
HAL Id: hal-02401933
https://inria.hal.science/hal-02401933

Submitted on 10 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Split and migrate: Resource-driven placement and
discovery of microservices at the edge

Genc Tato, Marin Bertier, Etienne Rivière, Cédric Tedeschi

To cite this version:
Genc Tato, Marin Bertier, Etienne Rivière, Cédric Tedeschi. Split and migrate: Resource-
driven placement and discovery of microservices at the edge. OPODIS 2019 : 23rd International
Conference On Principles Of Distributed Systems, Dec 2019, Neuchâtel, Switzerland. pp.1-16,
�10.4230/LIPIcs.OPODIS.2019.29�. �hal-02401933�

https://inria.hal.science/hal-02401933
https://hal.archives-ouvertes.fr

Split and migrate: Resource-driven placement and1

discovery of microservices at the edge2

Genc Tato3

Univ Rennes, Inria, CNRS, IRISA, France4

Marin Bertier5

Univ Rennes, Inria, CNRS, IRISA6

INSA Rennes, France7

Etienne Rivière8

UCLouvain, Belgium9

Cédric Tedeschi10

Univ Rennes, Inria, CNRS, IRISA, France11

Abstract12

Microservices architectures combine the use of fine-grained and independently-scalable services13

with lightweight communication protocols, such as REST calls over HTTP. Microservices bring14

flexibility to the development and deployment of application back-ends in the cloud.15

Applications such as collaborative editing tools require frequent interactions between the front-16

end running on users’ machines and a back-end formed of multiple microservices. User-perceived17

latencies depend on their connection to microservices, but also on the interaction patterns between18

these services and their databases. Placing services at the edge of the network, closer to the users,19

is necessary to reduce user-perceived latencies. It is however difficult to decide on the placement20

of complete stateful microservices at one specific core or edge location without trading between a21

latency reduction for some users and a latency increase for the others.22

We present how to dynamically deploy microservices on a combination of core and edge resources23

to systematically reduce user-perceived latencies. Our approach enables the split of stateful mi-24

croservices, and the placement of the resulting splits on appropriate core and edge sites. Koala, a25

decentralized and resource-driven service discovery middleware, enables REST calls to reach and use26

the appropriate split, with only minimal changes to a legacy microservices application. Locality27

awareness using network coordinates further enables to automatically migrate services split and28

follow the location of the users. We confirm the effectiveness of our approach with a full prototype29

and an application to ShareLatex, a microservices-based collaborative editing application.30

2012 ACM Subject Classification Information systems → Distributed storage; Information systems31

→ Service discovery and interfaces; Computer systems organization → Cloud computing32

Keywords and phrases Distributed applications, Microservices, State management, Edge computing33

Digital Object Identifier 10.4230/LIPIcs.OPODIS.2019.2934

1 Introduction35

Modern interactive applications combine a front-end running on client devices (e.g. in their36

web browser) with a back-end in the cloud. Collaborative editing applications, in which37

multiple users concurrently make changes to the same document, such as Google Docs,38

Microsoft Office 365, and ShareLatex, are good examples of such interactive applications.39

Quality of experience for users of such applications depends on low latencies between an40

action of one client and its visibility by other clients.41

A solution to enable fast request-response latencies between the front-end and the back-42

end of a collaborative application is to deploy part of the back-end at the edge, i.e. on43

computing resources that are closer and accessible with low latencies from the front-end.44

© Genc Tato, Marin Bertier, Etienne Rivière and Cédric Tedeschi;
licensed under Creative Commons License CC-BY

23rd International Conference on Principles of Distributed Systems (OPODIS 2019).
Editors: Pascal Felber, Roy Friedman, Seth Gilbert, and Avery Miller; Article No. 29; pp. 29:1–29:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://doi.org/10.4230/LIPIcs.OPODIS.2019.29
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

29:2 Split and migrate

It is often challenging to adapt an application to make use of edge resources. Software45

monoliths typically require massive re-engineering to support a deployment on multiple sites,46

as they base the collaboration between their constituents on shared memory or common47

databases. Service-Oriented Architectures (SOAs) on the other hand present desirable48

features for this adaptation, by splitting the features of the application into independent49

services and decoupling service location and naming.50

Microservices are a popular approach to SOAs [9, 35] adopted by many large-scale51

companies [15, 17]. Features of the back-end are handled by fine-grained services commu-52

nicating through lightweight protocols, such as publish/subscribe or event stores [8]. The53

most common form of interaction between microservices is the use of point-to-point calls to54

