
flips of length Ch ·∆(T )2 · n2 connecting T to a Delaunay triangulation of (T2, h), where Ch only
depends on h.

Proof. Let e = (v1, v2) be an edge appearing during the flip algorithm, and ṽ1 (resp. ṽ2) be a lift
of v1 (resp. v2), such that (ṽ1, ṽ2) is a lift ẽ of e. The point ṽ2 lies in a circle C of diameter 4∆(T )
centered at ṽ1 by Lemma 4.2. Let M be the affine transformation that maps the lattice of the lifts
of v2 to the square lattice Z2. M(C) is a convex set and from Pick’s theorem [Tra],3 the number
of points of Z2 in M(C) is smaller than area(M(C)) + 1/2 · perimeter(M(C)) + 1, which is also a
bound on the number of possible points ṽ2 in C and thus the number of possible edges e. The area
of M(C) is 1/Ah · area(C) since det(M) = 1/Ah, but there is no simple formula for its perimeter.
As already mentioned in the proof of Theorem 4.6, an edge can never reappear after it was flipped.
Moreover, there are n2/2 sets of points {v1, v2} (v1 and v2 may be the same point), which yields
the result. �

The rest of this section is devoted to computing the number of edges not longer than 2∆(T )
between two fixed points v1 and v2 on a hyperbolic surface (S, h). Counting the number of points
in a disk of fixed radius would give an exponential bound because the area of a circle in H2 is
exponential in its radius [Mar]. Note that we only consider geodesic edges, so we only need to
count homotopy classes of simple paths. The behavior of the number Nl of simple closed curves
smaller than a fixed length l is well understood: Nl/l

6g−6 converges to a positive constant depending
“continuously” on h [Mir]. However, we need a result for geodesic paths instead of geodesic closed
curves, and Mirzakhani’s proof is too deep and relies on too sophisticated structures to easily be
generalized. So, we will only prove an upper bound on the number of paths. Such an upper bound
could be derived from the theory of measured laminations of Thurston, which is also quite intricate.
Fortunately, a more comprehensible proof, specific to simple closed geodesic curves on hyperbolic
structures, can be found in a book published by the French Mathematical Society [FLP+, 4.III,
p.61-67][FLP]. While recalling the main steps of the proof, we show how to extend it to geodesic
paths.

Let Γ = {γ, i = 1, . . . , 3g − 3} be a set of 3g − 3 simple disjoint closed geodesics on (S, h) not
containing v1 and v2 that forms a pants decomposition on S, where each γi belongs to two different
pairs of pants. A set {γi, i = 1, . . . , 3g − 3} of disjoint closed annuli is defined on S, where each
γi is a tubular neighborhood of γi containing none of v1, v2. This yields a decomposition of S
into 3g − 3 annuli γi(i = 1, . . . , 3g − 3) and 2g − 2 pairs of “short pants” Pj(j = 1, . . . , 2g − 2).
For i = 1, . . . , 3g − 3, let us denote as ∂γi any one of the two curves bounding the annulus γi
(this is an abuse of notation but should not introduce any confusion). In each pair of pants
Pj , j = 1, . . . , 2g − 2, for each boundary ∂γ, an arc Jγi is drawn in Pi, going from the boundary of
γ to itself that separates the other two boundaries of Pi and that has minimal length.

Two curves γ′ and γ′′ are associated to each γ ∈ Γ in the following way (Figure 9). The annulus
γ is glued with the two pairs of pants Pi and Pj between which it is lying, which yields a sphere
with four boundaries: ∂γi,1 and ∂γi,2 bounding Pi and ∂γj,1 and ∂γj,2 bounding Pj . A curve γ′ is
then defined: it coincides with Jγi in Pi and Jγj in Pj , it separates ∂γi,1 and ∂γj,1 from ∂γi,2 and

∂γj,2, and it has exactly 2 crossings with γ. The curve γ′′ is defined in the same way, separating
∂γi,1 and ∂γj,2 from ∂γi,2 and ∂γj,1.

