
HAL Id: hal-02400652
https://inria.hal.science/hal-02400652

Submitted on 9 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Enumerating the morphologies of non-degenerate
Darboux cyclides

Mingyang Zhao, Xiaohong Jia, Changhe Tu, Bernard Mourrain, Wenping
Wang

To cite this version:
Mingyang Zhao, Xiaohong Jia, Changhe Tu, Bernard Mourrain, Wenping Wang. Enumerating the
morphologies of non-degenerate Darboux cyclides. Computer Aided Geometric Design, 2019, 75,
pp.101776. �10.1016/j.cagd.2019.101776�. �hal-02400652�

https://inria.hal.science/hal-02400652
https://hal.archives-ouvertes.fr


Enumerating the Morphology of Non-degenerate Darboux Cyclides

Mingyang Zhaoa,b, Xiaohong Jiaa,b,∗, Changhe Tuc, Bernard Mourraind, Wenping Wange

aKLMM, NCMIS, Academy of Mathematics and Systems Science, Chinese Academy of Sciences

bUniversity of Chinese Academy of Sciences

cSchool of Computer Science and Technology, Shandong University

dGALAAD, INRIA Mditerrane

eDepartment of Computer Science, University of Hongkong

Abstract

We provide an enumeration of all possible morphologies of non-degenerate Darboux cyclides. Based
on the fact that every Darboux cyclide in R3 is the stereographic projection of the intersection surface
of a sphere and a quadric in R4, we transform the enumeration problem of morphologies of Darboux
cyclides to the enumeration of the algebraic sequences that characterize the intersection of a sphere
and a quadric in R4.

Keywords: Darboux cyclides, stereographic projection, Segre characteristic, index sequences,
morphologies

1. Introduction

Cyclides are originally defined by Dupin (1822), hence since called Dupin cyclides, as algebraic
surfaces of degree at most four whose lines of curvatures are all circles. There is a long history of
people exploring the geometric properties of Dupin cyclides as well as their applications in geometric
modeling, such as serving as blending surfaces and boundary representations (Pratt, 1990, 1995).

Darboux cyclides, as a superset of Dupin cyclides and quadrics, are mainly investigated by Kummer
(1865) and Darboux (1880). It is proved that almost every Darboux cyclide contains from two to
six real circles through almost every point (Blum, 1980; Coolidge, 1916; Takeuchi et al., 2000), and
there is a recent conclusion stating that a surface which carries three families of circles is a Darboux
cyclide (Lubbes, 2013). Further explorations on these families of circles on Darboux cyclides can be
found in Franquiz et al. (2006) and Pottmann et al. (2012). This circular arc structure of Darboux
cyclides attracts the attention of geometric modeling community in applying them to contemporary
freeform architecture (Bo et al., 2011; Pottmann et al., 2007, 2008, 2012). However, compared with
Dupin cyclides, although with more freedom in the shape and structure, the theoretical investigations
of Darboux cyclides in the literature are relatively rare. It is proved in Takeuchi et al. (2000) that
a nonsingular Darboux cyclide is topologically a torus, a sphere or two spheres, and that a singular
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one is conformally equivalent to a quadric. However, there still lacks an finer enumeration on more
detailed morphologies of Darboux cyclides, which is crucial to predicting the local feature in modeling.

Coolidge (1916) has proved that a Darboux cyclide is the stereographic projection of the intersection
of a sphere and another quadric in R4, which casts light on our exploration of Darboux cyclides
by transiting to the intersection of two quadrics (brief as QSI) in R4. There is rich literature on
computation, classification as well as morphology enumeration of the intersection of two quadrics in
3-dimensional space. See Levin (1976, 1979); Miller and Goldman (1995); Wang et al. (2002, 2003);
Dupont et al. (2003, 2008a,b,c); Mourrain et al. (2005); Lazard et al. (2006) for algorithms of computing
the exact parametrization of QSIs, and Bromwich (1906); Wang et al. (2003); Tu et al. (2002, 2009)
for algebraic approaches to enumerating and classifying the morphologies of QSIs.

We provide a finer enumeration of morphologies of Darboux cyclides, which takes both the topological
and algebraic properties of the Darboux cyclides into account. The main result is shown in Theorem
1, which is further merged into 14 non-equivalent morphologies in Table 3. Besides, Table 4 gives a
brief description of all the non-equivalent morphologies. Our enumeration of all possible morphologies
of Darboux cyclides is performed by going through all valid QSIs morphologies in R4, inspired by
the fact that stereographic projections bridge between Darboux cyclides in R3 and QSIs in R4. The
enumeration of all QSIs morphologies is achieved through the enumeration of Segre characteristics and
index sequences of the quadric pencil, which generalizes the result of Tu et al. (2009) from PR3, the
3D real projective space, to PR4, the 4D real projective space. Different affine realizations of QSIs
from PR4 to R4 are then considered: realizing the required sphere in the pencil helps define the plane
at infinity, and the choices of the other four axes define the stereographic projection center.

The remainder of the paper is organized as follows. In Section 2, we review the previous work about
cyclides and QSIs; in Section 3, we present necessary preliminary knowledge on Darboux cyclides,
stereographic projections, as well as algebraic characterizations of QSIs; in Section 4, we give an
enumeration of the morphologies of Darboux cyclides by going through all suitable QSIs, where detailed
proofs are provided. We draw our conclusions in Section 5.

2. Related Work

Cyclides. Dupin Cyclides are first defined by the French mathematician Dupin, as the envelopes
of all the spheres with possibly distinct radii touching three given fixed spheres (Dupin, 1822). There
is plenty of theoretical work exploring the algebraic and geometric properties of Dupin cyclides, see
Maxwell (1868); Casey (1870); Cayley (1873) for early theoretical explorations. Cyclide patches are first
used in free-form modeling in the early 1980s, see Martin et al. (1982); McLean (1985) for constructions
of cyclide patches; a conversion from cyclide patches to rational biquadratic Bézier forms is given by
Foufou et al. (2005). Cyclides have fruitful applications in solid geometric modeling due to their low-
degree in both algebraic and parametric representation, intuitive shape parameters, as well as flexibility
in free-form surfaces design, see Chandru et al. (1989); Pratt (1990); Allen and Dutta (1997); Foufou
and Garnier (2004); Druoton et al. (2014).