Representational State Transfer (REST) APIs provided over HTTP.55

We are interested in this work in the adaptation of microservices applications towards a56

joint deployment on core resources, e.g. in some cloud datacenter, and edge resources, e.g.57

at micro-clouds located in the same metropolitan-area network as the clients. Our objective58

is to reduce latencies between user actions and their visibility by other users.59

We target collaborative editing applications based on microservices. We demonstrated in60

our previous work [25] that ShareLatex, an open source and microservices-based application61

for collaboratively editing LATEX documents, could benefit from reduced user-perceived62

latencies thanks to a static core/edge deployment of its microservices. This previous work63

considers however the placement of entire services onto different sites, which may lead to64

trading latency reduction for some users for latency increases for the others. It also does not65

consider the adaptation of this placement based on the actual location of the application66

users.67

Contributions68

We consider in this paper the dynamic placement and migration of microservices in core/edge69

deployments. We leverage the use in modern microservices applications of resource-centric70

REST APIs and NoSQL databases partitioned by a single primary key. This allows us to71

split microservices, and create independent instances responsible for a partition of the original72

service’s data. These splits, deployed at different edge locations, can then handle requests73

for specific partitions of the service data, accessed by close-by users. We demonstrate our74

ideas with ShareLatex (§2).75

Our first contribution is the support for splitting and multi-site placement of microservices.76

We detail how the state of a microservice can be partitioned, and how the resulting splits77

can be dynamically deployed on different core and edge sites (§3).78

Our second contribution is the middleware support for the decentralized and dynamic79

discovery of microservice splits. We build on Koala [26], a lightweight Distributed Hash80

Table (DHT) for decentralized cloud infrastructures. We enable the transparent redirection81

of calls based on resource identifiers present in HTTP Uniform Resource Identifiers (URIs),82

also supporting the relocation of microservices splits. This allows adapting compatible legacy83

microservices applications for hybrid core/edge deployments with minimal effort (§4).84

Our third contribution is a locality-driven policy conducting the creation and migration85

of microservices splits between the core and the edge, and between edge sites themselves,86

allowing to seamlessly adapt to the location of the users. This policy estimates latencies87

using network coordinates [13], enabling the automatic selection of the most appropriate site88

for the services splits used by a group of collaborative users, with the goal of achieving better89

response times (§5).90

We demonstrate our ideas on the ShareLatex application, using a representative core-edge91

G. Tato, M. Bertier, E. Rivière and C.Tedeschi 29:3

Service Description Service Description

1. docstore
CRUD ops on
tex

8. track-changes History of changes

2.
CRUD ops on
binary

9. real-time Websocket server

3. clsi Compile project 10.
between users

4. contacts Manage contacts 11. document-updater
Maintain consistent
document state

5. spelling Spell checking 12. web
User interface
and service hub

6. chat Chat service Redis (db)
DB (Pub/Sub) for
dynamic data

7. tags Folders, tags MongoDB (db)
DB for internal
static data

docstore clsi filestore

notifications

contacts

spelling

tags

chat

web

real-time

redis

track
changes

document
updater

filestore
files

files

Notificationsnotifications

Figure 1 ShareLatex architecture (left) and list of constituents (right).

network topology and measuring the impact of latencies at the level of the application front-92

end. Our results indicate that Koala and redirection layers induce only minimal overheads,93

while the dynamic placement of microservices splits enables users in different regions to94

access the same application with greatly reduced latencies (§6).95

Finally, we present related work (§7) and conclude (§8).96

2 ShareLatex and its core/edge deployment97

ShareLatex is a collaborative application allowing users (e.g. students, researchers or writers98

of technical documentation) to concurrently edit a LATEX project. It features a web-based99

editor with spellchecking and auto-completion, facilities for compiling and producing papers,100

and tools for the collaboration between writers, such as an address book and a chat service.101

Responsiveness is a key element of the perceived quality of service in ShareLatex. For102

instance, a team of researchers could collaborate on the writing of algorithm pseudocode.103