For each Pi and mi,1,mi,2,mi,3 ∈ N, a model multiarc is fixed in Pi, having mi,1, mi,2 and mi,3

intersections with the three boundaries ∂γi,1, ∂γi,2 and ∂γi,3 of Pi (if one exists). The model is
chosen among all the possible model multiarcs as the one that has a minimal number of intersections
with the three arcs J

γi,j
i (j = 1, 2, 3) of Pi. The model multiarcs is unique, up to homeomorphisms

of the pair of pants, and those homeomorphisms are rather simple to understand since they can be
decomposed into three Dehn twists around curves homotopic to the three boundaries of the pair
of pants.

Let now f be a path between v1 and v2 on S. We decompose f into three parts: (v1, w1), (w1, w2)
and (w2, v2) where w1 and w2 are the first and the last point of f on an annulus boundary. We

3See also https://en.wikipedia.org/wiki/Pick’s_theorem#Inequality_for_convex_sets

https://en.wikipedia.org/wiki/Pick's_theorem#Inequality_for_convex_sets
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Pi

Pj

γγ

Jγi

∂γ

∂γ

Jγj

∂γi,1 ∂γi,2

∂γj,2

∂γj,1

γ′

γ′
γ′′

γ′′

Figure 9. Two adjacent pairs of pants Pi and Pj .

“push” all the twists of fw into the annuli γ, γ ∈ Γ, and obtain a normal form homotopic to f ,
whose definition adapts the definition given in the book [FLP+] for closed curves:

(1) It is simple.
(2) It has a minimal number mi of intersections with each γi, i = 1, . . . , 3g − 3.
(3) In each Pj , j = 1, . . . , 2g − 2, it is homotopic with fixed endpoints to the model multiarc

that corresponds to the number of intersections with its boundaries. For Pj1 (resp. Pj2)
containing v1 (resp. v2), only the intersections different from w1 (resp. w2) are counted.

(4) Between v1 and w1 (resp. w2 and v2), it has a minimal number of intersections with the

three arcs J
γj1,k

j1
(k = 1, 2, 3) in Pj1 containing v1 (resp. J

γj2,k

j2
in Pj2 containing v2).

(5) It has a minimal number ti of intersections with γ′i inside γi, for any i = 1, . . . , 3g − 3.
(6) It has a minimal number si of intersections with γ′′i inside γi, for any i = 1, . . . , 3g − 3.

The existence of a normal form is clear but its uniqueness is unclear (uniqueness is not required
for the upper bound that we are looking for, but it can actually be proved by extension of the
next lemma). The two forms of the path f are used to define two notions of complexity: its
geodesic form is used to define its length, which can be seen as a geometric complexity, whereas
its its normal coordinates mi, si and ti can be seen as a combinatorial complexity. Lemma 5.3
shows some equivalence between the two notions of complexity. We first show that a fixed set of
coordinates corresponds to a finite number of possible non-homotopic paths.

Lemma 5.2. For any set of coordinates mi, ti, si, i = 1, . . . , 3g−3, there are at most 9(max{i=1,...,3g−3}(mi))
2

non-homotopic normal forms.

Proof. Let f be a path, decomposed as above into (v1, w1), fw = (w1, w2) and (w2, v2). The
uniqueness for closed curves comes from the facts that in each pair of pants, fixing the mi, si
and ti leads to a unique homotopy class of model multiarcs [FLP+, Lemma 5, p.63]. Everything
remains true but the uniqueness of the homotopy class of model multiarcs in the two (not necessarily
different) pairs of pants Pj1 and Pj2 containing v1 and v2. However, w1 and w2 are fixing unique
models (see Figure 10). There are three possible annulus boundaries ∂γj,i, i = 1, 2, 3 for w1 in the
pair of pants Pj that contains v1 (resp. γj,i for w2), so, at most 3 max{i}(mi) possibilities for each
of them. The choices for w1 and w2 are independent and the result follows. �

Lemma 5.3. Let f be a geodesic path of length l, then there exists a constant ch such that the
coordinates mi, ti and si, i = 1, . . . , 3g − 3 of the normal form of f are smaller than ch · l.