Darboux cyclides are a generalization of Dupin cyclides, and have a long history in classical geometry
(Coolidge, 1916; Darboux, 1880). Takeuchi et al. (2000) discover that Darboux cyclides can carry up
to six families of real circles. Krasauskas and Zubė (2014) study Darboux cyclides using the language
of geometric algebra. Recently, Darboux cyclides attract the attention of the geometry modeling
community by their circular arc structure. Bo et al. (2011) first apply Darboux cyclides in architecture
geometry, where cyclide structures show their power in freeform modeling. Motivated by potential
applications of Darboux cyclides in architecture, Pottmann et al. (2012) propose computational tools
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for identification of circle families on a given cyclide, and provide a complete classification of the
hexagonal webs on Darboux cyclides.

QSIs. The computation, classification as well as morphologies determination of QSIs is a classic
problem both in algebraic geometry and in geometric modeling. Many works target at computing the
exact parametrization of the QSIs, while some others focus on morphologies classifications of the QSIs
using algebraic tools. Levin (1976, 1979) proposes a parametric algorithm to compute the QSIs in R3

based on the observation that there is a ruled quadric in the pencil of any two distinct quadrics in
PR3. Segre (1884) classify pencils of quadrics by Segre characteristic in arbitrary dimensions. Pieter
Belmans further points out that the classification of pencils of quadrics in PR4 is equivalent to the
classification of Segre quartic surfaces (Belmans, 2016). Wilf and Manor combine Levin’s approach
with the Segre characteristic to describe the shape and structure of QSIs (Wilf and Manor, 1993).
Wang et al. (2003) provide an enhanced version of Levin’s method that is able to classify the QSIs
and compute a rational parametrization of one QSI when the QSI is a singular curve. Dupont et al.
(2003, 2008a,b,c) give an exact arithmetic to parameterize QSIs in R3, which is near-optimal in the
sense that the number of distinct square roots appearing in the coefficients of these parameterized
polynomial functions is minimal. Wang et al. (2002) present an algebraic method for classifying and
parameterizing the intersection curve of two quadric surfaces, which is based on the observation that the
intersection curve of two quadrics is birationally related to a plane cubic curve. Tu et al. (2002, 2009)
present a complete classification of the QSIs in PR3 using Segre characteristics and index sequences,
and an efficient algorithm of determining the morphologies of QSIs is provided, which is mainly based
on signature sequence computations. Jia et al. (2016) propose an algorithm of computing the QSI
variations for a pair of moving quadrics.

3. Preliminaries

3.1. Morphology

The morphologies of Darboux cyclides in R3 in this paper is a finer classification than homeomor-
phism. We take both topological and algebraic properties of the cyclides into account. If two Darboux
cyclides are homeomorphic to each other, we further consider the existence and type (cusp, crunode,
acnode) of the real singularities, and the separability of the surface in R3 (see Note 1 below). If two
cyclides show the same properties in all these factors, and there exists a continuous deformation that
sends one cyclide to the other without changing the singularity existence and type (see Note 2 be-
low), we say that the two cyclides have the equivalent morphologies; otherwise they are said to have
non-equivalent morphologies, see Fig. 1 for example.

(a) Different topologies: torus, sphere, two spheres (b) Different types of singularities: cusp, crunode, acnode

Figure 1: Non-equivalent morphologies of Darboux cyclides in terms of (a) topology and (b) type of singularities.
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Note 1. We define the separability of a Darboux cyclide as follows. If a Darboux cyclide D can be
written as D = D1

⋃
D2, where either

1. D1

⋂
D2 = ∅ (case I) or

2. D1

⋂
D2 = Q ∈ R3, with Q being a crunode of the surface (case II),

and if there exists a plane Π : L(x, y, z) = 0 such that

1. D1 = {x ∈ D|f(x) > 0}, D2 = {x ∈ D|f(x) < 0} for case I, and

2. D1 = {x ∈ D|f(x) ≥ 0}, D2 = {x ∈ D|f(x) ≤ 0} for case II,

then the cyclide is said to be separable; otherwise it is non-separable. See Fig. 2 (a) for case I and (b)
for case II.

(a) Case I: the left is separable, the right is non-
separable.

(b) Case II: the left is separable, the right is non-
separable.

Figure 2: Examples of non-equivalent morphologies of Darboux cyclides in terms of separability.

Note 2.

(a) Surfaces with a crunode. To deform the left to the
right, the surface needs to be cut at the crunode.

(b) Surfaces with a cusp. To deform the left to the
right, there is a instant when the cusp disappears.

Figure 3: Examples of non-equivalent morphologies with the same topology, singularity number and type, separability,
but one can not be continuously deformed to the other without changing the existence or type of the singularity.

Subject to the above rules, we derived the following main result of the paper. Detailed analysis will
be shown in the later context.

Theorem 1. There are in total 14 non-equivalent morphologies of Darboux cuclides, listed in Table
3.

3.2. Darboux cyclides and stereographic projection

A Darboux cyclide in R3 is a quartic algebraic surface with the equation

D(x, y, z) := λ(x2 + y2 + z2)2 + (x2 + y2 + z2)L(x, y, z) +Q(x, y, z) = 0, (1)
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where λ is a constant, and Q(x, y, z) and L(x, y, z) are a quadratic and a linear polynomial in R[x, y, z]
(Pottmann et al., 2012). We say that the Darboux cyclide is non-degenerate, if λ 6= 0 and D is
irreducible; otherwise it is degenerate. In this paper we focus only on non-degenerate Darboux cyclides,
that is, the cyclide is strictly a degree four algebraic surface. Hence, quadrics and cubics which are
special cases for Darboux cyclides are excluded in our analysis.

A stereographic projection with the projection center O = (0, 0, 0, 1) sends a point x̄ = (x1, x2, x3, x4)∈R4

on the sphere Σ : x21 + x22 + x23 + x24 = 1 to a point x = (x, y, z)∈R3 via the map:

x = (x, y, z) =
1

1− x4
(x1, x2, x3), (2)

where the projection center O is mapped to the ideal point ∞, and conversely,

x̄ = (x1, x2, x3, x4) =
1

x2 + 1
(2x, 2y, 2z,x2 − 1). (3)

The corresponding points x̄ and x lie on a straight line through the projection center O.

Lemma 1. (Coolidge, 1916) A Darboux cyclide D ∈ R3 is the stereographic projection of a surface D̄
in the unit sphere Σ ∈ R4 which is the intersection of Σ with another quadric Γ ∈ R4.

The following derivation of the transformation between Darboux cyclides and QSIs shown in Pottman-
n et al. (2012) will be applied to our later analysis.

Cyclide → QSI:

Write the quadratic part in (1) as Q(x) = q2(x) + q1(x) + q0, where x = (x, y, z) and qi is the degree
i homogeneous part of Q. Substituting (2) into (1) and considering Σ : x21 + x22 + x23 + x24 = 1 yield

Γ : λ(1 + x4)2 + (1 + x4)L(x1, x2, x3) + q2(x1, x2, x3) + q1(x1, x2, x3)(1− x4) + q0(1− x4)2 = 0, (4)

which is a quadric in R4. The QSI is the intersection of the sphere Σ and the quadric Γ.

