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Abstract

We investigate the problem of modeling the optimal and automatic deployment

of cloud applications. We follow an approach based on three main pillars: (i)

the specification of the computing resources needed by software components

and those provided by the executing environment (e.g. virtual machines or

containers), (ii) the declarative description of deployment rules, (iii) and the

computation of an optimal deployment that minimizes the total cost by using

constraint solving techniques. We experiment with such an approach by apply-

ing it to the Abstract Behavioural Specification language ABS, and we validate it

by modeling and simulating with ABS (and its tool-suite) the Fredhopper Cloud

Services, a worldwide system offering e-Commerce services, currently deployed

on Amazon EC2.

Keywords: Software system modeling, declarative specification of deployment

rules, automatic cloud application deployment.

1. Introduction

Software applications deployed and executed on cloud computing infrastruc-

tures should elastically adapt by dynamically acquiring or releasing computing
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resources. This is necessary to properly deliver to the final users the expected

services at the expected level of quality, maintaining an optimized usage of the5

computing resources. For this reason, modern software systems call for novel en-

gineering approaches that anticipate the possibility to reason about deployment

already at the early stages of development. This is also testified by the appear-

ance of software engineering approaches, like the DevOps approach to software

development and delivery [1], that are strongly based on a closer collabora-10

tion among software developers, operations professionals, and quality assurance

teams. In our opinion, an actual and successful integration among these dif-

ferent actors is not possible without having a common language, and common

tools, for modeling and specifying software, for expressing deployment rules and

constraints, and for describing service level agreements and the reaction to their15

violations.

Some projects, e.g., MODAClouds and DICE [2], already started the integra-

tion of aspects related to application deployment using high-level specification

languages like UML. For instance, business requirements or expected quality of

services can be expressed in such a way that they can be monitored at run-time.20

This allows one to detect deviations from the expected behavior and then trigger

possible reactions. In this paper, we complement this line of research, by antici-

pating in the early stages of software development, techniques for the automatic

and optimal deployment of cloud applications. More precisely, the idea is that

of exploiting the expressed deployment desiderata and constraints in order to (i)25

automatically synthesize deployment plans, that are guaranteed to be optimal

w.r.t. some specific metrics, and (ii) integrate such deployment plans in the

application specification, in such a way that formal reasoning is possible on a

model of the deployed application. To this end, instead of considering UML, we

adopt a language with a native formally defined and executable semantics that30

we can use as an example to simulate the automatically synthesized application

deployment. Namely, we adopt the Abstract Behavioural Specification language

ABS [3], which is an object-oriented specification language that, besides hav-

ing an executable semantics, includes also a rich tool-chain supporting different
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kinds of static analysis (like, e.g., logic-based modular verification [4], deadlock35

detection [5], and cost analysis [6]).

In this paper we demonstrate that an actual integration between software

specification/analysis and automatic/optimal deployment is possible, by pre-

senting an ABS extension, that we call SmartDepl. This offers the possibility to

enrich the specification of a software system in ABS with the information that40

usually drives the decisions taken by the operations professionals: the declara-

tive expression of the logical deployment constraints and the computing resource

requirements. This deployment information can be extracted from the speci-

fication, and given in input to a solver that computes the optimal allocation

of software components to computing nodes, and synthesizes the corresponding45

deployment plans. These deployment plans are then integrated into the ABS

specification in such a way that a model of the deployed application is obtained,

on which the ABS simulator, as well as the various analysis tools (like, e.g., logic-

based modular verification [4], deadlock detection [5], and cost analysis [6]) can

be exploited for formal reasoning. It is worth noticing that the approach that we50

propose can be used not only for computing the initial application deployment,

but also for synthesizing reconfiguration plans to be used to scale the specified

application in case of, e.g., quality of service degradation.

ABS is an object-oriented specification language that supports the speci-

fication of asynchronously communicating concurrent objects, distributed over55

deployment components that provide objects with the computing resources they

need to properly run. For our purposes, we adopted ABS because it allows for

the modeling of computing resources and it has a real-time semantics reflect-

ing the way in which objects consume resources. This makes ABS particularly

suited for the modeling and for reasoning about cloud application deployment.60

The approach followed by SmartDepl, to support the specification and anal-

ysis of issues related to deployment, is based on three main pillars:

� ABS classes can be enriched with annotations that indicate the computing

resources (e.g., amount of memory or CPU cores) that are necessary in
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order to properly instantiate and execute objects of that class. Such anno-65

tations can also contain description of functional dependencies of objects

of the annotated class, with respect to other objects that must be also

deployed whenever a new object of that class is instantiated.

� A separate high-level constraint language, embedded in ABS, supporting

the specification of declarative deployment rules, like the indication of the70

basic objects that must be present in a deployed system or the number of

replica of a given service needed to guarantee a certain level of availability.

� An external solver that, based on the class annotations and the program-

mer’s requirements extracted from the ABS specifications, generates ABS

classes modeling the optimal deployments, i.e., classes that expose meth-75

ods like deploy (and undeploy) that implement actual instantiation (and

removal) of objects in new or already existing deployment components.

By adopting SmartDepl, it is actually possible to reason about deployment

already during the early stages of software development. The novel language

extensions allow the software designers to include deployment rules in their80

ABS specifications in such a way that all the analysis tools already present for

ABS can be adopted to perform formal reasoning on the specified system. This

is also supported by an easy-to-use integrated ABS development environment,

called collaboratory,1 available on the web (or easily downloadable and instal-

lable). In particular, the simulation facilities of ABS, available thanks to the85

executable semantics of the ABS specification language, can be used to simu-

late at the modeling level the impact of deployment rules and scaling policies.

In this way, it is possible to avoid performing this kind of analysis by means

of testing, on expensive and complex to manage run-time systems, and also

to avoid time-consuming feedback loops, in case the testing phase points out90

the need to modify the already developed software. An additional advantage

is that, by following the approaches of tools like ConfSolve [7] and Zephyrus

1http://abs-models.org/laboratory/
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[8], deployment is expressed declaratively and an external solver computes the

actual detailed distribution of software components over computing resources.

This approach has two advantages: the computed configuration is guaranteed95

to be correct (i.e., all the rules are satisfied) and optimal (i.e., there is no alter-

native configuration exploiting computing resources with a total smaller cost).

In other terms, following our approach, the developed systems are correct- and

optimal-by-construction (obviously, w.r.t. the deployment constraints and the

costs inserted in the ABS specification).100

Concerning the specific aspect of application scalability, it is interesting to

observe that our approach goes beyond the current state of the art in scaling

technologies (see e.g. [9]). For instance, container-based solutions like Kuber-

netes [10] exploit the so-called horizontal scaling approach: services can locally

increase or decrease their number of instances depending on the values of mon-105

itored metrics (CPU average load, response time, ...). Other approaches (see,

e.g., SmartScale [11] or the workload modeling engine proposed by Gandhi et

al. [12]) complement horizontal with vertical scaling, i.e., the possibility to dy-

namically add/remove computing resources. These autoscaling techniques as-

sume that the overall application architecture remains unchanged, and act on110

the number of instances of the services, or on the resources associated to the

virtual machines used by the computing infrastructure. On the contrary, in our

approach, we can consider re-deployment plans able to act on the application

architecture. For instance, in case a peak of inbound requests is detected on the

entry point of a pipeline of sequentially-interdependent services, our approach115

could evaluate the possibility to change the architecture: besides scaling out

the entry point (so that more requests can be served in parallel) the subsequent

services in the pipeline could be replaced with alternative implementations, de-

signed on purpose to be highly available, as the workload of the entire pipeline is

expected to increase. Moreover, by knowing all the modifications at the architec-120

tural level (i.e., all the service instances that are expected to be deployed during

a re-deployment plan), it is possible to compute optimal deployment strategies

where instances of different services share resources (e.g., they are installed in
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bulk on a new computing node added to the system). Such optimisation is

impossible to achieve by solely relying on horizontal/vertical autoscaling [13].125

Our work has been validated by modeling and analyzing the Fredhopper

Cloud Services, an industrial case-study of the European FP7 Envisage project.2

The Fredhopper Cloud Services offer search and targeting facilities on a large

product database to e-Commerce companies as services (SaaS) over the cloud

computing infrastructure (IaaS). Depending on the specific profile of an e-130

Commerce company —like the expected number of clients or the preference

between an externalized cloud-based installation or a hybrid on-premises/cloud

configuration— Fredhopper has to decide the most appropriate customized de-

ployment of the service. Currently, such decisions are taken manually by an

operations team which decides customized, hopefully optimal, service configu-135

rations taking into account several aspects like the level of replication of critical

parts of the service to ensure high availability. The operators manually perform

the operations to scale in or scale out the system and this usually causes the

over-provision of resources for guaranteeing the proper management of requests

during a usage peak.140

We have used SmartDepl to realize an ABS specification of the Fredhopper

Cloud Services that includes the knowledge and the current best practices of

the operations experts: the deployment rules adopted to compute the initial

deployment configuration, the actions usually taken to repair an unexpected

virtual machine failure, as well as the scaling policies in case of service level145

agreement violations. This specification has been analyzed by means of the ABS

simulation facilities. In particular, a visual representation of relevant metrics

extracted from the simulation has been analyzed in strict collaboration with

the operations expert at Fredhopper, who confirmed the faithfulness of the

produced results. Also the initial system deployment, as well as the dynamic re-150

deployment procedures, computed by the automatic solver have been analysed

and validated by the operations team.

2http://www.envisage-project.eu/
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Structure of the paper. Section 2 discusses the related literature. Section 3

introduces the Fredhopper Cloud Services case-study. The description of the

design and implementation of SmartDepl is in Section 4. The application of our155

technique to the Fredhopper Cloud Services use-case is reported in Section 5,

while the analysis of the running times of the SmartDepl solver is reported in

Section 6. Finally, in section 7 we draw some concluding remarks.

This paper finalizes the work started in [14, 15] where the first version of

SmartDepl has been presented. Compared with what presented in these papers,160

the current version of SmartDepl has been completely rewritten and extended

to overcome the original limitations: new annotations are supported, for in-

stance, to express preferences over bindings (e.g., useful to specify deployment

optimization criteria based on geographical proximity), to indicate methods to

be invoked on already present objects to notify the deployment of new objects165

(e.g., useful to break circularity in the object dependency relation), and to fix

an ordering on these methods (e.g., useful to notify the deployment of the new

object following a user-defined ordering). As a consequence of these modifica-

tions the parser of the ABS language has been updated. Another novelty is that

the new parser now admits regular expressions in the denotation of deployment170

components (e.g., useful to express deployment properties on an entire class

of components instead of a unique one). Also the code generation module of

SmartDepl has been modified: the output now is directly ABS code (previously

it was an ABS delta module). Finally, this paper presents a deeper validation of

SmartDepl (e.g., including a completely new self-healing scenario of the consid-175

ered case-study) and provides also an evaluation of its performance (completely

absent in the previous papers).

2. Related Work

With the increasing popularity of cloud computing, the problem of automat-

ing application deployment has recently attracted a lot of attention. Usually,180

the deployment task is conducted by a team of experts that establishes how the
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different components are to be installed and connected together. The deploy-

ment process is then automated by coding it in custom scripts. This approach

is effective only if the architecture of the system is decided once and for all,

and it is not expected to be customized for the different needs of the poten-185

tial end-users, or shaped differently to, e.g., optimize the usage of the available

computing resources.