Changes made by one researcher must be visible with no undue delay by the others, and104

changes must propagate as fast as possible to the reference document stored in the back-end105

to avoid concurrency hazards.106

The ShareLatex back-end uses 12 microservices and a database, Redis, shared by four of107

them (Figure 1).1 The web provides the front-end to the client browser and acts as an API108

gateway to other services. User actions (cursor changes, new text, etc.) are propagated by109

web to the real-time service using WebSockets. The real-time service then sends them to110

document-updater which is responsible for maintaining a consistent order of modifications.111

This dynamic state of the project is stored in Redis, and periodic snapshots are pushed112

to the docstore (text files) and filestore (binary files). Figure 1 details the ShareLatex113

architecture and its services.114

Core servers are typically hosted in a centralized data center, while edge servers are115

distributed and closer to the users. In our previous work [25], we demonstrated that116

ShareLatex can benefit from a static placement of its services on a combination of core and edge117

servers, closer to clients collaborating on a document. We build on our previous contribution,118

which requires only minimalistic modifications to the configuration and deployment scripts119

of ShareLatex, and no changes to the application code. The most significant modification120

1 Note that using a shared database does not fully comply with the microservices architectural pattern,
where all state should be encapsulated in services. Yet, such compromises with the norm are found
in many microservices-based applications. We prefer taking them into account rather than heavily
modifying the legacy application code.

OPODIS 2019

29:4 Split and migrate

docstore

clsi

filestorenotifications

contacts

spelling

tags

chat

web

real-time

track
changes

document
updater

MongoDB

Core

Latency-sensitive
Critical

Frequent

redis

(splittable)

(stateless)

(stateless) (no-sync-replicable)

(splittable)

(splittable)

(splittable) (splittable)

(splittable)

(splittable) (splittable)

Edge

(sync-replicable)

Figure 2 Static ShareLatex deployment as suggested in [25].

performed in our previous work is the disassembly of the web service implementation from121

its database. This was necessary as web acts as an API gateway and must be deployed at122

the edge, but it also features a global database of information about users, which is queried123

infrequently. These queries can be done remotely to a database in the core, with minimal124

performance penalty.125

The static core and edge placement of services of Figure 2 follows the recommendations126

argued in our previous work [25]: web, real-time, document-updater and Redis should be127

deployed on an edge site. Due to the coupling of track-changes with Redis, this service128

must be deployed alongside to avoid remote calls, even if it does not influence perceived129

latencies as much. The clsi, spelling and chat services can also be deployed at the edge,130

with a moderate but positive impact on perceived latencies. This placement resulted in lower131

latencies for operations impacting the most the user experience, at the cost of increasing132

latencies for operations that require interactions between services at the edge and services133

remaining in the core.134

3 Splitting microservices135

While some microservices may be stateless, most of them need to internally store and query136

data. A stateful microservice is typically implemented as a business-logic tier combined137

with a database. The choice of the appropriate database is specific to each microservice,138

leading to what is sometimes called a polyglot architecture. Figure 1 represents the presence139

of a database inside each service using a small black database symbol. In the unmodified140

ShareLatex, only real-time is a stateless service. All other services are stateful, including141

document-updater and track-changes which use the common Redis database. With the142

decoupling of web from its database (as depicted in Figure 2), this service is also stateless143

and uses remote calls to a MongoDB service.144

A key property of SOA and therefore of microservices is the ability to independently scale145

in and out the business-logic tier and the database [17]. For the former, new instances may146

be created and deleted on the fly, e.g. using deployment middleware such as Kubernetes [7]147

and a scaling policy [28]. Elastic scaling is difficult to realize with relational databases, and148

microservices state may grow to large sizes requiring the ability to scale out storage to a149

large number of servers. NoSQL options with such horizontal scaling abilities are therefore a150

favored choice in many microservices applications.151

NoSQL databases such as key/value stores or document stores, partition the data using a152

unique primary key. We observe that very often, accesses to the database by the business-logic153