QSI → Cyclide:

Conversely, a quadric Γ in R4 can be written as

Γ : q2(x1, x2, x3) + q1(x1, x2, x3)x4 + q0x
2
4 + r1(x1, x2, x3) + r0x4 + c0 = 0, (5)

where q2, {q1, r1} and {q0, r0, c0} are the quadratic, linear and constant parts, respectively. Substitut-
ing (3) to (5) gives

(q0 + r0 + c0)(x2 + y2 + z2)2 + 2(x2 + y2 + z2)(q1(x, y, z) + r1(x, y, z) + c0 − q0) +Q(x, y, z) = 0,

(6)

where

Q(x, y, z) = 4q2(x, y, z) + 2(r1(x, y, z)− q1(x, y, z)) + q0 − r0 + c0.

Obviously, Equation (6) represents a Darboux cyclide.

The above derivation also suggests

Lemma 2. λ 6= 0 in Equation (1) if and only if the quadric Γ for the QSI does not pass through the
stereographic projection center O.
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3.3. QSI

Let A: XTAX = 0 and B: XTBX = 0 be two quadrics, where X = (x, y, z, u, v) ∈ PR4 (4D real
projective space) is a homogenous coordinate for (xv ,

y
v ,

z
v ,

u
v ) ∈ R4 and A,B are 5× 5 real symmetric

matrices. A quadric pencil given by A and B is represented as λA−B, where λ ∈ PR1 is a constant.

Note that the QSI of any two quadrics in the pencil λA − B is exactly the same as the QSI of A
and B. Therefore, when considering the QSI, we can always assume that A is non-singular; otherwise
we can replace A by a nonsigular quadric A

′
in the pencil. Note that there are always nonsingular

quadrics if det(λA−B) does not vanish identically (Tu et al., 2009).

We next review Jordan Forms and Quadric Pair Canonical Forms in Uhlig (1976).

3.3.1. Jordan forms and Segre characteristics

Definition 3.1. A k × k square matrix of the form

M =


λ e
· ·
· e
λ


is called a Jordan block of type I associated with λ if λ ∈R and e = 1 for k ≥ 2 or M = (λ) with λ ∈R
for k = 1; M is called a Jordan block of type II with respect to complex conjugated values a± ib if

λ =

(
a −b
b a

)
a, b ∈ R, b 6= 0 and e =

(
1 0
0 1

)
,

for k ≥ 4 or

M =

(
a −b
b a

)
for k = 2, with a, b ∈ R, b 6= 0.

Lemma 3. For any matrix A ∈ Rk×k, there exists a Jordan normal form matrix J
C(λ1)

C(λ2)
. . .

C(λk)


congruent to A, where

C(λi) =


J i1

J i2
. . .

J iki


is called the full Jordan chain associated with the eigenvalue λi, i = 1, · · · , k, and J i1, · · · , J iki are all
Jordan blocks (of type I or II), associated with the same eigenvalue λi of the matrix A. The Jordan
normal form is unique up to permutations of the Jordan blocks.

Definition 3.2. The Segre characteristic of the quadric pencil λA− B is the integer chain of orders
of the blocks in the Jordan normal form of the matrix A−1B, with those integers corresponding to
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blocks containing the same eigenvalue bracketed together, and the number of distinct real eigenvalues
of the matrix A−1B as the subscript. For example, if the Jordan form of the matrix A−1B is

α 1
α

α
β

β

 ,

where α and β are real numbers, the Segre characteristic of the quadric pencil λA− B is [(21)(11)]2.
In this example, we also say that the Segre characteristic of λA−B associated with the root α is [21],
and associated with the root β is [11].

3.3.2. Quadric pair canonical form

Lemma 4. (Quadric Pair Canonical Form). Let A and B be a nonsingular pair of real symmetric
matrices of size n. Suppose that A−1B has real Jordan normal form diag(J1, ..., Jr, Jr+1, ..., Jm), where
J1..., Jr are Jordan blocks of type I corresponding to the real eigenvalues of A−1B and Jr+1, ..., Jm
are Jordan blocks of type II corresponding to the complex eigenvalues of A−1B. Then A and B are
simultaneously congruent by a real congruent transformation to

Ā = diag(ε1E1, ..., εrEr, Er+1, ..., Em)

and

B̄ = diag(ε1E1J1, ..., εrErJr, Er+1Jr+1, ..., EmJm),

respectively, where εi = ±1 and the Ei are of the form
0 · 0 1
· · 1 ·
· 1 · ·
1 0 · 0


of the same size as Ji, i = 1, 2, ...,m. The signs of εi are unique (up to permutations) for each set of
indices i that are associated with a set of identical Jordan blocks Ji of type I.

Since the two canonical quadratic forms are projectively equivalent to the original two quadratic
forms, Tu et al. (2009) show the following result.

Lemma 5. The QSI of two quadrics A: XTAX = 0 and B: XTBX = 0 in PR4 has the equivalent
morphologies with that of the QSI of their canonical quadratic forms Ā and B̄ with quadric form Ā
and B̄ given in Lemma 4.

Note 3. The terminology “morphology” in Tu et al. (2009) takes topology, real and imaginary com-
ponents, types and numbers of singularities into account. Our theoretical analysis on enumerations of
morphologies of cyclides is based on Tu et al. (2009); however, in the final enumeration, we further
distinguish the separability of the surface defined in Note 1, and we enumerate only the real component
of the surface.

3.3.3. Index sequences

The characteristic polynomial of the pencil λA−B in PR4 is defined by

f(λ) = det(λA−B), (7)
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Table 1: The notions (the first column) represent a real root in place of ↑, depending on the size and sign of Jordan block
(the second column) associated to the corresponding eigenvalue of A−1B. The index jump value (the third column)
across each real root depends on the Jordan form.

notion Jordan form index jump
| 1× 1 Jordan block +1 or −1

oo+ or oo− 2× 2 Jordan block with the sign + or − 0
o o o+ or o o o− 3× 3 Jordan block with the sign + or − +1 or −1
o o o o+ or o o o o− 4× 4 Jordan block with the sign + or − 0
o o o o o+ or o o o o o− 5× 5 Jordan block with the sign + or − +1 or −1

which is a degree 5 polynomial with real coefficients. In order to guarantee the existence of nonsingular
quadrics, we assume the characteristic polynomial dose not vanish identically.