Currently, developing an application for the cloud is accomplished by relying

on the Infrastructure as a Service (IaaS) or the Platform as a Service (PaaS)

levels. The IaaS offers a set of low-level resources forming a “bare” computing190

environment. Developers pack the whole software stack into virtual machines

or containers containing the application and its dependencies and run them on

physical machines of the provider’s cloud. Exploiting the IaaS directly allows a

great flexibility for the developer but requires also a great expertise and knowl-

edge of the cloud and application entities involved in the process. At the PaaS195

level (e.g., [16, 17]) a full development environment is provided. Applications

are directly written in a programming language supported by the framework

offered by the provider, and then automatically deployed to the cloud. The

high-level of automation comes however at the price of flexibility: the choice

of the programming language to use is restricted those supported by the PaaS200

provider, and the application code must conform to specific APIs. In this work

we target the development of application at IaaS level, since it empowers the

developers with greater control of the computing resources, thus allowing them

to better optimize the application to be deployed.

Two deployment approaches standing at opposite sides are gaining more and205

more momentum: the holistic and the DevOps one. In the former, also known

as model-driven approach, the software architect defines a complete model for

the entire application and the deployment plan is then derived in a top-down

manner. In the latter, put forward by the DevOps community,3 an application

3DevOps is a software development method that stresses communication, collaboration

and integration between software developers and Information Technology professionals [18].
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is deployed by assembling available components that serve as the basic building210

blocks. This emerging approach works in a bottom-up direction: from individual

component descriptions and recipes for installing them, an application is built

as a composition of these recipes.

As of today, most of the industrial products, offered by major companies,

such as Amazon, HP and IBM, rely on the holistic approach. In this context,215

one prominent work is represented by the TOSCA (Topology and Orchestration

Specification for Cloud Applications) standard [19], promoted by the OASIS

consortium [20] for open standards. TOSCA proposes an XML or YAML like

rich language to describe an application. Deployment plans are usually specified

using the BPMN (Business Process Model and Notation) [21] or BPEL (Business220

Process Execution Language) [22] notations, workflow languages defined in the

context of business process modeling.

The most important representative of the DevOps approach is Juju [23], by

Canonical. It is based on the concept of charm: the atomic unit containing a de-

scription of a component. This description in form of meta-data is coupled with225

configuration data and hooks that are scripts to deploy and connect components.

However, in order to use Juju, some advanced knowledge of the application to

install is mandatory. This is due to the fact that the meta-data does not specify

the required functionality needed by a component. For instance, to install a

WordPress blog in a basic scenario its only requirement is that the application230

should be connected to a database. However, Juju allows the deployment of the

WordPress blog without warning that it should be deployed only after it has

been properly connected to a database. This would actually result in a run-time

error, occurring only after having “successfully” deployed WordPress.

In this paper we would like to anticipate the possibility to model and reason235

about deployment already at the early stages of development, thus proposing

an approach that is in an intermediate level between the holistic and the De-

vOps one. In particular we would like to offer to the DevOps engineer all the

flexibility to use and define ad-hoc components and a better and partially au-

tomated control on how to deploy them. On the one hand, compared to the240
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DevOps approach, we allow for the (partial) automation of the deployment,

bringing in evidence the connections between the different component and find-

ing the optimal configuration to deploy. On the other hand, compared to the

holistic approach, we do not require the specification of complex information

related to the run-time behavior of the components that are required for the245

full automation of the deployment. The developer can indeed just focus on the

relevant parts of the system in which deployment can be easily automatized,

and then orchestrate and reason in one subsequent step about the deployment

of the entire system.

Several approaches have been already proposed in the literature for model-250

ing various aspects related to application deployment (see, e.g., the Bergmayr

et al. survey [24] on the so-called CML, i.e. Cloud Modeling Languages). For

instance, as far as the possibility to extend high-level specifications with busi-

ness requirements and deployment desiderata, one of the main initiatives is

supported by the MultiCloud Alliance [2] which is behind the ModaClouds and255

DICE projects. These are dedicated to the specification (in UML) and manage-

ment of cloud application deployment abstracting away from the target cloud

infrastructure. In this way cloud-portability and multi-cloud deployments are

supported.

In the context of UML based software development, other ad-hoc languages260

or profiles have been developed to model specific aspects related with deploy-

ment. As an example, the MARTE profile [25] is dedicated to the specification

of computing resources required by software components, while the OCL lan-

guage [26], can be used to express constraints among UML elements. Differently

from the above approaches, in this paper we mainly focus on the problem of265

automating application deployment with the aim of optimizing metrics like, e.g.,

the total cost of the computing nodes to be acquired. To achieve this goal, we

need to use languages for describing resource usages and defining deployment

constraints, by considering the right trade-off between their expressiveness and

the possibility to effectively compute deployments that satisfy the constraints270

and optimize the metrics of interest. On the contrary, languages as those de-
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fined for UML usually are more focused on expressiveness. Nevertheless, we

have encoded our constraint and resource description languages in a standard

JSON format, that can be easily used as a target of translations from any other

language like those mentioned above.275

It is interesting to note that differently from the CMLs classified in the

survey mentioned above [24], in this paper we propose a framework that com-

bines: i) the possibility to express declaratively –at the specification level– the

expected application deployments, ii) the automatic computation of correspond-

ing deployment plans, and iii) the integration of such plans back in the initial280

specification. This allows the possibility to perform analysis like the simulation

of the computed deployments. In our opinion, our contribution perfectly fits

the last future direction mentioned at the end of the survey [24]: “Simulation

of deployment configurations. Analyzing and predicting non-functional proper-

ties such as costs and performance before the actual application provisioning is285

carried out”.

In order to deal with automatic deployment the main source of inspiration

for the development of SmartDepl was the Aeolus project [27, 28], i.e, one of

the first attempt to combine the holistic and bottom-up approaches studying

the limits of what automation can achieve in the deployment process. As it290

turned out, in general the full automation of the deployment is undecidable

and therefore there are limits on what can be automatically achieved. In this

work, contrary to what has been done in the Aeolus project, we do not impose

limitations on the components and their behavior trying to generate everything

in a unique step, but we instead allow the user the flexibility to reuse and295

orchestrate different automatically generated deployment actions.

Other attempts to combine the holistic and bottom-up approaches are the

management protocol approaches such as [29, 30] that establish protocols for

reacting to failures by generating the sequence of actions to bring the configura-

tion in a safe state. As for the Aeolus case, these works require the description of300

the behavior of the components through finite-state machines or more complex

formalisms, thus imposing constraints on the components and their connections.
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Many management tools for bottom-up deployment exist, e.g., CFEngine [31],

Puppet [32], MCollective [33], and Chef [34]. Such tools allow for the declaration

of components, by indicating how they should be installed on a given machine,305

together with their configuration files, but they are not able to automatically

decide where components should be deployed and how to interconnect them for

an optimal resource allocation, let alone the possibility to perform some reason-

ing on the deployment actions. These are usually the low-level tools used in the

DevOps approach to deploy an application: our approach is at a higher level of310

abstraction.

Engage [35] is a deployment management framework consisting in (i) a lan-

guage used to describe software component, computing resources and their de-

pendencies, (ii) a configuration engine used to generate a full installation specifi-

cation from an initial or partial configuration, and (iii) a deployment engine/run-315

time service used to carry out the installation and to manage the components

during the deployment. Unfortunately, to ensure the existence of a feasible so-

lution it introduces important simplifications: contrary to our approach, they

rely on the acyclicity of the dependencies among components. This is crucial

for Engage and precludes the possibility of having resources that are mutually320

dependent, as it can frequently happen in practice.

Another interesting project is ConfSolve [7] that consists basically of a defi-

nition of a domain specific language for describing configuration problems and

a tool that uses constraint solving technology to solve them. ConfSolve is able

to compute valid configurations that optimize one or more criteria like, e.g.,325

maximizing the number of virtual machines per physical one. The ConfSolve

language is object-oriented and declarative and allows using quantification and

summation over decision variables in constraints. The major limitation of this

approach is that the ConfSolve language models the problem of optimal provi-

sioning (of virtual machines) rather than focusing on the deployment process. It330

does not take into account the wiring aspect, i.e., how to bind the components

in use and which are the steps needed to reach the final (optimal) configuration

computed by the solver. Other similar optimization approaches that address
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the problem of application placement on computing nodes are [36, 37, 38, 39].

For a more extensive survey of the optimization approaches applied to software335

architectures we refer the reader to [40]. As pointed out in the survey, “the

quality attributes, such as safety, maintainability, and security, have not been

optimized with exact algorithms” and “due to the ever-increasing complexity of

software systems and the growing number of design options, exact approaches

usually are not suitable as optimization techniques; hence the lower number340

of papers employ these techniques”. While in the survey exact methods ap-

proaches were applied only to the problem of service/component selection or

to specific problems on embedded systems, in this work we chose to apply an

exact method for the optimization of the definition and deployment of a cloud

system, starting from a (partial) declarative specification of the goal.345

VAMP (Virtual Applications Management Platform) [41, 42] is a framework

constituted by a language to describe the global structure of the application and

an environment to manage the run-time deployment of components. The lan-

guage extends the OVF (Open Virtualization Format) [43] language, a proposed

standard for a uniform format for applications to be run on virtual machines.350

The VAMP deployment process is implemented as a decentralized protocol in

a self-configuration manner. The approach is interesting but limited for our

purposes as it works under the assumption that the dependency graph is acyclic

and requires the developer to specify the virtual machine in which a given com-

ponent lives. Following similar philosophy and limitations, we can mention355

Terraform [44], JCloudScale [45], Apache Brooklyn [46], and tools supporting

the Cloud Application Management for Platforms protocol [47] and deployable

on IaaS or clustering solutions such as [48, 49].

SmartFrog [50] is a Java framework, developed at HP, for managing de-

ployment in a distributed setting. It shares some similarities with the Engage360

approach as every component has a declarative description. It lacks, however,

a way to use the declarative description to extract some information for the

deployment plan or to perform some static checks. DADL (Distributed Appli-

cation Description Language) [51] is a language extension of SmartFrog that
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enables to express different kinds of constraints (such as Service Level Agree-365

ments SLAs and elasticity). This work, however, just focuses on the language

aspects.

CloudFoundry [52] is a PaaS solution by VMware that, taking advantage

of the latest innovations from container technologies such as Docker [53] and

Kubernetes [49], allows the selection, connection and pushing to a cloud of well370

defined services (databases, message buses, etc.), used as building blocks for

writing applications with one of the supported infrastructures. Contrary to our

approach, the platform allows only a predefined set of service to be used directly,

with a limited set of operations that can be executed upon them. Moreover, it

does not allow any reasoning or optimization about the final configuration.375

3. The Fredhopper Cloud Services

In this section we give an overview of the case-study used to validate our

approach.

The company Fredhopper provided the Fredhopper Cloud Services4 to of-

fer search and targeting facilities on a large product database to e-Commerce380

companies as services (SaaS) over the cloud computing infrastructure (IaaS). At

the time of the case study, Fredhopper Cloud Services powered over 350 global

retailers with more than 16 billion in online sales every year.

The services offered by Fredhopper are exposed at endpoints. In practice,

these services are implemented to be RESTful and accept connections over385

HTTP. Software services are deployed as service instances. Each instance offers

the same service and is exposed via Load Balancer endpoints that distribute

requests over the service instances.

The number of requests can vary greatly over time, and typically depends

on several factors. For instance, the time of the day in the time zone where390

most of the end-users are plays an important role (typical lows in demand are

4Fredhopper was recently acquired and integrated into the ATTRAQT Group plc, see

http://www.fredhopper.com
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Figure 1: Number of queries per second (in green the query processing time).

observed between 2 am and 5 am). Figure 1 shows a real-world graph for part of

a single day plotting the number of queries per second over the time of the day.

The data samples were collected starting at midnight up until 18:00 o’clock.

The figure shows that the number of requests are the lowest between 2:00 am-395

5:00am.

Peaks typically occur during promotions of the shop or around Christmas.

To ensure a high quality of service, web shops negotiate an aggressive (high qual-

ity of service) Service Level Agreement (SLA) with Fredhopper. QoS attributes

of interest include query latency (response time) and throughput (queries per400

second). For example, based on the negotiated SLA with a customer, services

must maintain 100 queries per seconds with less than 200 milliseconds of re-

sponse time over 99.5% of the service uptime, and 99.9% with less than 500

milliseconds.