Proof. For any simple closed geodesic δ on S, the geodesic form of f intersects δ in a minimal
number kδ of points, since they are both geodesics. If εδ is the width of a tubular neighborhood
of δ, then l ≥ εδ(kδ − 1) [BS, Lemma 3.1]. Each coordinate mi, ti and si of f corresponds to the
minimal number of intersections with a curve. The number mi corresponds to γi. The number ti is
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v1

w1 w1

w1

v1 v1

Figure 10. Three possible choices for w1. The two left choices correspond to
the same model multiarcs, but the orderings on the upper boundary lead to non-
homotopic paths. The right choice leads to different model multiarcs.

actually not larger than the number of intersections of f with the geodesic curve that is homotopic
to γ′i (γ′i is generally not geodesic), and similarly si is not larger than the number of intersections
of f with the geodesic homotopic to γ′′i . These curves γi, γ

′
i, γ
′′
i only depend on (S, h), so, we can

take εh to be the largest of all the 9g − 9 widths εγi , εγ′
i
, εγ′′

i
and we obtain l ≥ εh ·max(mi, ti, si)

and thus max(mi, ti, si) ≤ 1/εh · l. �

Theorem 5.4. For any hyperbolic structure h on S and any triangulation T of (S, h), there is a
sequence of flips of length at most Ch ·∆(T )6g−4 · n2 in the geometric flip graph connecting T to a
Delaunay triangulation of (S, h).

Proof. Let Nv1,v2 be the number of paths from v1 to v2 shorter than l = 2 · ∆(T ). From the
previous lemma, we obtain that the 9g − 9 coordinates mi, ti, and si of any such path f are
smaller than ch · 2∆(T ). It appears that, ∀i,m1 = ti + si, ti = mi + si or si = mi + ti [FLP+,
Lemma 6, p.64]. So, if we fix mi and ti there are at most 3 possible si. Lemma 5.2 and 5.3
proves that there are 9(ch · 2∆(T ))2 potential paths for each coordinate set. We obtain a bound
for Nv1,v2 : Nv1,v2 ≤ 9(ch · 2∆(T ))2 · 3(ch · 2∆(T ))6g−6 and thus, there is a constant C ′h such that
Nv1,v2 ≤ C ′h ·∆(T )6g−4. Since there are 1/2 ·n2 possible sets {v1, v2}, we obtain the bound on the
number of edges. �
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66–67 of Astérisque. Société Mathématique de France, Paris, 1979.

[Gar] Martin Gardner. Non-Euclidean Geometry, Chapter 4 of The Colossal Book of Mathematics. W. W. Nor-
ton & Company, 2001.

[HNU] F. Hurtado, M. Noy, and J. Urrutia. Flipping edges in triangulations. Discrete & Computational Geometry

3(1999), 333–346.
[IT] Iordan Iordanov and Monique Teillaud. Implementing Delaunay triangulations of the Bolza surface. In

Proceedings of the Thirty-third International Symposium on Computational Geometry, pages 44:1–44:15,

2017.



FLIPPING GEOMETRIC TRIANGULATIONS ON HYPERBOLIC SURFACES 13

[Mar] Gregorii A Margulis. Applications of ergodic theory to the investigation of manifolds of negative curvature.
Functional analysis and its applications 3(1969), 335–336.

[Mas] William S. Massey. A basic course in algebraic topology, volume 127 of Graduate Texts in Mathematics.

Springer-Verlag, New York, 1991.
[Mir] Maryam Mirzakhani. Growth of the number of simple closed geodesics on hyperbolic surfaces. Annals of

Mathematics 168(2008), 97–125.

[Tah] Guillaume Tahar. Geometric triangulations and flips. C. R. Acad. Sci. Paris, Ser. I 357(2019), 620–623.
[Tra] J. Trainin. An elementary proof of Pick’s theorem. Mathematical Gazette 91(2007), 536–540.