Index function: The index function Id(λ) of a quadric pencil λA −B is defined as the number of
positive eigenvalues of the matrix λA − B. In our discussion, both matrices A and B are of order 5,
so Id(λ) ∈ {0, 1, 2, 3, 4, 5}. Since λA −B is symmetric, it represents a sphere when rank(λA −B) = 5
and Id(λ) = 4. Note that Id(λ) has a constant value in the interval between any two consecutive real
roots of f(λ) = 0, and has a jump across a real root of f(λ) = 0, whose jumping value depends on the
Jordan block associated with the root as an eigenvalue of the matrix λA−B, see the second and third
columns in Table 1. Besides, Id(+∞) + Id(−∞) = rank(A) (Tu et al., 2009).

Index sequence: Let λi, i = 1, ..., r be all different real roots of f(λ) = 0 in the ascending order.
Let qk, k = 1, ...r − 1 denote arbitrary rational numbers disconnected the λi, i.e.,

−∞ < λ1 < q1 < λ2 < ... < qr−1 < λr <∞.

Denote sk = Id(qk), k = 1, 2, ..., r − 1, and s0 = Id(−∞), sr = Id(∞). Then the index sequence of A
and B is defined as

〈s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr〉 ,

where ↑ stands for a real root, single or multiple, of f(λ) = 0. Since a real root λi can be multiple, and
the Jordan chain associated with a multiple root λi of the matrix λiA−B can have distinct forms, we
shall indicate these distinct forms in place of ↑ in the index sequence, see the first column in Table 1.
For example, a real root with Segre characteristic [11] will be denoted by || in place of an ↑, and a real
root with the Segre characteristic [21] shall be denoted by oo+ | or oo− | in place of an ↑. Examples of
index sequences are: 〈1|2|1|2|3|4〉, 〈1oo−1|2||4〉, 〈2o o o+3oo+3〉, etc.

Lemma 6. (Tu et al., 2009) The QSIs of different quadric pencils whose index sequences are in the
same equivalent class under the following rules are of the same morphologies.

(1) Rotation rule:

< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< 5− sr−1 ↑ s0 ↑ ... ↑ sr−2 ↑ sr−1 >,
< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< s1 ↑ s2 ↑ ... ↑ sr ↑ 5− s1 > .

(2) Reversal rule:

< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< sr ↑ sr−1 ↑ ... ↑ s1 ↑ s0 > .

(3) Complement rule:

< s0 ↑ s1 ↑ ... ↑ sr−1 ↑ sr >∼< 5− s0 ↑ 5− s1 ↑ ... ↑ 5− sr−1 ↑ 5− sr > .

8



Table 2: The first column indicates the multiplicity of the real roots of the characteristic polynomial, the second and
the third column are the corresponding Segre characteristic.

real root valid Segre characteristic invalid Segre characteristic
5 simple [11111]5 /
3 simple [11111]3 /
1 simple / [11111]1
1 double [2111]4 [(11)111]4 [(11)111]2 [2111]2
2 double [21(11)]3 [(11)(11)1]3 [221]3
1 triple [311]3 [(21)11]3 [(111)11]3 [(111)11]1 [311]1 [(21)11]1

1 triple + 1 double [3(11)]2 [(21)(11)]2 [(111)(11)]2 [(111)2]2 [32]2 [(21)2]2
1 quadruple [(31)1]2 [(211)1]2 [(1111)1]2 [41]2 [(22)1]2
1 quintuple [(311)]1 [(2111)]1 [5]1 [(41)]1 [(32)]1 [(11111)]1

4. Darboux cyclides classification

We now enumerate the morphologies of Darboux cyclides by investigating QSIs in PR4 by

1. Enumerate all valid Segre characteristics;

2. For each valid Segre characteristic, enumerate all valid and non-equivalent index sequences;

3. For each valid index sequence, enumerate the morphologies of the Darboux cyclide derived from
the corresponding QSI;

4. Classify all enumerated Darboux cyclides by their morphologies.

4.1. Validity of Segre characteristic/index sequence/QSI

Definition 4.1. The signature of a quadric XTAX = 0 in PR4 is the integer pair (n+, n−), where
n+, n− are numbers of the positive eigenvalues and negative eigenvalues of the matrix A.

Definition 4.2. A Segre characteristic/index sequence/QSI is said to be valid , if there exists a quadric
pencil λA−B in PR4 with this Segre characteristic/index sequence/QSI that has a quadric λ∗A−B with
the signature (4, 1) or (1, 4) for some constant λ∗ ∈ PR1; otherwise we say the Segre characteristic/index
sequence/QSI is invalid.

Proposition 4.1. An index sequence is valid if and only if it is equivalent under the rotation rule,
reversal rule, complement rule to an index sequence which contains the index 1 or 4. For example,
〈2oo+3|4|3〉 is valid; 〈2|3|2|3|2|3〉 is invalid since it is non-equivalent to any index sequences containing

the index 1 or 4. A QSI in PR4 is valid if and only if its corresponding index sequence is valid. We say
that a Segre characteristic is valid if there is at least one valid index sequence corresponding to it.

Since the characteristic polynomial f(λ) = 0 is of degree 5, all Segre characteristics of quadric pencils
in PR4 are enumerated in Table 2, with valid and invalid ones separately listed. The validity of the
Segre characteristic can be checked by the validity of all their corresponding index sequences using
Proposition 4.1.

4.2. Enumeration of valid index sequences and morphologies of Darboux Cyclides

For each Segre characteristic, we enumerate all valid index sequences (step 2) as follows:
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(1) The index numbers in the sequence can only be from {0, 1, 2, 3, 4, 5};

(2) The index jump across each real root follows the law in Table 1;

(3) Only a representative one is chosen for each equivalent class of the sequence under the rules in
Lemma 6;

(4) Check the validity of the representative index sequence.

Each valid index sequence corresponds to a QSI morphologies, from which we enumerate Darboux
cyclides in the following way:

(i) Write down two canonical quadrics Ā and B̄ in PR4;

(ii) Find two quadrics A∗ and B∗ in the pencil λĀ− B̄ so that A∗ has signature (4, 1) or (1, 4);

(iii) Enumerate four representative affine realizations of the QSI from PR4 to R4 (see Remark 4.1);

(iv) Compute stereographic projection of each QSI in R4 to get all Darboux cyclides.