Figure 2 shows a block diagram of the Fredhopper Cloud Services. We briefly405

explain the architecture.

Load Balancing Service. The Load Balancing Service is responsible for dis-

tributing requests from the service endpoints to their corresponding instances.
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Figure 2: The architecture of the Fredhopper Cloud Services

Currently at Fredhopper, this service is implemented by HAProxy,5 a TCP/HTTP

load balancer.410

Service Instance. Service instances provide a specific service to customers. Ex-

amples of services are a query service that enables users to request or search for

information (i.e., if an end user searches for a term, the query service yields a

list of matching products) and a data service to allow customers to update and

configure their product catalog.415

Platform Service. The Platform Service provides an interface to the Cloud En-

gineers to manage customer information, deploy and manage service instances

associated to customers, and associate service instance to endpoints (load bal-

ancers).

Deployment Service. The Deployment Service provides an API to the Platform420

Service to deploy service instances (using a dedicated Deployment Agent) onto

5www.haproxy.org
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specified virtualized resources provided by the Infrastructure Service. The API

also offers operations to control the life-cycle of the deployed service instances.

The Deployment Service allows the Fredhopper Cloud Services to be indepen-

dent of the specific infrastructure that underlies the service instances.425

Infrastructure Service. The Infrastructure Service offers an API to the Deploy-

ment Service to acquire and release virtualized resources. At the time of writing,

the Fredhopper Cloud Services utilizes virtualized resources from the Amazon

Web Services, 6, where processing and memory resources are exposed through

Elastic Compute Cloud instances.7430

Monitoring and Alerting Service. The Monitoring and Alerting Service pro-

vides 24/7 monitoring services on the functional and non-functional properties

of the services offered by the Fredhopper Cloud Services, the service instances

deployed by the Platform Service, and the healthiness of the acquired virtu-

alized resources. If a monitored property is violated, an alert is raised to the435

Cloud Engineers via email and SMS messages, and Cloud Engineers can react

accordingly.

The deployment of the Fredhopper Cloud Services follows requirements orig-

inated from both business decisions or technical reasons. For instance, for se-

curity reasons, services that operate on sensitive customer data should not be440

deployed on machines shared by multiple customers. We now list some specific

relevant deployment requirements.

� To increase fault-tolerance, we aim to spread virtual machines across ge-

ographical locations. Amazon allows specifying the desired region (a geo-

graphical area) and availability zone (a geographical location in a region)445

for a virtual machine. Fault tolerance is then increased by balancing

the number of machines between different availability zones. Thus, when

6aws.amazon.com
7https://aws.amazon.com/ec2/instance-types/
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scaling, as application requirement, the number of machines should be ad-

justed in all zones simultaneously. Effectively this means that in a region

with two availability zones, we scale (increase or decrease) with an even450

number of machines.

� Each instance of a Query service is in one of two modes: ‘live’ mode

to serve queries, or a so-called ‘staging’ mode. Updates to the product

catalog and generating the indexes on the catalog for faster searching can

only be done by an instance in staging mode. There always should be at455

least one instance of Query service in staging mode.

� The network throughput and latency between the Platform Service and

indexer is important. Since the infrastructure provider gives better per-

formance for traffic between instances in the same zone, we require the

indexer and the Platform Service to be in the same zone.460

� Installing an instance of the Query Service requires the presence of an

instance of the Deployment Service on the same virtual machine.

� The Load Balancer layer is a separated tier with dedicated computing

nodes (for performance reasons and fault tolerance), that is: load balancer

endpoints require a dedicated machine without other services co-located465

on the same virtual machine.

In addition to the above logical deployment requirements, the virtual ma-

chine(s) on which service instances are deployed and executed should satisfy

certain resource requirements. The exact requirements typically depend on the

kind of service (i.e., a Load Balancer endpoint requires a VM with high network470

throughput), the configuration of the service instance, and customer-dependent

data such as usage patterns and the size of their product catalog. Resource

requirements include:

� The Query Service is single-tenant service (i.e., its instances are dedicated

to a single customer).475
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� With normal usage, historical data from log files of the in-production

system show that the Query Service requires a virtual machine with at

least two-core CPU and 3GB of memory.

� Under heavy workloads (i.e., during promotions), the Query Service re-

quires a virtual machine with a four-core CPU and 4500MB of memory.480

Finally, to realize a target deployment configuration, certain installation

actions should be carried out in a specific order, and (counterpart) removal

actions are needed to remove service instances. The list below shows the most

important installation actions (in order) that should be carried out to deploy a

new Query Service instance.485

1. The new Query Service instance must notify its existence to the Platform

Service. The Platform Service then assigns it a unique service ID which

is used in other services.

2. The Query Service instance must notify a Deployment Service instance

running on the same VM, so that the query service instance can be prop-490

erly configured and managed (i.e., started, stopped, etc).

3. The Query Service instance must notify all load balancer endpoints in the

same region that the instance can be used (i.e., the balancers may start

forwarding requests to it).

4. SmartDepl: Design and Implementation495

In this section we present SmartDepl, our extension of the Abstract Be-

havioural Specification language ABS for the modeling of cloud application

deployment. As anticipated in the Introduction section, SmartDepl is based

on (i) annotations used to describe functional dependencies and the resources

consumed by objects, as well as the resources provided by the deployment com-500

ponents hosting and executing such objects, a (ii) declarative language used

for expressing global deployment requirements, and (iii) an external solver that
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computes optimal distributions of objects on deployment components, and gen-

erates the ABS code necessary to reach such configurations. We first briefly

recall the main characteristics of ABS, and then we detail the above three as-505

pects in three separate subsections.

4.1. Introduction to ABS

ABS is an object-oriented specification language with a formally defined and

executable semantics, that can be used to simulate the specified system already

at the early stage of software development. It also includes a rich tool-chain510

supporting different kinds of static analysis (like, e.g., logic-based modular ver-

ification [4], deadlock detection [5], and cost analysis [6]). Executable code can

be automatically obtained from ABS specifications by means of code generation.

The ABS language supports the specification of asynchronously communicating

concurrent objects, distributed over deployment components corresponding to515

containers offering to objects the resources they need to properly run. Below,

we will recap the specific linguistic features of ABS to support the modeling of

the deployment and the cost annotations required by our approach. ABS has a

semantics for the cost annotations. Simulation and code generation tools take

this semantics into account during execution of an ABS model. This makes it520

possible to simulate the resource usage of the program being modeled. For fur-

ther details on ABS, we refer the interested reader to the ABS project website

[3].

The basic element to capture the application deployment in ABS is the

Deployment Component (DC), which is a container for objects/services that,525

intuitively, may model a virtual machine running those objects/services. ABS

comes with a rich Cloud API that allows the programmer to model a cloud

provider of deployment components.

See, for instance, the following code excerpt:

1 CloudProvider cp = new CloudProvider(”Amazon”);530

2 cp.addInstanceDescription(Pair(”c3.xlarge”,

3 map[Pair(CostPerInterval,210), Pair(Cores,4),
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4 Pair(Memory,750), Pair(PaymentInterval,3600000)]));

5 DeploymentComponent dc = cp.prelaunchInstanceNamed(”c3.xlarge”);

6 [DC: dc] Service s = new QueryServiceImpl( ... );535

In the ABS code above, the cloud provider “Amazon” is modeled as the object

cp of type CloudProvider. The fact that “Amazon” can provide a virtual machine

of type “c3.xlarge” is modeled by calling addInstanceDescription in Line 2. With

this instruction we also specify that c3.xlarge virtual machines

� have a cost of 0.210 per hour (using time units of 10 ms, a cost of 210540

cents per interval, and intervals of 360000 time units)

� provide 7.5 GB of RAM

� offer 4 cores.

In Line 5 an instance of “c3.xlarge” is launched and the corresponding deploy-

ment component is saved in the variable dc. Finally, in Line 6 , a new object of545

type QueryServiceImpl (implementing interface Service) is created and deployed

on the deployment component dc.

ABS supports declaring interface hierarchies and defining classes implement-

ing them.

interface Service { ... }550

interface IQueryService extends Service { ... }

class QueryServiceImpl(DeploymentAgent da, Bool staging)

implements IQueryService { ... }

In the excerpt of ABS above, the IQueryService service is declared as an inter-

face that extends Service, and the class QueryServiceImpl is an implementation555

of this interface. Notice that the initialization parameters required at object

instantiation are indicated as parameters in the corresponding class definition.

4.2. ABS Annotations

SmartDepl relies on annotation of ABS classes to state their costs and their

requirements. To facilitate the inter-operability between ABS and possible ex-560

ternal tools (like, e.g., possible future graphical environments for deployment
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issues specifications) we have adopted a JSON syntax for the cost annotations.8

In particular, the definition of the cost annotation is provided in a JSON string

as follows:

[SmartDeployCost : JString ]565

The JSON string JString defines the costs. An example that describes two

possible deployment scenarios for objects of class QueryServiceImpl is the follow-

ing.

Listing 1: Example of deploying scenario annotation.

{ "class" : "QueryServiceImpl",

"scenarios" : [570

{ "name" : "staging",

"provide":-1,

"cost": { "Cores": 2, "Memory" : 700},

"sig": [ { "kind" : "require",

"type" : "DeploymentAgent"},575

{ "kind" : "constant",

"value" : "True"}],

"methods" : []},

{ "name" : "live",

"provide":-1,580

"cost": { "Cores": 1, "Memory" : 300 },

"sig": [ { "kind" : "require",

"type" : "DeploymentAgent"},

{ "kind" : "constant",

"value" : "False"}],585

"methods" : []}

]}

The first part of the annotation models the deployment of a Query Service

in staging mode, the second one models the deployment in live mode. A Query

Service in staging mode requires 2 cores and 7GB of RAM. This is needed for590

the additional functionality that the staging mode offers (such as constructing

8The JSON schema of the annotation is available at https://github.com/jacopoMauro/

abs_deployer/blob/master/spec/smart_deploy_cost_annotation_schema.json.
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indexes for the product catalog). In live mode, 1 core and 3GB of RAM suffices.

Creating a Query Service object requires the instantiation of its two initializa-

tion parameters: a Deployment Agent object and a Boolean value representing

the staging modality. The first parameter is required: this means that the595

Query Service requires a reference to an object of type DeploymentAgent passed

via the first initialization parameter. The second parameter should instead be

instantiated with True or False depending on the deployment scenario.

We require an annotation for every relevant class that can be involved in the

automatic generation of the initial configuration or the scaling up procedures.600

Intuitively, an annotation for the class C describes: (i) the maximal resource

consumption of an object obj of class C, (ii) the requirements on the initialization

parameters for class C (for instance, at least two services should be present in

the initialization list of a load balancer), (iii) how many other objects in the

deployed system can use the functionality provided by obj, and (iv) additional605

references that may be added by invoking a class method.

In particular, for every annotation, the keyword class is used to define the

class C for which we want to define the costs, while the keyword scenarios con-

tains a list of the possible deployment scenarios for an object of that class. Every

scenario specifies the following information:610

� "name": X. Associates a name X to the deployment scenario.

� "provide": X. Indicates that an object obj of class C can be used in the cre-

ation of at most X other objects. This parameter expresses the constraint

that in the specified deployment scenario, obj can provide its functionality

only to a limited number of other client objects. If an unlimited number615

of client objects can be provided for, the provide value can be set to −1

(as in the case of the annotation for the QueryServiceImpl class).

� "cost". Indicates the resource cost of an object obj of class C. The resources

available are those defined in the ABS Cloud API. In the QueryServiceImpl

annotation two only resources are used: Cores representing the number of620

required processors, and Memory representing the required amount of RAM.