G. Tato, M. Bertier, E. Rivière and C.Tedeschi 29:5

tier for a query only read and write a limited and identifiable subset of keys. The identification154

of this subset typically depends on the characteristics of the query, and in particular on155

its object. It results that the state of the service, i.e. the content of the database, may be156

partitioned in such a way that keys that are accessed together for any future service requests157

belong to the same partition. This enables in turn the possibility to create multiple instances158

of the service, each equipped with one of the partitions. We call these services hosting159

independent partitions of the database service splits. A service that supports splitting is a160

splittable service.161

Not all services are splittable. Some may require operations (e.g., Map/Reduce queries,162

scans, etc.) that operate on the entire content of the database. In some cases, it is not163

possible to identify a mapping between requests characteristics and partitions, e.g. when calls164

may use object keys generated at runtime or read from the database itself. These services165

are therefore only replicable: It is only possible to make complete copies of the service and its166

state. When these copies must be kept in sync for the well-functioning of the application, the167

service is sync-replicable. When operating on divergent copies does not impact, or impacts168

only marginally, the well-functioning of the application, provided that users systematically169

use the same copy, the service is no-sync-replicable.170

The analysis of ShareLatex code results in the following categorization of services, also171

reflected in Figure 2.2 The notifications service is sync-replicable, while clsi, handling172

the compilation, is no-sync-replicable: compilations across projects do not require consistent173

updates. The web service was initially sync-replicable, but the decoupling of its database174

makes it stateless. All other stateful services –a majority of them– are splittable. This means175

that their state (content of the services databases, but also the content of the shared Redis176

database) can be partitioned, and that partitions can be deterministically identified for any177

query. The object of the query, that allows identifying the partition of service state, and178

therefore the appropriate service split, is the specific writing project that the user is editing.179

In other words, the state of ShareLatex splittable services at the bottom of Figure 2 can be180

partitioned based on the project identifier, resulting in splits able to handle requests for a181

specific subset of projects. Such splits can then be deployed at the edge, and serve requests182

from close-by users accessing one of these projects.183

The implementation of splitting requires support from the database embedded in splittable184

microservices, to be able to bulk load and store data partitions between an existing service185

and a newly created split. This support depends on the database API but does not pose186

implementation difficulties. For ShareLatex, we built minimalistic APIs enabling this for the187

Redis and MongoDB databases.188

Our goal is to support the dynamic creation of service splits and their deployment189

over a combination of core and edge resources. This requires both appropriate middleware190

support mechanisms enabling the discovery and redirection of calls between microservices in191

a transparent manner, and appropriate adaptation policies to decide at runtime when and192

where to create splits, and when and where to migrate an existing split if its current location193

is not optimal. We cover these two aspects in the two following sections.194

2 This identification of services classes and partitions was performed manually, but did not represent
a particularly difficult task in the case of ShareLatex. Automated or semi-automated service class
identification and partitioning are beyond the scope of this paper, but we intend to explore these
directions in our future work.

OPODIS 2019

29:6 Split and migrate

4 Discovering and redirecting to microservice splits195

We now present the mechanisms that support the dynamic deployment of service splits on196

multiple sites. Our focus in this section is on the proper functioning of the system during197

and after service splitting and migration operations. We present the policies triggering these198

operations in the next section.199

Our support middleware serves two purposes: Firstly, it enables the discovery of services200

and splits, and the live modification of their placement (§4.1). Secondly, it enables the201

redirection of point-to-point calls between source and destination services, ensuring that the202

core service or its appropriate split is reached (§4.2).203

4.1 Discovery of microservice splits with Koala204

Each service is initially associated with one instance in the core (the core service), responsible205

for its full state. Split and migrate operations dynamically update the list of splits for each206

service. Service discovery, therefore, requires the maintenance of an index of existing services,207

together with their current lists of splits. Every such split is associated with a list of object208

identifiers, for which this split is the only one able to process queries. This index must remain209

strongly consistent: At any point in time, there must be a single core service or split that can210

answer a query for a given object, and it must be impossible for two clients of the service211

under the same object to use different splits concurrently.212

Service registries based on replicated databases updated using consensus (e.g., using213

etcd [11] or ZooKeeper [18]) are adapted for datacenter deployments with low network214

latencies. In our target context of distributed sites, centralizing the index would result in215

unacceptable overheads. We favor instead a decentralized design, supporting the caching216

and lazy revocation of split-to-site associations. This service is distributed, with an instance217

running at the core and at each of the edge sites.218

Service discovery requests contain the name of the service, and for splittable services, the219

identifier of the query object. For ShareLatex splittable services, this object is the project220

identifier, that allows identifying the appropriate service state partition. Service discovery221

requests can be addressed to any of the sites.222

The service index is implemented as a Distributed Hash Table (DHT), in which each223

node stores a subset of the index, partitioned using consistent hashing. Index elements are224

accessed using a primary key. Each node is responsible for a range of these keys. An overlay225

enables requests to deterministically reach the responsible node using greedy routing (each226

node in the path selects amongst the nodes it knows the closest to the destination). Typical227