Remark 4.1. Suppose the quadric A∗ in step (ii) has signature (4, 1) and equation XTA∗X = 0,
where X = [x, y, z, u, v]T and A∗ = diag(λ1, λ2, λ3, λ4, λ5). Without loss of generality, we assume that
λi > 0, i = 1, 2, 3, 4 and λ5 < 0. On one hand, letting v = 0 be the plane at infinity realizes an affine
sphere in R4; on the other hand, there are four ways of realizing the other four axes in the follow-up
stereographic projection in Equation (2): letting x = x4, y = x4, z = x4 or u = x4. Note that since the
projection center is (0, 0, 0, 1), the axes x1, x2, x3 have symmetric performance and only the assignment
of x4 matters. Therefore, for each QSI in PR4, we enumerate all these four affine realizations of R4

and the derived Darboux cyclides.

We next show the above process in every detail for the Segre characteristic [11111]5.

Theorem 2. Given two quadrics A: XTAX = 0 and B: XTBX = 0, if the Segre characteristic of the
quadric pencil is [11111]5, then the pencil has the following valid index sequences and corresponding
morphologies of Darboux cyclides:

(1) 〈1|2|1|2|3|4〉

(a) Case 1.1: topologically two spheres, with one inside the other, no singularities;

(b) Case 1.2: topologically two separate spheres, no singularities.

(2) 〈1|2|3|2|3|4〉

(a) Case 2: topologically a torus, no singularities.

Proof. The Segre characteristic suggests that f(λ) = 0 has five distinct real roots λ1 < λ2 < λ3 <
λ4 < λ5. According to Lemma 4, the quadric pair canonical form is

Ā = diag(ε1, ε2, ε3, ε4, ε5) and B̄ = diag(ε1λ1, ε2λ2, ε3λ3, ε4λ4, ε5λ5),

where εi = ±1, i = 1, 2, 3, 4, 5. Since Id(−∞) + Id(+∞) = 5, the index sequence must have the form
〈0| ∗ | ∗ | ∗ | ∗ |5〉 , 〈1| ∗ | ∗ | ∗ | ∗ |4〉 or 〈2| ∗ | ∗ | ∗ | ∗ |3〉. Considering the equivalent rules in Lemma 6 and
that the index jump across each simple root is ±1, all representative index sequences are 〈0|1|2|3|4|5〉,
〈1|2|1|2|3|4〉, 〈1|2|3|2|3|4〉 and 〈2|3|2|3|2|3〉.
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(1) If the index sequence is 〈0|1|2|3|4|5〉, then ε1 = ε2 = ε3 = ε4 = ε5 = 1, i.e.,

Ā = diag(1, 1, 1, 1, 1) and B̄ = diag(λ1, λ2, λ3, λ4, λ5).

the corresponding canonical quadrics are

x2 + y2 + z2 + u2 + v2 = 0 and λ1x
2 + λ2y

2 + λ3z
2 + λ4u

2 + λ5v
2 = 0.

Since Ā is a vacuous sphere, the QSI is also vacuous, we omit this case in Table 5.

(2) If the index sequence is 〈1|2|1|2|3|4〉, then ε1 = 1, ε2 = −1, ε3 = ε4 = ε5 = 1, i.e,

Ā = diag(1,−1, 1, 1, 1) and B̄ = diag(λ1,−λ2, λ3, λ4, λ5),

the corresponding canonical quadrics are:

x2 − y2 + z2 + u2 + v2 = 0 and λ1x
2 − λ2y2 + λ3z

2 + λ4u
2 + λ5v

2 = 0.

Letting y = 0 be the plane at infinity, we have a sphere and a quadric in R4:

Ā : x2 + z2 + u2 + v2 = 1 and B̄ : λ1x
2 + λ3z

2 + λ4u
2 + λ5v

2 − λ2 = 0.

Letting x1 = z, x2 = u, x3 = v, x4 = x, the stereographic projection in Equation (2) through center
(0, 0, 0, 1) gives

D1 = (λ2 − λ1)(x2 + y2 + z2)2 + 2(λ1 + λ2)(x2 + y2 + z2)− 4(λ3x
2 + λ4y

2 + λ5z
2) + λ2 − λ1 = 0,

(8)

whose morphology is topologically two spheres, with one inside the other, no singularities, denoted
as Case 1.1 in Table 5; similarly, we can prove that the other three ways of realizing R4 by setting
x4 = y or x4 = u or x4 = v give the same Darboux cyclide, which is topologically two separate
spheres, no singularities, denoted by Case 1.2 in Table 5.

(3) If the index sequence is 〈1|2|3|2|3|4〉, then ε1 = ε2 = 1, ε3 = −1, ε4 = ε5 = 1, i.e,

Ā = diag(1, 1,−1, 1, 1) and B̄ = diag(λ1, λ2,−λ3, λ4, λ5).

Choosing z = 0 as the plane at infinity realizes a sphere and a quadric in R4 :

Ā : x2 + y2 + u2 + v2 = 1 and B̄ : λ1x
2 + λ2y

2 + λ4u
2 + λ5v

2 − λ3 = 0.

Letting x4 = x, x1 = y, x2 = u, x3 = v gives a realization of R4. The stereographic projection
through center O = (0, 0, 0, 1) gives

D2 = (λ5 − λ3)(x2 + y2 + z2)2 − 2(λ5 + λ3)(x2 + y2 + z2) + 4(λ1x
2 + λ2y

2 + λ4z
2) + λ5 − λ3 = 0,

(9)

which is a ring cyclide; similarly, we can prove that the other three ways of realizing R4 by setting
x4 = y or x4 = u or x4 = v give the same Darboux cyclide morphologies, denoted by Case 2 in
Table 5.

(4) If the index sequence is 〈2|3|2|3|2|3〉, from Proposition 4.1, we know this index sequence is invalid.
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Index sequences and morphologies of Darboux cyclides for other Segre characteristics can be similarly
analyzed. Readers are referred to the technical report for detailed proofs. Table 5–7 show all the
enumeration results: the first column is the Segre characteristic with the subscript indicating the
number of real roots, not counting multiplicities; the second column is all the valid index sequences
under each Segre characteristic; the third column gives a example of a pair of quadrics (one of which
is an affine sphere in R4) in the quadric pencil in PR4; and the fourth and fifth columns show the
morphology and equation of the Darboux cyclide computed from the stereographic projection of the
QSIs. Here, a solid dot indicates a real acnode. Note that in Table 5–7, we have excluded the degenerate
Darboux cyclides, however, all such exclusions will be addressed in the appendix.