23



� "sig". Indicates how the initialization parameters for class C must be

instantiated when an object obj of class C is deployed. There are three

different cases:

1. "kind": "constant" indicates that the parameter must be set to the625

default value specified by using the keyword "value".

2. "kind": "require" indicates that the parameter is required to be in-

stantiated by SmartDepl during the deployment code generation phase.

Here, SmartDepl is responsible to first create an object having the in-

terface specified with keyword "type" and then pass it as a parameter630

when obj is instantiated.

3. "kind": "list": the parameter requires a list of at least a given num-

ber of elements (defined by using the keyword "num"). Similarly to

what happens in the "require" case, these objects need to have the in-

terface specified with keyword "type" and should be defined by Smart-635

Depl.

� "methods". Indicates the possibility to add or remove references to objects

by invoking methods of the class C. This is needed to capture faithfully sit-

uations where interdependent objects need to be deployed. For instance,

in the Fredhopper Cloud Services a Deployment Agent objects needs a ref-640

erence to a Query Service object. However, at the same time, the Query

Service object needs a reference to a Deployment Agent object. If the

references are passed only at object creation, since objects can not be de-

ployed simultaneously, it would be impossible to deploy these two objects.

Adding the possibility to add references even after their creation breaks645

instead the circularity of dependencies, thus allowing for the creation of

these two objects. The following is an example of the use of the keyword

"methods".

{ "class" : "DeploymentAgentImpl",

"scenarios" : [650

{ "name" : "default",
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"provide":-1,

"cost": { "Cores": 1, "Memory" : 80 },

"sig": [],

"methods" : [655

{ "add" :

{ "name": "installDA",

"param_type": "Service" },

"remove" : {"name": "uninstallDA"}}]

}]}660

Here, SmartDepl is informed that in order to create an object as instance of

the class DeploymentAgentImpl no parameter is required. When the object

is created, however, it is possible to invoke its installDA method to add a

reference to an object with interface Service (e.g., a Query Service). This

therefore allows the creation of a DeploymentAgentImpl object first. Then it665

is possible to pass to it the reference to a deployed Query Service by invoking

the installDA method. When the Query Service needs to be removed, its

reference can be cancelled from the DeploymentAgentImpl object by invoking

the uninstallDA method.

In ABS, the deployment components (DCs) are the units responsible for670

offering to the objects the computing resources they require. As for the class

cost annotations, the definition of the DC types is provided in a JSON string

as follows.

[SmartDeployCloudProvider: JString ]

The JSON string JString defines the JSON objects listing all the DC types675

and their properties.9

As an example, Table 1 presents the JSON definition of three types of virtual

machine corresponding to the “xlarge” and “2xlarge” instances of the Compute

Optimized instances (version 4) of Amazon EC2 Instance Types.10

9The JSON schema of the annotation is available at https://github.com/jacopoMauro/

abs_deployer/blob/master/spec/smart_deploy_cloud_provider_annotation_schema.json.
10https://aws.amazon.com/ec2/instance-types/
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1 { "c4_xlarge_us": {

2 "cost":209, "payment_interval": 1,

3 "resources": { "Cores":4, "Memory":750 }},

4 "c4_xlarge_eu": {

5 "cost":209, "payment_interval": 1,

6 "resources": { "Cores":4, "Memory":750 }},

7 "c4_2xlarge_eu": {

8 "cost":419, "payment_interval": 1,

9 "resources": { "Cores":8, "Memory":1500 }}}

Table 1: JSON example to specify three DC types.

Every DC type has a name. In Line 1 for instance we define a DC type called680

"c4_xlarge_us" that represents an instance xlarge of type Compute, version 4

deployed in the US region. The name identifies the DC type and, as shown later,

it can be used to distinguish the different instances (e.g., to filter the instances

deployed in Europe from those deployed in US). Every instance has associated a

cost and a payment interval. At Line 2, for instance, the instance "c4_xlarge_us"685

has been associated a cost of 209 for every payment interval corresponding to 1

ABS logical time unit. The last ingredient to finalize the description of the DC

type is the amount of resources that it can provide. These are defined by using

the keyword "resources". At Line 3, for instance, we define that an instance of

type "c4_xlarge_us" provides 4 cores and 7.5 GB of memory. The resources that690

can be used are those defined by the ABS Cloud API.11

Similarly to what done in Lines 1-3, in Lines 4-6 and 7-9 we define two other

instance types. The first is a xlarge similar to the previous one but in this case

with a different name, meaning that it is deployed in Europe instead of the US

region. The last DC type instead is a completely different kind of DC having695

the double amount of cores and memory, but at a higher cost.

11For more information, see the tutorial available at http://abs-models.org/

smartdepl-tutorial/.
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1 b_expr : b_term (bool_binary_op b_term )* ;

2 b_term : (’not’)? b_factor ;

3 b_factor : ’true’ | ’false’ | relation ;

4 relation : expr (comparison_op expr)? ;

5 expr : term (arith_binary_op term)* ;

6 term : INT |

7 (’exists ’ | ’forall ’) VARIABLE ’in’ type ’:’ b_expr |

8 ’sum’ VARIABLE ’in’ type ’:’ expr |

9 (( ID | VARIABLE | ID ’[’ INT ’]’ ) ’.’)? objId |

10 arith_unary_op expr |

11 ’(’ b_expr ’)’ ;

12 objId : ID | VARIABLE | ID ’[’ ID ’]’ | ID ’[’ RE ’]’;

13 type : ’obj’ | ’DC’ | RE ;

14 bool_binary_op : ’and’ | ’or’ | ’impl’ | ’iff’ ;

15 arith_binary_op : ’+’ | ’-’ | ’*’ ;

16 comparison_op : ’<=’ | ’=’ | ’>=’ | ’<’ | ’>’ | ’=’ ;

Table 2: DRL grammar.

4.3. Declarative Deployment Specification

Computing a deployment configuration requires taking into account the ex-

pectations of the ABS programmer. For example, in the Fredhopper Cloud

Services, one initial goal is to deploy with reasonable cost a given number of700

Query Services, possibly located on different machines to improve fault toler-

ance, and later on to scale the system according to the monitored traffic. Each

requirement can be expressed in SmartDepl by considering two types of deploy-

ment requirements: constraints about the distribution of objects over deploy-

ment components, and preferences concerning relationships among the objects.705

In the first case, the expressed constraints must be satisfied by the declaratively

specified deployment, while in the second case the expressed preferences indicate

additional conditions that should be satisfied if it is possible.

The language for expressing the strictly required constraints is the Declara-

tive Requirement Language DRL.710
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As shown in Table 2, that reports an excerpt of the DRL grammar,12 a

requirement is a (possibly quantified) Boolean formula b_expr obtained by using

the usual logical connectives over comparisons between arithmetic expressions.

An atomic arithmetic expression is an integer (Line 6), a sum statement (Line

8) or an identifier for the number of deployed objects (Line 9). The number715

of objects to deploy using a given scenario is defined by its class name and the

scenario name enclosed in square brackets (Line 12). For example, the below

formula requires deploying at least one QueryServiceImpl object in staging mode.

QueryServiceImpl[staging] > 0

The square brackets are optional (Line 12 - first option) for objects with only720

one default deployment scenario. Regular expressions (RE in Line 12) can match

objects deployed using different scenarios. The number of deployed objects can

be prefixed by a deployment component identifier to denote just the number

of objects defined within that specific deployment component. As an example,

the deployment of only one object of class DeploymentServiceImpl on the first and725

second instance of a “c4” virtual machine can be enforced as follows.

c4[0].DeploymentServiceImpl = 1 and

c4[1].DeploymentServiceImpl = 1

Here the 0 and 1 numbers between the square brackets represent respectively

the first and second virtual machine of type “c4”. To shorten the notation, the730

[0] can be omitted (Line 9).13

It is possible to use also quantifiers and sum expressions to capture more

concisely some of the desired properties. Variables are identifiers prefixed with

12The complete grammar defined using the ANTLR compiler generator is avail-

able at https://github.com/jacopoMauro/abs_deployer/blob/smart_deployer/decl_spec_

lang/DeclSpecLanguage.g4.
13We assume that every deployment requirement expressed in DRL deals with only a

bounded number of deployment components (the bound is a configuration parameter for

SmartDepl). Notice that this does not mean that the total number of deployment components

in an application is fixed as, for instance, a scale-in or scale-out deployment action can be

repeated an unbounded number of times.
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a question mark. As specified in Line 13, variables in quantifiers and sums can

range over all the objects (’obj’), all the deployment components (’DC’), or just735

all the virtual machines matching a given regular expression (RE). In this way

it is possible to express more elaborate constraints such as the co-location or

distribution of objects, or to limit the amount of objects deployed on a given

DC. As an example, the constraint enforcing that every Query Service has a

Deployment Service installed on its virtual machine is as follows.740

Listing 2: Co-location example requirement.

forall ?x in DC: (

?x.QueryServiceImpl[’.*’] > 0 impl

?x.DeploymentServiceImpl > 0 )

Here impl stands for logical implication. The regular expression ’.*’ allows

us to match with both deployment modalities for the Query Service (staging and745

live). Finally, specifying that the load balancer must be installed on a dedicated

virtual machine (without other Service instances) can be done as follows.

Listing 3: Requirement that load balancers should run on a dedicated VM.

forall ?x in DC: (

?x.LoadBalancerEndPoint > 0 impl

(sum ?y in obj: ?x.?y) = ?x.LoadBalancerEndPoint) )750

The DRL is used to specify the constraints over the objects to be created; we

now present a complementary language used to describe additional preferences

concerning the way the deployed objects should be interconnected. This is

extremely useful to connect, for instance, all the load balancers deployed in

a region with only the back-end services deployed on the same region, or to755

require that a Query Service must use the Deployment Agent deployed on the

same deployment component.

SmartDepl allows the passing of an object reference o to an object o′ in two

different ways:

� by passing o as an instantiation parameter (when invoking the new method760

that creates the object o′),
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1 preference: ’local ’ | expr ;

2 term : INT |

3 VARIABLE ’used’ ’by’ VARIABLE |

4 (’exists ’ | ’forall ’) VARIABLE (’of’ ’type’ objId)?

5 ’in’ typeV ’:’ b_expr |

6 ’sum’ VARIABLE (’of’ ’type’ objId)?

7 ’in’ typeV ’:’ expr |

8 ’(’ b_expr ’)’ ;

9 objId : ID | ID ’[’ ID ’]’ | ID ’[’ RE ’]’ ;

10 typeV : ’DC’ | RE ;

Table 3: Grammar to express preferences over shared object references (missing non terminals

are as defined in Table 2).

� by invoking o’.m(o) if the cost annotation of the class of o′ allows the

call of the method m to add the reference of o.

In both these cases we say that o is used by o′.

The previous constraints are used to compute possible configurations. Among765

all the configurations that satisfy the constraints, if any, the SmartDepl solver

produces the one that minimizes the cost of the DC used. In case of ties, the

SmartDepl solver minimizes the number of created objects. Once this optimal

configuration is obtained, the user can use SmartDepl to state preferences on how

the references among objects should be distributed. The grammar to express a770

preference is defined in Table 3.

A preference may be either the string local or an arithmetic expression

(Line 1). The local preference is used to maximize the number of references

shared among the components deployed in the same deployment component.

Stating this preference, for instance, will enforce that if a Query Service and a775

Deployment Agent are deployed on the same deployment component, then the

Query Service will use that Deployment Agent, and vice versa.