DHT designs actively maintain all overlay links through the exchange of explicit overlay228

construction messages. In this work, we rely on Koala [27], a DHT that creates overlay links229

in a lazy manner, by piggybacking overlay construction messages over existing application230

traffic. This design choice enables to create more overlay links for routes in the overlay that231

are more frequently used for index reading requests, and minimize maintenance costs for232

seldom-used links. This is beneficial for workloads that are highly local, which is expected233

from service requests in one single application and to a relatively limited number of services234

(e.g. up to a few hundred).235

Indexing236

We keep two global indexes in Koala, an index of Objects, and an index of Splits. Figure 3237

shows an example of the local subset of these indexes maintained by one Koala node. A Koala238

G. Tato, M. Bertier, E. Rivière and C.Tedeschi 29:7

Location Responsibility

YES
6-8

YES5-2 -
[Service 1 - Split 1]

[Service 1 - Split 1, Service 2 - Split 1]

Split group

Object 1
Object 2
Object 3

local
local

Object ID LocationService
name

Split ID

Split 1Service 1
Split 1Service 2
Split 1Service 3
Split 2Service 3

YES

5-2
9-7

6-8
YES
YES

IP Port

x.x.25.1
x.x.25.2

3001
3002

local
local

Responsibility

Figure 3 Indexes stored at some Koala DHT node: Objects table (left) and Splits table (right).
Primary keys are in boldface.

node is responsible for maintaining the authoritative and strongly consistent entry for a239

number of index items, falling in its key responsibility range. It also maintains local resources,240

objects and splits, that are hosted on the corresponding edge site. A Koala node may have241

local resources for which it is not responsible or be responsible for resources that are not242

local. This design enables the creation of resources on a different node than the one that the243

DHT assigns for the corresponding entry index, while maintaining a single node in charge244

of this index entry and allowing atomic modifications. Lookups follow multiple hops in the245

overlay, until the responsible node is found, leading to one last hop to the node where the246

entry is local (if different). Nodes hosting locally a resource access it without involving the247

responsible node.248

Discovery249

A local split can only be reached by proxying through the local Koala instance.3 The250

discovery of the appropriate site for an incoming service request proceeds in two phases.251

First, the Objects table in the DHT is queried to establish whether there exists a split of at252

least one service under that object. This information is stored in the split group for that253

object. If there is no entry for the object, or if there is no entry for the specific service in the254

split group, the request must go to the core. Second, the Koala node responsible for the split255

is located using the Splits table, using both the service name and split number as the key.256

This requires reaching the Koala node that is responsible for that key and then reaching the257

Koala node where that split is local.258

For instance, on the node whose local subset of the index is represented by Figure 3, a259

request to Service 2 for Object 1 will be immediately sent to Service 2’s Split 1 hosted locally.260

A request for Object 3 will be redirected in one hop to Koala node of identifier 5-2, to read261

its split group. A request for Object 4, not present in the local state, requires a multi-hop262

routing in the Koala overlay to request its service group.263

Caching264

Looking up service discovery entries in the DHT for every service call is too expensive. We265

implement caching: results of index lookup are kept at the local Koala node and reused.266

Stale cache entries are discarded in a lazy fashion. We leverage the fact that all requests267

must go through the local Koala node, e.g. on the edge site where the split actually runs.268

After the migration to a new site, queries based on stale cached information will arrive at the269

Koala node at the previous local location of the split. This node simply informs the origin,270

which invalidates related cache entries and falls back to a regular lookup.271

3 Allowing uncontrolled connections from outside of the edge site might not be possible due to network
constraints, or not desirable for security reasons. The local Koala node acts, therefore, as an API
gateway for all local service splits.

OPODIS 2019

29:8 Split and migrate

chat-5

Koala Koala internal
mechanisms

1

2

3
Koala

http://sharelatex.uni.edu/project/123/messages

web-1

(local to web-1)

(nginx)

reverse
proxy

(local to web-5)

http://koala:8008/api/get/service/chat/object/123/project/123/messages

http://chat-5/project/123/messages

nginx.conf (simplified)

location /project/(.*)/messages${
proxy_pass: "http://koala:8008/api/get/
service/chat/object/$1/project/$1/messages"
}

Edge 1 Edge 2

Figure 4 Example of REST call redirections in ShareLatex.