Note that there can be more than one appearance for a derived Darboux cyclide, depending on the
coefficient sign of the quartic term. For example, for the index sequence 〈1|2oo+2|3|4〉, one derived
equation of the Darboux cyclide (see details in the appendix) is

D = (λ1 − λ2 +
1

2
)X2 − 2(λ1 + λ2 − x+

1

2
)X+ 4(λ2x

2 + λ3y
2 + λ4z

2) + 2x2 + 2x+ λ1 − λ2 +
1

2
= 0, (10)

where X = x2 +y2 +z2 and λ1 < λ2 < λ3 < λ4 are the four real roots of the characteristic polynomial
f(λ) = 0. If λ1 − λ2 + 1

2 < 0, the morphology of this Darboux cyclide is Case 6.1, shown in Table 5;
if λ1 − λ2 + 1

2 > 0, the morphology is Case 6.1∗, also shown in Table 5; if λ1 − λ2 + 1
2 = 0 the cyclide

degenerates to a cubic surface with a singular point, which is beyond our investigation scope. The
cause of this phenomenon is from different relative positions of the projection center with respect to
the QSI in R4. In geometry, these two morphologies are essentially the same. Nevertheless, we still
distinguish them to provide better understanding of 3D shapes of Darboux cyclides.

4.2.1. Dupin cyclides

We further address which Darboux cyclides in Table 5–7 are Dupin cyclides. In Table 5-7, we add
an upper right subscript in the fourth column of Illustration to indicate whether the Darboux cyclide
is a Dupin cyclide. ‘H, R, S’ refer to horn Dupin cyclide, ring Dupin cyclide and spindle Dupin cyclide,
respectively. We add ’Dupin’ to distinguish them from the general Darboux cyclides.

The implicit equation of a Dupin cyclide is

(x2 + y2 + z2 + b2 − d2)2 − 4(ax− cd)2 − 4b2y2 = 0,

where a > b > 0, d ≥ 0, and c2 = a2− b2. The value of parameter d classifies Dupin cyclides into horn
cyclide, ring cyclide and spindle cyclide. Without loss of generality, we let a = 5, b = 4 and c = 3.

(1) d = 0, which corresponds to a symmetric horn cyclide. An example is

(x2 + y2 + z2 + 16)2 − 100x2 − 64y2.

By the inverse stereographic projection, i.e., Equation (3), we get

100x21 + 64x22 − 225x24 + 510x4 − 289 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is
〈1||3||3|4〉 , which is Case 15.1 in Table 6, denoted by superscript H.

(2) 0 < d < c, which corresponds to a non-symmetric horn cyclide. By setting d = 1, an example is

(x2 + y2 + z2 + 15)2 − 4(5x− 3)2 − 64y2 = 0.
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By the inverse stereographic projection, we get

25x21 + 16x22 − 40x24 + 30x1x4 − 30x1 + 94x4 − 55 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is
〈1||3||3|4〉 , which is Case 15.1 in Table 6, denoted by superscript H.

(3) d = c, which corresponds to a horn cyclide, whose morphology is different from the first two cases.
An example is

(x2 + y2 + z2 + 7)2 − 4(5x− 9)2 − 64y2 = 0.

By the inverse stereographic projection, we get

25x21 + 16x22 + 72x24 + 90x1x4 − 90x1 − 138x4 + 65 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is〈
1||3oo+|4

〉
, which is Case 21.1 in Table 7, denoted by superscript H.

(4) c < d, which corresponds to a ring cyclide. By setting d = 4, an example is

(x2 + y2 + z2)2 − 4(5x− 12)2 − 64y2 = 0.

By the inverse stereographic projection, we get

100x21 + 64x22 + 575x24 + 480x1x4 − 480x1 − 1154x4 + 575 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is
〈1||3|2||4〉 , which is Case 14 in Table 6, denoted by superscript R.

(5) d = a, which corresponds to a ring cyclide, whose morphology is distinct to Case 14. An example
is

(x2 + y2 + z2 − 9)2 − 4(5x− 15)2 − 64y2 = 0.

By the inverse stereographic projection, we get

25x21 + 16x22 + 200x24 + 150x1x4 − 150x1 − 410x4 + 209 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is〈
1||3oo+|4

〉
, which is Case 21.2 in Table 7, denoted by superscript R.

(6) a < d, which corresponds to a spindle cyclide. By setting d = 8, an example is

(x2 + y2 + z2 − 48)2 − 4(5x− 24)2 − 64y2 = 0.

By the inverse stereographic projection, we get

100x21 + 960x1x4 + 64x22 − 97x24 − 960x1 − 2x4 + 95 = 0,

which is a quadric in R4. The index sequence of the QSI obtained by this quadric and a sphere is
〈1||3||3|4〉 , which is Case 15.2 in Table 6, denoted by superscript S.

4.3. Morphology classification of Darboux cyclides

The previous enumeration is based on the algebraic equivalence of index sequences and Segre char-
acteristics of a sphere and a quadric in PR4. It is still possible that some of these enumerated index
sequences in Table 5–7 correspond to an equivalent morphology under our classification rules in Section
3. For instance, Case 1.1 and Case 8.2 in Table 5 have the equivalent morphology, which is topologi-
cally two spheres, with one inside the other, no singularities, denoted by M1 in Table 3. Table 3 shows
our final classification result with a total number of 14 non-equivalent morphologies. The third column
of Table 3 shows the index sequences from Table 5–7 that give the corresponding morphologies. Table
4 provides every detail on the topology, singularity number and type as well as separability of the 14
non-equivalent morphologies in Table 3.
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Table 3: Classifications of non-equivalent morphologies of Darboux cyclides. The second and fifth columns show the case
IDs from the upper-left corner of the fourth columns in Table 5–7. The third and sixth columns show the corresponding
index sequence for each case.