Arithmetic expressions are used instead to capture more advanced prefer-

ences. These expressions are built by using as basic atoms integers (Line 2) and

30



the predicate ?x used by ?y, which is assumed to be evaluated to 1 if the object780

referenced by the variable x is used by the object referenced by the variable y,

0 otherwise. In order to instantiate the variables of the predicate used by, quan-

tifiers (Lines 4-5) and sum expressions (Line 6-7) may be used. As an example,

the following query is used to maximize the number of Query Services deployed

in Europe in staging mode that are connected to all the Load Balancers deployed785

in Europe.

sum ?x of type

QueryServiceImpl[’staging’] in ’.*_eu’ :

forall ?y of type

LoadBalancerEndPointImpl in ’.*_eu’ :790

?x used by ?y

In the first two lines we use the sum expression to match to the variable ?x all the

QueryServiceImpl deployed in staging mode hosted by a deployment component

whose name matches the regular expression ’.*_eu’. Similarly, in the third and

fourth lines we use the forall expression to match to the variable ?y all the795

LoadBalancerEndPointImpl deployed in Europe. The forall expression is evaluated

to 1 if, fixing the possible assignments of the variable ?y, the predicate ?x used by

?y is true. If instead there is an instance of LoadBalancerEndPointImpl that is not

used by the object ?x than the forall expression returns 0. Due to the fact that

the first expression is a sum expression, the final behaviors of the preference800

is to maximize the number of instances of QueryServiceImpl deployed in Europe

in staging mode that are used concurrently by all the LoadBalancerEndPointImpl

objects deployed in Europe.

With a forall, exists and sum expression, objects can be filtered by their name

and scenario. Regular expressions can be used to match the scenario name. For805

instance, in the first line, we could have required to match to the variable ?x all

the Query Services simply replacing the ’staging’ regular expression with ’.*’.

The identifiers ID here could be the name of the class of the objects to match.

For example, assuming that we have already deployed an object called obj (in

our case-study being an instance of type LoadBalancerEndPoint) we can maximize810
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all the new Query Services created in Europe that use obj as follows.

sum ?x of type QueryServiceImpl[’.*’] in ’.*_eu’ :

exists ?y of type obj in DC : ?x used by ?y

Here, instead of specifying after the keywords of type a class name and a scenario

we specify directly the name of the object. We used the keyword DC to indicate815

that we want to match obj to the variable ?y wherever this object is deployed. DC

(Line 15) stands indeed for the set of all the possible deployment components.

4.4. Deployment Engine

In SmartDepl automatic deployment is realized through a deployment engine

that receives in input the deployment annotations added to an ABS specifica-820

tion, and produces in output ABS code that models an optimal deployment

satisfying the constraints at a minimal total cost. In the following, for simplic-

ity, we use the term SmartDepl to define both the formal extension of ABS but

also the solver that runs to produce the ABS desired code.

The key idea of SmartDepl is to allow the user, on the one hand, to declar-825

atively specify the desired deployments and, on the other hand, to develop

its program abstracting from concrete deployment decisions. More concretely,

specific types of deployment are specified as program annotations. These anno-

tations are processed, and for each of them the deployment engine generates a

new ABS class that exposes methods specifying the low-level deployment steps830

needed to reach (or to undo) the desired target deployment. Then this class can

be used to trigger the execution of the deployment, and to undo it in case the

system needs to scale in (i.e., terminate the deployed instances).

As an example, imagine that an initial deployment of the Fredhopper Cloud

Services has been already obtained and that, based on a monitor decision, the835

user wants to add a Query Service instance in live mode. The annotation that

describes this requirement is the JSON object defined in Listing 4.14

14As done for previous annotations, we have adopted a JSON syntax for the deployment an-

notations. The JSON schema is defined in https://github.com/jacopoMauro/abs_deployer/
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Listing 4: An example of a deployment annotation.

1 { "id": "AddQueryDeployer",

2 "specification": "QueryServiceImpl[live] = 1",

3 "obj": [840

4 { "name":"platformServiceObj",

5 "interface":"MonitorPlatformService",

6 "provides":[ {

7 "ports":[ "MonitorPlatformService",

8 "PlatformService" ],845

9 "num":-1 } ],

10 "methods" : [ {

11 "add" : {

12 "name": "addEndPoint",

13 "param_type": "LoadBalancerEndPoint" },850

14 "remove" : {

15 "name": "removeEndPoint",

16 "param_type": "LoadBalancerEndPoint" }}

17 ... ],

18 "add_method_priorities":[855

19 { "class":"loadBalancerEndPointObj",

20 "method":"add" },

21 { "class":"platformServiceObj",

22 "method":"addServiceInstance" },

23 ... ],860

24 "bind preferences":[

25 "local",

26 "sum ?x of type QueryServiceImpl [’.*’] in ’DC’ :

27 exists ?y of type platformServiceObj in DC :

28 ?x used by ?y",865

29 ... ],

30 "DC": [] }

In Line 1, the keyword "id" specifies that the name of the class with the de-

ployment code, to be synthesized by SmartDepl, is AddQueryDeployer. As we will

see later, this class exposes methods to be invoked to actually execute deploy-870

blob/master/spec/smart_deploy_annotation_schema.json.
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ment actions that modify the current deployment according to the requirements

in the deployment annotation. The second line contains the declarative spec-

ification of the desired configuration in DRL. Deploying a new instance of the

Query Service may involve other relevant objects from the surrounding environ-

ment, such as the PlatformService. Which objects are relevant may come from875

business, security or performance reasons, thus in general it may be undesirable

to select or create automatically a Service instance of the right type. SmartDepl

is flexible in this regard: the user supplies the appropriate ones. By using the

keyword "obj", Lines 3-17 list the appropriate objects. Since these objects are

already available, they need not be deployed again. As an example, in Listing880

4 a Platform Service object is assumed to be already deployed. The name of

the object is specified with the keyword "name" (Line 4). As detailed later, this

name is the formal parameter used to identify the existing object within the

class generated by SmartDepl. It just needs to be a fresh name, i.e., a string not

used as a class or interface name within the main ABS program. The interface885

implemented by the object is defined by using the keyword interface (Line 5).

All the interfaces provided by the object that could be used by other objects

are then specified by using the keyword "ports" (Line 6). In this case the ob-

ject provides two interfaces: the interface MonitorPlatformService it implements,

as well as the PlatformService interface (i.e., an interface that is extended by890

MonitorPlatformService). The amount of other objects that can use these inter-

faces is defined by the keyword "num" (Line 9) —in this case a -1 value means that

the object can be used by an unbounded number of other objects. With the key-

word "methods" it is possible to specify how additional references may be added

to the existing object. In this case it is specified that the method addEndPoint895

and removeEndPoint (Line 12-15) can be used to add and remove the reference to

an object implementing the interface LoadBalancerEndPoint. If the methods for

adding references need to be invoked following a given order, priorities can be as-

signed to such methods by using the keyword "add_method_priorities" (Line 18).

The methods are given in a list, higher priority first. Every method is defined900

by its name (keyword method in Lines 20 and 22) and the class or the already
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available object implementing it (keyword class in Line 19 and 21). In Listing 4

we state that the method add of the existing object loadBalancerEndPointObj must

be invoked before the method addServiceInstance of the object platformServiceObj.

In case also the methods for removing references need to be executed in a given905

order, the priority of the removal methods can be encoded in a similar way by

using the keyword "remove_method_priorities".

The preferences over how references are shared among objects are defined

using the keyword bind preferences. Preferences are given in a list, higher im-

portance first. The grammar used by expressing the preference is exactly the910

one defined in Section 4.3.

Finally, with the keyword "DC" (Line 30), the user specifies if there are ex-

isting deployment components with free resources that can be used to deploy

new objects. In this case, e.g., for fault tolerance reasons, the user wants to

deploy the Query Service in a new machine and therefore the "DC" is empty.915

Otherwise, the list of the existing DC names with their available resources have

to be provided.

Once the annotation is given, the user may freely use the corresponding class

in the main ABS code. For instance, the below ABS code scales the system in

or out based on a monitor decision.920

1 while ( ... ) {

2 AddQueryDeployer depObj = new AddQueryDeployer(

3 cProv, platformService, loadBalancerService, serviceProvider);

4 if ( monitor.scaleUp() ) {

5 depObj.deploy();925

6 } else if (monitor.scaleDown()) {

7 depObj.undeploy(); } }

In the first line a new object is instantiated of the class AddQueryDeployer (this

class is generated automatically by SmartDepl). The first parameter is the cloud

provider, as defined for instance in Section 4.2. The next parameters are the930

objects already available for the deployment that do not need to be re-deployed.

These are given according to the order they are defined in the annotation obj

in Listing 4. The generated class implements: i) a deploy method to realize
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the deployment of the desired configuration, ii) an undeploy method to undo

the deployment action gracefully by removing the virtual machine created by935

the last deploy method, iii) getter methods to retrieve the list of new objects

and deployment components created by the deploy method (e.g., a call depObj.

getIQueryService() retrieves the list of all the Query Services created by depObj.

deploy()). The actual addition of the Query Service is performed in Line 5 with

the call of the deploy method. The DCs and the objects created in every call of940

the deploy method are saved in a stack. If the monitor decides to scale in (Line

6), the last deployment solution is undeployed (Line 7) by calling the undeploy

method.15

As an example, the excerpt of the code generated by SmartDepl for the an-

notation defined in Listing 4 is the following. Please note that, for presentation945

purposes, the fresh names generated by SmartDepl to identify objects and DCs

have been renamed.16

Listing 5: Example of generated code.

1 DeploymentComponent dc1 =

2 cloudProvider.prelaunchInstanceNamed(”m4 large eu”);

3 ls DeploymentComponent =950

4 Cons(dc1,ls DeploymentComponent);

5 [DC: dc1] DeploymentAgent o1 = new DeploymentAgentImpl();

6 ls DeploymentAgent = Cons(Pair(o1,dc1),ls DeploymentAgent);

7 [DC: dc1] IQueryService o2 = new

8 QueryServiceImpl(o1,False);955

9 ls IQueryService = Cons(Pair(o2,dc1), ls IQueryService);

10 ls Service = Cons(Pair(o2,dc1),ls Service);

11 ls EndPoint = Cons(Pair(o2,dc1),ls EndPoint);

12 loadBalancerEndPointObj.addLBE(o2);

15Since ABS does not have an explicit operation to force the removal of objects the undeploy

procedure just removes the references to these objects leaving the garbage collector to actually

remove them. The deployment components created by the deploy methods are removed

instead using an explicit kill primitive provided by ABS.
16The full ABs program generated by SmartDepl is available at https://github.com/

jacopoMauro/abs_deployer/blob/master/test/output_example.abs .
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13 platformServiceObj.addServiceInstance(o2);960

14 o1.installDA(o2);

15 deploymentServiceObj.addDS(o1);

At Line 2, a new deployment component dc1 is created by using the function-

ality prelaunchInstanceNamed of the ABS Cloud API. This models the creation of a

virtual machine corresponding to a Compute Instance large of Amazon. Among965

all the possible choices of DC types, SmartDepl has selected this one because it

is the cheapest one. Since we did not specify in the specification string where

these machines need to be deployed, SmartDepl selected randomly the European

region instead of the US one.

At Line 3 the bookkeeping variable ls_DeploymentComponent is updated with970

the list of the newly created DC.

In Line 5 an object of class DeploymentAgent is created, since every Query

Service requires a corresponding DeploymentAgent (it is one of the required pa-

rameters, cf. Section 4.2) to be deployed before the Query Service. In Lines 7-8

the desired object of class IQueryService is created. Both objects are deployed on975

dc1. As happened at Line 3 for the DC, Lines 6 and 9-11 update bookkeeping

variables to store the references of the newly created objects.

Finally Lines 12-15 present the invocation of methods for the correct config-

uration of the system. Line 12 registers the Query Service object to the existing

Load Balancer loadBalancerEndPointObj. Similarly, Line 13 registers the Query980

Service to the existing Platform Service object. Line 14 adds the reference of

the Query Service to the Deployment Agent that in Line 15 is registered to the

existing Deployment Service object.