Migration272

The migration of an existing split, or the creation of a new split, follows four phases. Firstly,273

an instance of the service is bootstrapped if none already exists at the destination edge site,274

or it is selected among existing instances, but it does not hold state or service requests.275

Secondly, a new entry in the Splits table is created to announce the existence of the new276

split. It does not contain a location yet. The split group for all corresponding objects is277

updated to indicate the temporary unavailability of the split. Service requests will block at278

the lookup request stage, and back off for a random time duration. Thirdly, the new instance279

receives the partition of the data from the source service or split. Finally, the Koala entry for280

the split is updated to reflect the location of the new local site for that split, and the split281

groups for all corresponding objects are updated. This allows request services to resume,282

using the new split location.283

4.2 Transparent redirection of REST service calls284

Modifying legacy microservices applications to directly make use of Koala APIs to discover285

and call services and splits would require an important effort. Instead, we leverage the286

fact that the objects of queries are accessible in the URIs of REST service calls. Indeed,287

REST being a resource-centric approach to designing interfaces, calls are made, typically288

over HTTP, to an explicit resource given in the request URI. We implement the transparent289

redirection of calls by extracting the object from this URI. Then, the local Koala node290

queries for the existence of a split for that object and the requested service. The request URI291

is transformed using rewriting rules to reach either the original core service, or the Koala292

node on the edge site where the split runs.293

The implementation of the redirection is as follows. It is illustrated for a call in ShareLatex294

in Figure 4. We use the high-performance web server nginx as a reverse proxy for calls from,295

and to, local services. In ShareLatex, this includes the web service that serves as an API296

gateway for the user frontend. The reverse proxy translates the original request from the297

unmodified ShareLatex, to a request to the local Koala node. The discovery process detailed298

before establishes that there exists a split for that service that must serve the request. In the299

example of Figure 4, the web service on the Edge 1 site calls the chat service. The object300

“123”, the project identifier, is extracted from the call URI. Koala then determines that the301

service split is on the Edge 2 site. The request is redirected to chat service in that site,302

where the call is handled by Koala.303

G. Tato, M. Bertier, E. Rivière and C.Tedeschi 29:9

5 Splits creation and migration policy304

The creation of service splits and their migration between sites obey an adaptation policy.305

This policy must determine what service to split, when these split decisions are made and306

where to (re)deploy the splits. Its goal is to ensure that user-perceived latencies in the307

application are minimized.308

What service to split?309

The first aspect of the policy is application-dependent and results from the analysis of the310

interactions between its microservices. A set of splittable services, and not necessarily all311

of them, must be tagged for a preferential deployment at the edge. This aspect of the312

ShareLatex policy builds upon our previous results [25] (§2). Microservices that lie in the313

bottom part of Figure 2 are tagged for edge deployment. All other services always remain in314

the core.315

When should splits happen?316

There are two situations where a split may be formed: When a new object is created, and317

when latencies to the core are too high. The first option is sufficient for the ShareLatex318

policy: The creation of a new project leads to the immediate creation of all corresponding319

splits.320

Where should splits go?321

This aspect of the policy is twofold: Firstly, we must ensure that splits are created on a site322

(core or edge) close to the first user of the corresponding object. Secondly, we must adapt323

this placement when the chosen site is no longer the most adequate for the current set of324

users of that object.325

This requires the ability to evaluate network latencies. Active probing of latencies (e.g.326

using ICMP packets) is impractical and unscalable. We combine two mechanisms to enable327

probe-less estimations. Firstly, we enforce that users always connect to the geographically328

closest site.4 The location of a client is that of its connection site. Secondly, latencies between329

sites are estimated using Network Coordinates (NCs). We use Vivaldi [13] to compute NCs.330

Each site is represented by a d-dimensional point. These points positions evolve following a331

process similar to a spring-mass relaxation, based on observed latencies for actual message332

exchanges, and Euclidean distances eventually approximate latencies.333

The ShareLatex policy enforces that the initial version of an object, and the corresponding334

splits, be hosted by the connection site of the first user. Each site collects for its local splits,335

a history of the NCs of the sites forwarding client calls. Periodically (every 5 minutes, or336

100 requests, whichever comes first, in our implementation), the policy determines whether337

migration of the splits for each hosted object is necessary. Several users access a project,338

from different sites and with different frequencies. The ideal location of the splits for that339

project can be represented as a point in the NCs space. We define this point as the Center340

of Mass (CoM) for that object. It is the geometric average of the connection sites’ NCs,341

weighted by the number of accesses from their clients. If there exists a site whose NC is342

closer to the CoM, the policy triggers a migration of all splits for that object to this new site.343

4 The list of core and edges sites IP is publicly known. Clients use an IP-to-location service (e.g.
www.iplocation.net) and choose the geographically closest site.