Morpi IDj Index Sequence Morpi IDj Index Sequence

M1

ID1.1 〈1|2|1|2|3|4〉

M8

ID18.2

〈
1oo−|2|3|4

〉
ID8.2 〈1||3|4|3|4〉 ID21.1

〈
1||3oo+|4

〉

M2

ID1.2 〈1|2|1|2|3|4〉 ID17

〈
1|2o o o+3|4

〉
ID8.1 〈1||3|4|3|4〉

M9

ID6.1

〈
1|2oo+2|3|4

〉

M3

ID2 〈1|2|3|2|3|4〉 ID13.1

〈
1|2oo+2||4

〉
ID7 〈1||3|2|3|4〉 ID19.1

〈
1|2oo+|3|4

〉
ID14 〈1||3|2||4〉

M10

ID6.1∗
〈
1|2oo+2|3|4

〉

M4

ID3 〈1|2|3|4〉 ID13.1∗
〈
1|2oo+2||4

〉
ID10 〈1||3|4〉 ID19.1∗

〈
1|2oo+|3|4

〉

M5

ID4.1

〈
1oo−1|2|3|4

〉
M11

ID9.1 〈1|2||2|3|4〉

ID11.1

〈
1oo−1|2||4

〉
ID15.2 〈1||3||3|4〉

M6

ID4.2

〈
1oo−1|2|3|4

〉
M12

ID9.2 〈1|2||2|3|4〉

ID11.2

〈
1oo−1|2||4

〉
ID15.1 〈1||3||3|4〉

M7

ID5.1

〈
1|2oo−2|3|4

〉
M13

ID16.1 〈1 o o o+ 2|3|4〉

ID12.1

〈
1|2oo−2||4

〉
ID20.1 〈1 o o o+ 2||4〉

ID18.1

〈
1oo−|2|3|4

〉
ID22.1 〈1 o o o+ |3|4〉

ID21.2

〈
1||3oo+|4

〉
M14

ID16.2 〈1 o o o+ 2|3|4〉

M8

ID5.2

〈
1|2oo−2|3|4

〉
ID20.2 〈1 o o o+ 2||4〉

ID12.2

〈
1|2oo−2||4

〉
ID22.2 〈1 o o o+ |3|4〉
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Table 4: Descriptions of the topology, singularity (number and type), and separability of the 14 non-equivalent mor-
phologies in Table 3.

Morphology Illustration
Singularity

Separability Morphology Illustration
Singularity

Separability
Num Type Num Type

M1 0 � N M8 1 crunode N

M2 0 � Y M9 1 crunode N

M3 0 � N M10 1 crunode Y

M4 0 � N M11 2 crunode N

M5 1 acnode N M12 2 crunode Y

M6 1 acnode Y M13 1 cusp N

M7 1 crunode N M14 1 cusp N

5. Conclusion

We provide an enumeration of all possible morphologies of Darboux cyclides based on the result by
Coolidge (1916) that every Darboux cyclide is the stereographic projection of the intersection (QSI)
of a quadric and a sphere in R4. We first enumerate all valid QSIs in PR4 by two algebraic sequences:
Segre characteristics and index sequences of the quadric pencil, which is a generalization of Tu et al.
(2009) from PR3 to PR4. Then we go through every valid affine realization of the QSI from PR4 to R4,
and use stereographic projection to achieve a full enumeration of the morphologies of Darboux cyclides.
We have also pointed out which of the enumerated morphologies are essentially Dupin cyclides.
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Table 5: Enumeration of the morphologies of Darboux cyclides