Even though for the sake of the presentation this is just a simple example,

it is immediately possible to notice that SmartDepl alleviates the user from985

the burden of the deployment decisions. Indeed, she can specify the desired

configuration without worrying about the dependencies of the various objects

and their distributed placement for obtaining the cheapest possible solution.
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Figure 3: SmartDepl execution flow.

4.5. Toolchain details

SmartDepl is open source, available at https://github.com/jacopoMauro/990

abs_deployer and to increase its portability it can be installed also by using

the Docker container technology [53].

The execution flow of SmartDepl is depicted in Figure 3, representing the

different phases with their input and output artifacts. In the first step, Smart-

Depl parses the annotated ABS program given in input to extract the JSON995

annotations and the signature of the classes. Intuitively, the following informa-

tion is retrieved from the parsing: the user goal (a string following the gram-

mar presented in Section 4.3 and given by the user in one ABS annotation),

the list of possible DCs that can be used (a JSON representation like the one

depicted in Table 1 and given by the user in an ABS annotation), the cost1000

annotations and the signature of every class (JSON internal representation de-

rived from the structure of the ABS program and the user annotations). With

this information SmartDepl is able in the second step to generate the input for
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Zephyrus217[54, 8, 55], i.e., a configuration optimizer that given the user re-

quirements and a universe of components, computes the optimal configuration1005

satisfying the user needs. This process is quite straightforward since Zephyrus2

supports natively constructs and constraints that mirror those of SmartDepl.

In particular, in Zephyrus2, virtual machines are modeled as locations. Each

location has a name, a list of resources that it can provide, and an associated

cost. Applications to be deployed on virtual machines are represented as com-1010

ponents: black-boxes that expose require- and provide-ports to capture required

and provided functionalities respectively. Connections (bindings) from require-

to provide-ports model the usage of services.

A detailed recap of the Zephyrus2 tool and its model is outside the scope of

this paper (for this we refer the reader to [55]). In the following we will describe1015

how, starting from ABS annotations, SmartDepl generates the Zephyrus2 input

and we provide as an example some snippets of code.

DCs are encoded into Zephyrus2 locations and their resources are encoded

into the resources offered in the locations. For instance the first two DC types

of Table 1 are encoded in Zephyrus2 as follows.1020

{ "c4_xlarge_us": {"cost": 209, "num": 5, "payment_interval": 1,

"resources": {"Cores": 4, "fictional_res": 1, "Memory": 750}},

"c4_xlarge_eu": {"cost": 209, "num": 5, "payment_interval": 1,

"resources": {"Cores": 4, "fictional_res": 2, "Memory": 750}},

... }}1025

The translation adds two properties, namely num and fictional_res. The

num keyword is added to state the maximum amount of that DC types. By

default, if not overridden with the annotation "cloud_provider_DC_availability",

this default is 5. The property fictional_res instead is a unique integer identifier

associated to every DC type and added for technical reasons. Indeed, since1030

Zephyrus2 internally uses symmetry breaking constraint to speed up the search,

the fictional_res identifier is used to avoid Zephyrus2 treating as equal two DC

17https://bitbucket.org/jacopomauro/zephyrus2/
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types providing the same resources but having a different name. For example,

in the previous case, without the introduction of the fictional_res identifier,

the two DC types c4_xlarge_us and c4_xlarge_eu would have been considered1035

equivalent by Zephyrus2 since they were offering the same resources.

SmartDepl also adds a fictional location that simulates the location contain-

ing the initial objects.18 This location is defined as follows.

{ "___initial_DC":

{"num": 1, "cost": 0,1040

"resources": {"initial_obj_resource": 1000}}}

As far as ABS objects are concerned, their deployment scenarios are mapped

into Zephyrus2 component types. For example, the two component types gen-

erated by considering the two deployment scenarios of the QueryServiceImpl in

Listing 1 are as follows.1045

1 "staging___QueryServiceImpl": {

2 "requires": {"DeploymentAgent": 1},

3 "resources": {"Cores": 2, "Memory": 700},

4 "provides": [{"num": -1, "ports": ["IQueryService", "Service"

]}]},1050

5 "live___QueryServiceImpl": {

6 "requires": {"DeploymentAgent": 1},

7 "resources": {"Cores": 1, "Memory": 300},

8 "provides": [{"num": -1, "ports": ["IQueryService", "Service"

]}]}1055

The information given in input to Zephyrus2 here is a subset of the infor-

mation presented in the original annotation where: i) the scenario name has

been encoded into the component type name, ii) the required objects are en-

coded with the "requires" keyword, iii) the "resources" maps to the class costs,

and iv) "provides" represents the interface of the object. It is easy to see,1060

e.g., that a staging___QueryServiceImpl component type maps an object of class

QueryServiceImpl deployed in staging modality and therefore consuming 2 Cores

18By default, the maximal number of initial nodes is 1000.
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and 700 units of Memory. The live___QueryServiceImpl is similar but consumes less

memory.

Initial objects are treated as normal objects with the exception that they1065

require the resource "initial_obj_resource" that allows them to be deployed only

on the location "___initial_DC". Every initial object gets a unique identifier.

Since the structure of the grammar for the user constraints and binding pref-

erences is similar and inspired by the one used by Zephyrus2, the encoding of the

constraints and preferences is done by performing a one to one straightforward1070

mapping of the formulas, just mapping DC names (or regular expressions) into

location names, and object names into component type names.

For instance, the specification in Listing 2 requiring the presence of the

DeploymentServiceImpl where a QueryServiceImpl is deployed is converted as follows.

forall ?x in locations : (1075

?x.staging___QueryServiceImpl + ?x.live___QueryServiceImpl > 0 impl

?x.default___DeploymentServiceImpl > 0)

In case initial objects are defined, these are forced to be deployed in only one

instance in the "___initial_DC" location. For instance, given the initial object

"init_obj", the following string is added in the goal specification of Zephyrus2.191080

___initial_DC[0].init_obj= 1

When the Zephyrus2 input is generated, SmartDepl runs it (step 3 of Fig-

ure 3). As standard practice, the execution first calls the configurator that

returns an abstract configuration that states for every location the number of

component types deployed in that location. This information is used in the sec-1085

ond Zephyrus2 execution phase for the biding optimization that returns the final

configuration listing also all the connections between the different components.

The final configuration is a JSON file that, intuitively, can be seen as a directed

graph with labeled nodes where the nodes are the components, the links are the

19The step by step translation of the original annotations into Zephyrus2 notation and the

names mappings can be also visualized for a specific input by running the tool in verbose

modality.
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component dependencies, and the label of the nodes are the locations where the1090

corresponding components are deployed.

SmartDepl parses the optimal configuration returned and it creates the ABS

module that generates the corresponding configuration (step 4 of Figure 3). It is

a rather straightforward task, mainly involving the topological sort of the above

graphs to decide in which order the components should be deployed. More pre-1095

cisely, the ABS code for the deployment is generated by first creating the DCs of

the optimal configuration produced by Zephyrus2. For every location used, the

corresponding DC is created by invoking the cloudProvider.prelaunchInstanceNamed

method. Then, all the components with their dependencies are considered. The

order in which these objects are initialized is obtained by performing a topolog-1100

ical sort of the components considering only the dependencies corresponding to

class parameters. The objects are created with the new constructor and placed

into their DC with the [DC: X] annotation where X is the DC assigned to that

object. Note that, in case no solution was computed by Zephyrus2 (i.e., the

goal was not reachable) or it is impossible to perform a topological sort due to1105

circular dependencies between components, an error is returned. Finally, the

code to add the remaining dependencies is generated by invoking the methods

specified in the "methods" annotation.

As an example, the ABS deployment code for the deploy instructions is

available in Listing 5. This code is the one generated when Zephyrus decides to1110

deploy an object DeploymentAgentImpl and an object IQueryService in a m4 large eu in-

stance. We can first see that the only instance is created by invoking cloudProvider

.prelaunchInstanceNamed at Line 2. Then, since the service IQueryService requires a

parameter of type DeploymentAgentImpl, the topological sort of the components

requires that the DeploymentAgentImpl needs to be deployed before the IQueryService1115

. These objects are indeed created in the corresponding order at Lines 5 and

7 respectively. It is easy to see that at Line 7 the creation of the object of

type IQueryService is using as a parameter the object o1 created at Line 5. The

remaining dependency to deal with and computed by Zephyrus are due to the

fact that the service IQueryService when created has to be registered to the ob-1120
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Figure 4: SmartDepl execution within the ABS toolchain IDE.

jects loadBalancerEndPointObj and platformServiceObj that were already existing, and

to the object o1. Moreover, also o1 has to be registered to the existing object

deploymentServiceObj. These missing dependencies generate the method invoca-

tions at Lines 12-15.

To generate the code to undeploy a configuration, the same steps are per-1125

formed, but in reverse order. First the methods to remove the dependency are

invoked (instead of the add methods) and then all the objects and their DC

components are deleted with the cloudProvider.shutdownInstance method.

All the steps performed by SmartDepl are polynomial with the exception of

the call to Zephyrus2 that solves an NP-hard problem [55]. For this reason,1130

in the general case, there is no guarantee about efficient running times of the

SmartDepl. Nevertheless, the experimental validation that we conducted on the

Fredhopper Cloud Services case study are satisfactory (see Section 6 for details

about the experimental evaluation of the running times).

As a final remark, we would like to remark that, as illustrated in Figure 4,1135
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SmartDepl has also been integrated into the ABS tool chain,20 an IDE for a col-

lection of tools for writing, inspecting, checking, and analyzing ABS programs.

5. Application to the Fredhopper use case

This section reports on the modeling with SmartDepl of the concrete deploy-

ment requirements of the Fredhopper Cloud Services, previously introduced in1140

Section 3. The Fredhopper Cloud Services use case is a suitable candidate to

apply and evaluate our techniques for several reasons. It is a challenging case

study with complex deployment requirements. The kinds of computing nodes

(Amazon AWS based) per customer are known, and since extensive profiling in-

formation of the in-production system was available (through many thousands1145

of log files, and millions of queries) the cost of its services can be derived.

SmartDepl was used twice, with two distinct deployment annotations: first,

to synthesize the initial static deployment of the entire framework, and second,

to synthesize dynamic deployment actions. The generated deployment script

to synthesize the initial static deployment is executed once, and realizes the1150

cloud architecture shown in Figure 2. The dynamic deployment actions mainly

concern auto-healing (in case of faults) and scaling in and out instances of the

Query Service (including any instances of auxiliary services that the Query

Service requires). In contrast to the initial static deployment, dynamic actions

are typically executed several times: every time a scaling action must be carried1155

out. The question arises: when and how to scale? The reply is given below,

where we describe the integration of SmartDepl in the monitoring framework of

the ABS model of the Fredhopper Cloud Services.

5.1. Integration into the monitoring layer

Our technique fully supports elasticity as described above: we integrated1160

SmartDepl into the monitoring framework. The basic idea is to invoke the

provisioning script with deployment actions generated by SmartDepl inside the

20http://abs-models.org/installation/
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Customer ≤ 200ms ≤ 500ms

cust1 99.5% 99.9%

cust2 95% 99%

Table 4: Target query processing times for Service Degradation SLA per Customer

monitors. Abstractly, a monitor captures one or more service metrics: each

metric is a function that maps an event trace of interactions of customers with

the Service APIs to a value. The value indicates the current QoS level of the1165

metric. To ensure a high quality of service, web shops negotiate an aggressive

Service Level Agreement (SLA) with Fredhopper. At Fredhopper, the follow-

ing SLA negotiated with a customer expresses service degradation requirements

(the exact percentages are negotiable):

“Services must maintain 100 queries per second with less than 2001170

milliseconds respectively 500 ms according to the target percentages

in Table 4, ignoring the 2% slowest queries.”