OPODIS 2019

www.iplocation.net

29:10 Split and migrate

core
(L1)

edge1
(L3)

(L2)

(L3)

(L3)

1

3

5
p

1

2

p
2 3

4

p
4 5 66

116 ms

40 ms

140 ms

16 ms

140 ms

40 ms

40 ms

L1L2L3 L2 L3
(omitted)

24 ms

24 ms

60 ms
reg1 edge3

edge2

Figure 5 Topology and first experiment setup.

6 Evaluation344

We evaluate the split and migrate principles with a full prototype, combining Koala, nginx345

reverse proxies, Docker CE for bootstrapping containers on the core and edge sites, and346

ShareLatex as the application.347

Our evaluation aims at answering the following research questions: (i) Is the approach348

able to reduce perceived latencies for users of the application? (ii) Can the policy successfully349

migrate splits between edge sites when users’ locations change? (iii) Is the overhead of using350

Koala and proxying acceptable?351

We consider the three-layer (L1-L3) hierarchical topology shown in Figure 5. Its char-352

acteristics are derived from information obtained from an Internet Service Provider in the353

EU [23]. Layer L1 consists of the core site, L2 of regional sites (reg1) and L3 of edge sites354

(edge1 , edge2 and edge3). We deploy each site on a node of the Grid’5000 [5] testbed. Each355

node features 2 Intel Xeon E5-2630 v3 CPUs and 128GB of RAM. We emulate latencies356

between sites using the tc (traffic control) tool. Note that reg1 is treated as an edge site,357

and that we ignore latencies between users and sites, and model their mobility by enforcing358

that they connect to a specific (closest) site. We use Network Coordinates (NCs) in d = 2359

dimensions for ease of presentation, although a higher dimensionality (e.g. d = 5) would360

yield better estimations. Latencies are measured at the level of the instrumented ShareLatex361

frontend. We emulate the activity of users using the Locust [1] load testing tool, which allows362

describing programmatically the behavior of users as a list of actions and their respective363

occurrence frequencies.364

6.1 Adaptation and split migrations for moving users365

Our first experiment evaluates the ability of our approach to adapt the location of the splits366

for single a ShareLatex project, and the impact this has on latencies. We consider a project367

p shared by two equally active users, one stationary and one who changes her location368

continuously. Each user performs one operation every second, adding a new character to the369

text. The user-perceived latency is measured from the moment the text is updated by one370

user to the moment the update appears in the screen of the other user.371

Figure 5 presents the experiment setup. Figure 6 presents the evolution of the average372

perceived latency for the two users, and Figure 7 presents the evolution of the CoM of the373

project. Circled numbers in all figures show the sequence of operations.374

We follow three phases. In each phase, users are assigned to connection sites, and we375

observe the triggering and impact of the adaptation and resulting split migration decisions.376

Initially, both users are closer to edge1 and therefore connect to that site. The latency for377

updating the text (50 ms) is roughly the RTT between edge1 and core, plus the processing378

G. Tato, M. Bertier, E. Rivière and C.Tedeschi 29:11

0 250 500 750 1000 1250 1500 1750 2000
Time (s)

0

20

40

60

80

100

La
te

n
cy

 (
m

s)
Update text

1

2

3

4

5

6

Figure 6 Evolution of text update latencies
when migrating splits to follow a project CoM.

125

100

75

50

25

0

-25

-50

-40 -35 -30 -25 -20 -15 -10 -5 0 10 15 20 255

edge1

core

1 2 3 4

65

center of mass

reg1 edge2

edge3

site location

Figure 7 Evolution of Network Coordinates
and CoMs when migrating splits.