[Segre]r
r = the#
of real roots

Num#

Index Sequence Sphere and Quadric Equation

Case#

Illustration

Dupin

Representative

[11111]5

1

〈1|2|1|2|3|4〉 A : x2 − y2 + z2 + u2 + v2 = 0
B : λ1x

2 − λ2y
2 + λ3z

2 + λ4u
2 + λ5v

2 = 0

1.1

7
(
x2 + y2 + z2

)2
+ 40x(x2 + y2 + z2)+

14x2 − 22y2 − 30z2 − 40x+ 7 = 0

1.2 (
x2 + y2 + z2

)2 − 6z(x2 + y2 + z2)+
14y2 + 2z2 + 6z − 1 = 0

2

〈1|2|3|2|3|4〉 A : x2 + y2 − z2 + u2 + v2 = 0
B : λ1x

2 + λ2y
2 − λ3z

2 + λ4u
2 + λ5v

2 = 0

2 (
x2 + y2 + z2

)2
+ 8z(x2 + y2 + z2)+

6x2 − 10y2 + 2z2 − 20z + 2 = 0

[11111]3

3

〈1|2|3|4〉
A : x2 + y2 + z2 + 2uv = 0
B : λ1x

2 + λ2y
2 + λ3z

2 + bu2 − bv2+
2auv = 0

3 (
x2 + y2 + z2

)2
+ 2z(x2 + y2 + z2)+

4x2 − 2y2 − 2z2 + 2z + 1 = 0

[2111]4

4

〈
1oo−1|2|3|4

〉 A : 2xy − z2 − u2 − v2 = 0
B : 2λ1xy + y2 − λ2z

2 − λ3u
2 − λ4v

2 = 0

4.1 (
x2 + y2 + z2

)2 − 2x2 − 4y2 − 6z2 = 0

4.2

7
(
x2 + y2 + z2

)2 − 4x(x2 + y2 + z2)−
22x2 − 2y2 + 6z2 − 4x+ 7 = 0

5

〈
1|2oo−2|3|4

〉 A : x2 − 2yz + u2 + v2 = 0
B : λ1x

2 − 2λ2yz − z2 + λ3u
2 + λ4v

2 = 0

5.1 (
x2 + y2 + z2

)2
+ 2z(x2 + y2 + z2)−

14x2 − 6y2 + 2z2 + 2z + 1 = 0

5.2 (
x2 + y2 + z2

)2 − (y + 3z)(x2 + y2 + z2)−
5x2 − 4y2 + 2z2 − y + 3z + 1 = 0

6

〈
1|2oo+2|3|4

〉 A : x2 + 2yz + u2 + v2 = 0
B : λ1x

2 + 2λ2yz + z2 + λ3u
2 + λ4v

2 = 0

6.1

5
(
x2 + y2 + z2

)2 − 4x(x2 + y2 + z2)−
18x2 − 22y2 − 30z2 − 4x+ 5 = 0

6.1∗

3
(
x2 + y2 + z2

)2 − 4(3x− 2y)(x2 + y2 + z2)+
6x2 + 10y2 + 26z2 + 12x+ 8y + 3 = 0

[(11)111]4

7

〈1||3|2|3|4〉 A : x2 + y2 − z2 + u2 + v2 = 0
B : λ1(x

2 + y2)− λ2z
2 + λ3u

2 + λ4v
2 = 0

7 (
x2 + y2 + z2

)2
+ 2x2 − 4y2 − 6z2 + 2 = 0

8

〈1||3|4|3|4〉 A : x2 + y2 + z2 − u2 + v2 = 0
B : λ1(x

2 + y2) + λ2z
2 − λ3u

2 + λ4v
2 = 0

8.1

3
(
x2 + y2 + z2

)2
+ 6x2 + 2y2 − 14z2 + 3 = 0

8.2 (
x2 + y2 + z2

)2 − 14x2 − 14y2 − 6z2 + 1 = 0

9

〈1|2||2|3|4〉 A : x2 + y2 − z2 + u2 + v2 = 0
B : λ1x

2 + λ2(y
2 − z2) + λ3u

2 + λ4v
2 = 0

9.1 (
x2 + y2 + z2

)2 − 2x2 − 4y2 − 6z2 + 1 = 0

9.2 (
x2 + y2 + z2

)2 − 10x2 − 2y2 + 6z2 + 1 = 0

18



Table 6: Enumeration of the morphologies of Darboux cyclides

[Segre]r
r = the#
of real roots

Num#

Index Sequence Sphere and Quadric Equation

Case#

Illustration

Dupin

Representative

[(11)111]2

10

〈1||3|4〉
A : x2 + y2 + z2 + u2 − v2 = 0
B : λ1x

2 + λ2y
2 + λ3z

2 + bu2 − bv2+
2cuv = 0

10 (
x2 + y2 + z2

)2 − 2x2 − 2y2 + z2 − 2 = 0

[21(11)]3

11

〈
1oo−1|2||4

〉 A : 2xy − z2 − u2 − v2 = 0
B : 2λ1xy + y2 − λ2z

2 − λ3u
2 − λ3v

2 = 0

11.1 (
x2 + y2 + z2

)2 − 4x2 − 6y2 − 6z2 = 0

11.2

5
(
x2 + y2 + z2

)2 − 4x(x2 + y2 + z2)−
18x2 + 6y2 + 10z2 − 4x+ 5 = 0

12

〈
1|2oo−2||4

〉 A : x2 − 2yz + u2 + v2 = 0
B : λ1x

2 − 2λ2yz − z2 + λ3u
2 + λ3v

2 = 0

12.1

(
x2 + y2 + z2

)2
+ 4x2 − 2y2 − 2z2 = 0

12.2

5
(
x2 + y2 + z2

)2 − 2(2y − 1)(x2 + y2 + z2)−
8x2 − 20y2 − 8z2 − 32xz − 4y + 5 = 0

13

〈
1|2oo+2||4

〉 A : x2 + 2yz + u2 + v2 = 0
B : λ1x

2 + 2λ2yz + z2 + λ3u
2 + λ3v

2 = 0

13.1

7
(
x2 + y2 + z2

)2 − 4x(x2 + y2 + z2)−
22x2 − 26y2 − 26z2 − 4x+ 7 = 0

13.1∗ (
x2 + y2 + z2

)2
+ 10x(x2 + y2 + z2)+

18x2 + 22y2 + 22z2 + 10x+ 1 = 0

[(11)(11)1]3

14

〈1||3|2||4〉 A : x2 + y2 − z2 + u2 + v2 = 0
B : λ1(x

2 + y2)− λ2z
2 + λ3(u

2 + v2) = 0

14 R (
x2 + y2 + z2

)2 − 4(5x− 12)2 − 64y2 = 0

15

〈1||3||3|4〉 A : x2 + y2 + z2 − u2 + v2 = 0
B : λ1(x

2 + y2) + λ2(z
2 − u2) + λ3v

2 = 0

15.1 H (
x2 + y2 + z2 + 15

)2 − 4(5x− 3)2 − 64y2 = 0

15.2 S (
x2 + y2 + z2 − 48

)2 − 4(5x− 24)2 − 64y2 = 0

[311]3

16

〈1 o o o+ 2|3|4〉 A : 2xz + y2 + u2 + v2 = 0
B : λ1(2xz + y2) + 2yz + λ2u

2 + λ3v
2 = 0

16.1 (
x2 + y2 + z2

)2 − 2x(x2 + y2 + z2)−
10
√
2y2 − 12

√
2z2 + 2x− 1 = 0

16.2

3
(
x2 + y2 + z2

)2 − 4(
√
2y + z)(x2 + y2 + z2)−

6x2 − 6y2 + 6z2 + 8
√
2xy − 4

√
2y + 4z + 3 = 0

17

〈1|2 o o o+ 3|4〉 A : x2 + 2yu+ z2 + v2 = 0
B : λ1x

2 + 2λ2yu+ λ2z
2 + 2zu+ λ3v

2 = 0

17

(x2 + y2 + z2)2 +
√
2y(x2 + y2 + z2)−

2x2 − 2y2 − 4z2 − 2
√
2xy +

√
2y + 1 = 0

19



Table 7: Enumeration of the morphologies of Darboux cyclides

[Segre]r
r = the#
of real roots

Num#

Index Sequence Sphere and Quadric Equation

Case#

Illustration

Dupin

Representative

[(21)11]3

18

〈
1oo−|2|3|4

〉 A : 2xy − z2 − u2 − v2 = 0
B : 2λ1xy + y2 − λ1z

2 − λ2u
2 − λ3v

2 = 0

18.1

(
x2 + y2 + z2

)2 − 6y2 − 8z2 = 0

18.2

5
(
x2 + y2 + z2

)2 − 4x(x2 + y2 + z2)−
18x2 − 14y2 − 6z2 − 4x+ 5 = 0

19

〈
1|2oo+|3|4

〉 A : x2 + 2yz + u2 + v2 = 0
B : λ1x

2 + 2λ2yz + z2 + λ2u
2 + λ3v

2 = 0

19.1

5
(
x2 + y2 + z2

)2 − 4x(x2 + y2 + z2)−
18x2 − 14y2 − 22z2 − 4x+ 5 = 0

19.1∗ (
x2 + y2 + z2

)2
+ 10x(x2 + y2 + z2)+

18x2 + 8y2 + 22z2 + 10x+ 1 = 0

[3(11)]2

20

〈1 o o o+ 2||4〉 A : 2xz + y2 + u2 + v2 = 0
B : 2λ1xz + λ1y

2 + 2yz + λ2(u
2 + v2) = 0

20.1 (
x2 + y2 + z2

)2 − 2x(x2 + y2 + z2)−
2
√
2y2 − 2

√
2z2 + 2x− 1 = 0

20.2 (
x2 + y2 + z2

)2 − 2
√
2y(x2 + y2 + z2)−

2(x2 + y2 − z2) + 4
√
2xy − 2

√
2y + 1 = 0

[(21)(11)]2

21

〈
1||3oo+|4

〉 A : x2 + y2 + 2zu+ v2 = 0
B : λ1(x

2 + y2) + 2λ2zu+ u2 + λ2v
2 = 0

21.1 H

3(x2 + y2 + z2)2 + 4y(x2 + y2 + z2)+
6x2 − 14y2 − 10z2 + 4y + 3 = 0

21.2 R (
x2 + y2 + z2

)2 − 18x(x2 + y2 + z2)−
100x2 − 64y2 + 600x2 + 81 = 0

[(31)1]2

22

〈1 o o o+ |3|4〉 A : 2xz + y2 + u2 + v2 = 0
B : 2λ1xz + λ1y

2 + 2yz + λ1u
2 + λ2v

2 = 0

22.1 (
x2 + y2 + z2

)2 − 2x(x2 + y2 + z2)−
2
√
2z2 + 2x− 1 = 0

22.2 (
x2 + y2 + z2

)2 − 2(
√
2y + 1)(x2 + y2 + z2)+

4
√
2xy − 2

√
2y + 1 = 0

20
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