Table 4 shows target values of these metrics for two (anonymized) customers

as agreed in the SLA. In general, in our setting, monitors formalize such high-

level metrics used in the SLAs (rather than only lower-level metrics such as1175

CPU usage). By comparing the current level of the metrics with the desired

target values as agreed in the SLA, the monitor proposes (if needed) scaling

suggestions to the cloud engineer. The cloud engineer can then take scaling

decisions at the “management level” - the abstraction level of the SLA itself.

When the cloud engineer selects a scaling suggestion, the corresponding pro-1180

visioning script generated by SmartDepl is invoked and dynamic deployment

actions are executed to realize the change. By restricting the scaling actions to

those synthesized by SmartDepl, the resulting deployment configuration satisfies

all (logical, resource) requirements by design.
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5.2. Specifying FRH deployments1185

Since the Fredhopper Cloud Services uses Amazon EC2 “xlarge” and “2xlarge”

Compute Optimized instance types (version 3)21, we used deployment compo-

nents corresponding to these instances types. For fault tolerance and stability,

Fredhopper Cloud Services uses instances in multiple regions in Amazon (re-

gions are geographically separate areas, so even if there is a force majeure in1190

one region, other regions may be unaffected). We model the instance types

in different regions as follows: “c3 xlarge eu”, “c3 xlarge us”, “c3 2xlarge eu”,

“c3 2xlarge us” (“eu” refers to a European region, “us” is an American region).

Deployment Requirements. The static deployment of the Fredhopper Cloud Ser-

vices requires deploying a Load Balancer, a Platform Service, a Service Provider1195

and 2 Query Services with at least one in staging mode. This is expressed as

follows.

LoadBalancerServiceImpl = 1 and

PlatformServiceImpl = 1 and

ServiceProviderImpl = 1 and1200

QueryServiceImpl[staging] > 0 and

QueryServiceImpl[staging] +

QueryServiceImpl[live] = 2

For the correct functioning of the system, a Query Service requires a Deployment

Service installed on the same machine. This constraint is expressed as shown1205

in Section 4.3. The requirement that a Service Provider is present on every

machine containing a Platform Service is expressed by:

forall ?x in DC: (?x.PlatformServiceImpl > 0 impl

?x.ServiceProviderImpl > 0)

Not all services can be freely installed on an arbitrary virtual machine. For1210

instance, to increase resilience, we require that the Load Balancer service runs

on a dedicated virtual machine. Listing 3 in section 4.3 shows how this is

expressed.

21https://aws.amazon.com/ec2/instance-types/
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Figure 5: Example of automatic objects allocation to deployment components.

To handle catastrophic failures, the Fredhopper Cloud Services aim to bal-

ance the Query Services between the availability zones in regions (see Section 3).1215

This is enforced by constraining the number of the Query Services in the differ-

ent data centers to be equal. In DRL this is expressed with regular expressions

as follows.

(sum ?x in ’.*_us1’: ?x.QueryServiceImpl[’.*’]) =

(sum ?x in ’.*_us2’: ?x.QueryServiceImpl[’.*’])1220

As described in Section 4.3, for performance reasons, the Query Service in Stag-

ing mode should be located in the zone of the Platform Service, since Amazon

connects instances in the same region with low-latency links. For the European

data-center this is expressed by:

(sum ?x in ’.*_eu’:1225

?x.QueryServiceImpl[staging]) > 0) impl

(sum ?x in ’.*_eu’:

?x.PlatformServiceImpl ) > 0)

The previous specifications formalized logical deployment requirements. The

next property shows how resource requirements for QueryService instances are1230

specified in two workload profiles: a default scenario, and a heavy usage scenario.

Tenancy is expressed with the MaxUse clause.

[Deploy: scenario[Name(”DefaultUsage”), MaxUse(1),

Cost(”CPU”, 1), Cost(”Memory”, 3000),

Param(”c”, User), Param(”ds”, Req)] ]1235

[Deploy: scenario[Name(”HeavyUsage”), MaxUse(1),

Cost(”CPU”, 2), Cost(”Memory”, 4500),
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Param(”c”, User), Param(”ds”, Req)] ]

class QueryServiceImpl(DeploymentService ds, Customer c)

...1240

Binding preferences. To allow the connection of components with components

located in the same availability zone or region, SmartDepl introduced the no-

tion of binding preferences. SmartDepl first computes the components for the

optimal configuration and then it uses these preferences to compute the final

configuration establishing the component connections that maximize the bind-1245

ing preferences.

As an example, the QueryService in the US region must be connected to the

LoadBalancerEndPoint deployed in the same region. SmartDepl enforces this with

the following preference.

sum ?x of type QueryServiceImpl[’.*’] in ’.*_us.’ :1250

forall ?y of type LoadBalancerEndPointImpl

in ’.*_us.’ : ?x used by ?y

This preference requires to maximize the number of connections between every

QueryService deployed in US region and every LoadBalancerEndPoint in that same

region. As a consequence, all the QueryService in the US region will be connected1255

to all the LoadBalancerEndPoint in the same region.

Binding preferences also make it possible to avoid establishing connections

between certain objects, or add connections to existing objects instead of newly

created instances.

Installation actions. To successfully deploy new service instances, certain instal-1260

lation actions should be executed. For example, whenever a new QueryService is

added, it should be added to the appropriate load balancers (all load balancers

in the same region as the new query service) through an add(Service) method. It

should then be announced to the platform through an addServiceInstance method.

The last step is to finalize the deployment of the new query service, by calling1265

the install method on the deployment service.

The order of these actions are important and can be specified as follows:
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"add_method_priorities":[

{ "class":"LoadBalancerEndPointImpl",

"method":"add" },1270

{ "class":"PlatformServiceImpl",

"method":"addServiceInstance" },

{ "class":"DeploymentAgentImpl",

"method":"install" }

]1275

5.3. Results

From the above specifications, SmartDepl computes the initial configura-

tion in Figure 5, which minimizes the total costs of the deployment per time

unit. This is calculated based on the cost per interval of each kind of VM, and

the length of that interval. The length of the interval (in terms of ABS time1280

units) can be specified in the JSON file for each VM type individually using

the payment interval keyword. For example, if cost is 100 and payment interval is 2,

then every 2 time units that the machine is in a running state, the costs are

increased by 100 (and that VM contributes 50 every time unit to the total cost

of the deployment). SmartDepl deploys the Load Balancer, Platform Service and1285

one staging Query Service on three “2xlarge” instances in Europe, and deploys

a live Query service on an “xlarge” instance in US.

Simulation. After the initial deployment, the Cloud engineers of Fredhopper

Cloud Services rely on feedback provided by monitors to decide if more Query

Services in live mode are needed. We simulated real-world scenario’s (by driving1290

the simulation with query data from several GB of log files22), using the code

generated by SmartDepl to instantiate service instances and resources appropri-

ately. This helped to calibrate the model and validate the results through a

comparison with the production environment.

22The simulation can also be driven without using log files by forwarding live queries from

the production environment to the ABS model.
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Figure 6: Auto-healing and scaling.

Figure 7 and 8 show several of the metrics for a single customer used to1295

determine subsequent scaling actions: number of queries per second for the

customer, number of requests in process, and CPU usage (Figure 7) and load,

memory usage and swap space usage (Figure reffig:metrics-2). Both the pro-

duction system and the ABS model use the Grafana framework23 to visualize

the metrics. The timescale in the figures is 1 day, but this can be adjusted1300

to see trends over longer periods, or zoom in on a short period. The figures

show that the number of queries served per second (qps, first graph of Figure 7)

is relatively high and the requests (Figure 7, second graph) are fairly low, so

requests are not queuing. Furthermore the CPU usage (Figure 7, third graph)

and memory consumption with small swap space used (Figure 8, second and1305

third graphs) look healthy. Hence, no scaling is needed.

If we would have needed to scale out, two Query Service instances are added:

one in an EU region, and one in a US region for balancing across regions. In

contrast, if there is unnecessary overcapacity, the most recent ones can be shut

down.1310

Figure 6 shows the simulation of a second scenario. Real-world log files from

a customer cust2 were taken and replayed with an auxiliary tool logreplay24

against the ABS model’s LoadBalancer endpoints (which then forward the queries

in round-robin fashion to a QueryService instance). All service instances and

resources were deployed with SmartDepl. The figure shows the values over time1315

23https://grafana.com/
24https://github.com/abstools/logreplay
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Figure 7: Metrics graphed over a single day for a customer.

of the two 200ms and 500ms Service Degradation metrics from the SLA with

cust2 from table 4. The graph is generated in “real-time” (there is a ten-second

delay to publish metric values to an external database, and visualize the metrics

with Grafana). The metric with the higher values shows the percentage of

queries slower than 500ms, the lower line is the percentage of queries slower1320

than 200ms. As the graph shows, after the initial phase, the numbers stabilize

and satisfy the SLA. The chaotic initial phase is caused by the fact that at

the start, the service instances are initializing and cannot process queries until

initialization finishes, thus temporarily violating the target QoS values from the

SLA.1325

In the visualized scenario, a QueryService instance crashed at the very begin-

ning. The crash is simulated by exposing the undeploy method synthesized by

51



Figure 8: Metrics graphed over a single day for a customer.

SmartDepl as a method callable over HTTP, and consequently invoking undeploy.

The crash leads to a very high degradation initially. After ≈ 1 minute, the

degradation monitor detects this and auto-heals by deploying a new QueryService1330

instance. The VM is started and the necessary services are installed by the

SmartDepl provisioning script for scaling QueryService at around 17:57. Seem-

ingly strange, this causes initially the degradation to increase! The reason

is that although the service instance is ready to accept requests, performance

is sub-optimal in the beginning due to initialization procedures taking place1335

simultaneously. This still does not prove to be enough to meet the desired tar-

get degradation requirements (the table allows 5% queries slower than 200ms,

whereas the graph remains stable at around 9% starting from 18:04). The degra-

dation monitor detects this and suggests to scale out using the SmartDepl query
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service deployer.1340

In general, since ABS offers an API that allows to invoke ABS methods

over HTTP,25 one can also forward in real-time information about the run-time

deployment model (including resource failures). In this way, the ABS model

may take also runtime deployment information into account, and can react with

appropriate scaling suggestions accordingly.1345

Either a scaling strategy can be implemented that automatically selects the

suggested scaling actions (a very simple strategy is to approve of all suggestions,

this is sufficient for auto-healing), or the cloud engineer can select the actions

he/she desires manually, based on their domain knowledge and interpretation

of the monitored metrics. The simple auto-healing strategy that accepts all1350

suggestions then deploys a second new query service instance at 18:14 and the

degradation metrics converge to the desired target values. The final configura-

tion, obtained through first deploying the initial configuration and then twice

scaling instances with a AddQueryDeployer corresponds exactly with the deploy-

ment configuration used for the in-production system for that customer (for1355

the in-production system, the configuration was obtained manually through the

actions taken by the cloud engineers).

To compare the existing work-flow at Fredhopper and the effect of integrating

SmartDeploy in this work-flow, we discussed with the operations team their

experience. The Cloud operations team currently decides manually how and1360

when to scale. As Fredhopper has very aggressive SLAs, the team is typically

conservative with scaling instances out, leading to potential over-spending. The

ability of SmartDepl to deploy in the programming language (ABS) itself allows

to leverage the extensive tool-supported analyses available for ABS, including

logic-based modular verification [4], deadlock detection [5], cost analysis [6] and1365

run-time monitoring [56] (see [57] for an overview of most tools). For example,

by using monitors to track the quality of services, SmartDepl allows Ops to

reason on the scaling decisions and their impact on the SLA agreed with the

25 https://abs-models.org/manual/#-the-model-api
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customers [58].

The operations team currently use ad-hoc scripts to configure newly added1370

or removed service instances, and these scripts are specific to the infrastructure

provider. Thus the question arose: is it possible to find a more flexible and

systematic approach that uses pluggable infrastructure providers?

This requires first introducing a generic API of an abstract deployment layer

that captures the commonalities of different infrastructure providers, and allows1375

plugging in (loading) infrastructure provider-specific information, such as the

machine types and their resource properties. SmartDepl provides the required

basis for such an approach. From the virtual machine descriptions in JSON,

SmartDepl generates code that imports the different machine types into a generic

Cloud API offered by ABS for managing virtual resources. The provisioning1380

generated scripts by SmartDepl launch, terminate and manage the life-cycle

of the required virtual machines through this generic Cloud API (optimizing

the cost of the machines). Finally, SmartDepl deploys (installs and configures)

the service instances on the virtual machines in such a way that respects all

the deployment requirements. The provisioning scripts can be executed (in1385

other words, they form executable code) by choosing an implementation of the

generic Cloud API for the desired infrastructure provider. This approach allows

SmartDepl to seamlessly switch between different infrastructure providers by

leveraging the abstract Cloud API layer - simply plug in an instance of the cloud

API implementation of another provider. It even enables usage and analysis of1390

multiple infrastructure providers in the same system, i.e. using a mixture of

Amazon AWS instances and Microsoft Azure instances to deploy services on.

The ABS model used with all the annotations and specifications and an

example of generated code are available at https://github.com/jacopoMauro/

abs_deployer/tree/master/test.1395
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6. SmartDepl solver running times

In this section we present an evaluation of the scaling performance of the

SmartDepl solver. As previously stated, to generate the code, SmartDepl relies on

Zephyrus2 that solves an NP-hard problem. Due to the nature of this problem,

SmartDepl does not provide any guarantee on the running times that in the worst1400

case may be exponential on the size of the input. It is however natural to wonder

what are the running times of SmartDepl for normal instances. Unfortunately,

as also remarked in [54], there are no standard benchmarks that can be used

for the optimization of application deployment. For this reason, in this work we

will try to evaluate how good SmartDepl scales by measuring its running times1405

using the real-world Fredhopper use case as a specific benchmark.

In particular, we performed two kinds of scaling experiments. In the first

experiment, dubbed ScaleInitial we used SmartDepl to generate the code to

deploy the initial configuration by varying the number of DC that SmartDepl is

allowed to use. By default, for every kind of DC, SmartDepl may use up to 51410

DC instances of that type for every deploy method invocation.26 This number

has an impact on the performance since the more DC components can be used

in one deploy call, the larger is the search space to check in order to find the

optimal deployment solution. SmartDepl allows the customization of the number

of DC for every type of DC by using the keyword cloud provider DC availability and1415

specifying for the interested DC types the number of DC that can be used in a

deploy invocation. For instance the following addition in a SmartDepl annotation

would allow to use only 2 DC of type c4 2xlarge eu.

"cloud_provider_DC_availability":{

"c4_2xlarge_eu" : 2}1420

We tested SmartDepl by varying the number of allowed DC between 2 (the

minimal number in order to have an optimal solution) to 20. Since there were

26Note that the number of times the deploy method is invoked can be unbounded. Hence,

the number of DCs that can be used can be unbounded, but every deployment invocation can

create only a bounded number of DCs.
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Figure 9: ScaleInitial results for Z3 and Chuffed.

12 different types of DC this corresponds in considering from 24 to 240 different

DC that can potentially be created at every deploy method invocation.

In the second experiment, dubbed ScaleQueries, we use instead SmartDepl1425

to generate the code to add a Query service in live mode by varying the number

of Query services deployed in the European and US regions by varying the goal

specification. We run the experiment by varying the Query services required

in the European region between 0 and 10, and by varying the Query services

required in the US between 0 and 20. These are the maximal numbers of Query1430

Services that can be deployed considering the default number of DC per DC

type of SmartDepl.

Since SmartDepl has been developed to be deployable on a cloud infrastruc-

ture, we validated it by running it on an OpenStack cloud. We used a virtual

machine requiring 8GB of RAM, 4 cores, and running the Ubuntu 16.04 operat-1435

ing system. We repeated every experiment 5 times reporting the average time

and the absolute error by considering the output of the Linux time command.

For every experiment we used a time limit of 900 s. Since the Zephyrus2 tool

supports three different solvers, namely the constraint solver Gecode, the lazy

constraint solver Chuffed, and the SMT solver Z3 we have run all the experi-1440

ments considering these three execution modalities.

The results of the ScaleInitial experiments are presented in Table 5.
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DC per type Z3 (s) Chuffed (s) Gecode (s)

2 19.09 ± 0.09 20.08 ± 0.13 13.05 ± 0.16

3 26.60 ± 0.54 20.10 ± 0.18 246.46 ± 2.09

4 34.06 ± 0.07 20.70 ± 0.53 Timeout

5 45.36 ± 1.06 21.95 ± 0.58 Timeout

6 61.57 ± 0.55 25.09 ± 0.09 Timeout

7 80.69 ± 1.00 28.80 ± 1.14 Timeout

8 104.12 ± 0.35 33.56 ± 0.64 Timeout

9 143.46 ± 1.37 39.13 ± 0.13 Timeout

10 159.18 ± 1.36 44.69 ± 1.15 Timeout

11 228.28 ± 5.14 52.28 ± 1.07 Timeout

12 283.50 ± 8.77 62.86 ± 1.44 Timeout

13 318.85 ± 5.13 69.70 ± 0.75 Timeout

14 437.46 ± 12.60 80.56 ± 1.46 Timeout

15 566.91 ± 8.30 93.49 ± 1.56 Timeout

16 669.99 ± 16.21 108.52 ± 4.06 Timeout

17 818.04 ± 10.76 122.37 ± 3.39 Timeout

18 Timeout 142.64 ± 2.49 Timeout

19 Timeout 160.19 ± 1.94 Timeout

20 Timeout 177.94 ± 5.51 Timeout

Table 5: Average running times for the ScaleInitial experiment (Timeout = 900s)
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Times are given in seconds, rounded to the second decimal place. It is imme-

diately clear that the best solver to use while executing Zephyrus2 is Chuffed.

While for the smallest instance Gecode and SMT are faster, as soon as more1445

DC are allowed to be used we notice that Gecode does not scale while the Z3

scales worse than Chuffed. SmartDepl takes 21.95 seconds to generate the initial

deployment code when the default 5 number of DC are allowed per DC type.

Within 1 minute SmartDepl can generate the initial configuration considering

up to 132 DC (11 DC per DC type). Considering that usually requiring a vir-1450

tual machine on a cloud can take more than 5 minutes, we believe that such

a performance is good enough for the day to day deployment tasks faced by a

small/medium organization.

Clearly, running SmartDepl on the cloud may introduce more variability on

the running times due to the fact that computational resources may be shared1455

with other users. Since one of the simplest estimates of the uncertainty is the

range of the performed measures (i.e., the difference between the highest and

the lowest measure), for every test we consider as absolute error half of the range

of the 5 repetitions. The absolute error for the Z3 and Chuffed approaches is

presented in Figure 9 using, as is customary, error bars.27 The relative error1460

was never greater than 4% and we believe this is more than an acceptable price

to pay to be allowed to use a non-dedicated cluster to run SmartDepl.

We would like to note that the times presented here do not include only the

running time of Zephyrus2 but also the parsing of the ABS file, the process of the

annotations, and the printing of the ABS code. Clearly the length of the ABS1465

program may have an influence on the performance but the parsing activities,

being bounded polynomially in time, do not present particular challenges and

their require a time that is negligible w.r.t. the running times taken by running

Zephyrus2.

As far as the ScaleQuery experiments are concerned, Figure 10 presents the1470

27Due to the fact that Gecode timeouts already at the third instance, we did not consider

the plotting of the errors for this approach.
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Figure 10: ScaleQuery results (large blue points indicates timeouts).
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results by using 3D plots having as x and y axis the number of Query Services

required to be deployed in the European and US regions while the z axis presents

the average running time. We indicate with a blue dot on the plane containing

the x and y axis, the coordinates for which the solver timeouts.

From the plots it is easy to see that, similarly to what happened for the1475

ScaleInitial experiments, the best solver to use is Chuffed able to solve all

the instances in less than 215.56 seconds. As before, due to the fact that the

computation is performed at compile time, we believe that this performance

is good enough for the day to day deployment tasks faced by a small/medium

organization.1480

The Z3 solver timeouts for few times, and it is in average far slower than

Chuffed. When it is able to solve an instance it was able to solve it in less than

472 seconds, otherwise it timeouts. It is not clear why for certain instances

Z3 timeouts. As it often happens when dealing with NP-hard problems, our

conjecture is that the search heuristics for those instances lead the exploration1485

of a non-promising search space that does not allow a lot of pruning.

Gecode instead for some few instances has a performance comparable with

Chuffed but timeouts for most of the instances. Even for simple instances, as

can be seen from Figure 10d detailing when Gecode timeouts, Gecode is not

able to produce the optimal deployment code in less than 900 seconds. This1490

happens in particular when the number of Query Services required in the US

region is odd. We believe that this is due to the fact that one of the constraints

of the specification was to divide equally the query services between the data

centers in the US region. Since there are two areas in the US, this means that

even if we required an odd number of Query Services in live mode a valid initial1495

configuration will still require an even number of Query Services (in live or

staging deployment modalities) to be deployed in the US region. Chuffed, that

is using a different search heuristic based also on learning, was able to prove

optimality quickly while the heuristic employed by the Gecode solver is not

effective in this case for reducing the search space.1500

When the number of the required Query Services was greater than the re-
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sources that could be used (i.e., > 10 for Europe or > 20 for the US region),

SmartDepl communicates the impossibility of finding the solution in only few

seconds. This was due to the fact that the detection of the unsatisfiability of

the user constraints was almost instantaneous for all the three solvers used by1505

Zephyrus2.

As far as the variability of the runtime is concerned, the relative error by

using Chuffed was less than 5%. Unfortunately for Z3 (resp. Gecode) we expe-

rienced for 23 (resp. 5) instances a relative error superior to 10%. In case of

Z3 the maximal relative error was close to 62%. We believe that partially this1510

is due to the fact that the cloud infrastructure was possibly shared with other

users, but probably the big relative error is due to the non deterministic nature

of the SMT solver that could behave very differently according to the random

seed chosen to regulate its internal decisions. Investigating this issue further is

beyond the scope of this paper, since Chuffed did not present this problem and1515

was better than both Z3 and Gecode.

7. Conclusions

We presented an extension of the ABS specification language that supports

modeling cloud application deployment in a declarative manner: the program-

mer specifies deployment constraints, and a solver synthesizes ABS classes with1520

methods that execute deployment actions to reach an optimal deployment con-

figuration that satisfies the constraints. We are not aware of other approaches

that used formal tools to optimize the deployment of applications at the mod-

eling level. Our approach, which is inspired by [8] and significantly improves

our initial work [14], can be easily applied to any other object-oriented language1525

that offers primitives for the acquisition and release of computing resources.

In the light of this positive validation, obtained by means of the modeling and

analysis of the Fredhopper Cloud Services, we can conclude that our approach

was successful for at least three main factors:

� the reasoning about application deployment at the modeling level,1530
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� the possibility to express with a domain-specific language the deployment

constraints (that are usually only implicit in the best practices of the

operations experts),

� and the automatic synthesis of optimal deployments.

As a future work we plan to investigate the possibility to invoke at run time1535

the external deployment engine. In this way, it could be possible to dynamic re-

define the deployment constraints by means of a dynamic tuning of the engine.

Nevertheless, dynamically computing the deployment steps may require addi-

tional elements such as the support of new reflection primitives to get a snapshot

of the running application, and possibly the use of sub-optimal solutions when1540

computing the optimal configuration takes too much time.

Another limitation of the current version of SmartDepl is that when no solu-

tion exists that satisfy all the user requirements, the user is only notified about

it. We are planning to extend SmartDepl with explanation based mechanism

such as [59] to help the users to identify what are the conflicting constraints.1545
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