Project p1 p2 p3 p4 p5 p6 p7 p8 p9 p10
Users u1, u5, u6 u2 u1, u3 u1, u4 u5, u6 u6 u4, u7 u5, u8, u9 u5, u8, u9 u8, u10
User locations e1, e2, e2 e1 e1, e1 e1, e1 e2, e2 e2 e1, e2 e2, e3, e3 e2, e3, e3 e3, e3
Ideal site(s) e2, r1, e1 e1 e1 e1 e2 e2 r1, e1, e2 e3, core, e2 e3, core, e2 e3

Table 1 Distribution of projects, users and ideal site placements.

time, of 40 ms and 10 ms respectively (À in Figure 6). Given that all requests for project p379

originate from the Koala instance on edge1 , that location is also the CoM (À in Figure 7),380

and therefore the policy decides to split and migrate all tagged services to this site (Á). The381

latency drops to slightly over the processing time. In a second phase, we move one of the382

users to edge2 while the service splits for the project are still in edge1 (Â). This results in383

an increase in latencies. When it next triggers, the adaptation policy decides to migrate384

the service splits to reg1 which is closer to the new CoM for the project (Ã). In the third385

phase, we move the user of edge2 and connect it to edge3 (Ä). The service splits are still386

in reg1 , which results in high latencies. Again, the adaptation policy triggers and orders387

the migration of splits to the closest site to the CoM (Å). The core happens to be the best388

compromise to serve the two users connected to edge1 and edge3 . This experiment shows389

that the policy is effective in splitting and migrating a single project according to its user390

locations, for a positive impact on perceived latencies.391

6.2 Evolution of splits distributions392

This second experiment shows how the split and migrate principles allow shifting the load393

from the core servers to edge servers while following the location of the most active users394

in a collection of ShareLatex projects. All services are initially only in core. We consider395

10 users and 10 projects. Each project is edited by 1, 2 or 3 users. The two first lines of396

Table 1 show the mapping between users and projects. The third line indicates the (static)397

user locations for each project.398

We model the activity of users to represent work sessions. During one hour and a half,399

every user randomly picks one of their assigned projects and edits if for a random duration400

of 2 to 10 minutes. The project CoM evolves to follow the location(s) of the currently active401

user(s). The fourth line of Table 1 indicates the possible ideal location(s) for the project402

splits, calculated offline.403

We monitor the location of the service splits for the different projects, taking snapshots404

OPODIS 2019

29:12 Split and migrate

0 1000 2000 3000 4000 5000 6000
Time (s)

core

edge1

edge2

edge3

Lo
ca

ti
o
n
s

p1
p2

p5

p3
p4 p9

p7
p6

p8

p10

p1

p2
p3
p4

p5

p8 p10

p6 p9

p7

p2
p3
p4

p1

p5

p6

p7

p9

p8 p10

p1

p2
p3
p4

p6

p1

p2
p3
p4

p6

p5 p5

p1

p2
p3
p4

p6

p5

p1

p2
p3
p4

p6
p5

p8 p10
p9

p8 p10
p9

p10p9

p8

p7 p7

p7

p10p8

p9

p7

reg1

Figure 8 Evolution of splits placements.

every 1,000 seconds. We run this experiment until the projects with a single ideal site405

placement reach this destination. Figure 8 presents these snapshots and the location of the406

service slices for the 10 projects. Projects whose ideal site is unique, such as p2 -p5 and407

p10, have the corresponding service slices migrated to these sites correctly and immediately.408

Projects with multiple ideal sites see their slices periodically migrate between these sites,409

following the currently active user(s). For instance, splits for p7 move between reg1 and410

edge2 , while splits for p8 and p9 move between edge3 and core. The final site is highlighted411

in boldface in Table 1. This experiment shows that the split and migrate mechanisms and412

the adaptation policy for ShareLatex allow dynamically moving microservices close to the413

users, based on the used resources (projects in ShareLatex).414

6.3 Overheads of Koala and redirections415

In this final experiment we evaluate the costs and overheads of the mechanisms enabling416

transparent call redirections. To isolate the overhead we compare a centralized setting where417

everything is deployed in the core, corresponding to the original ShareLatex model, with a418

one-edge-site setting where requests are redirected from this edge site to the core by Koala.419

Figure 9 presents this setup. We use a 50 ms latency between edge and core sites.420

In both settings, the service split that responds to the user request is in core. In the421

centralized setting the request is first sent to the web core service and then forwarded to the422

right service directly, while in the second setting the request goes first through the local web423

split. This proxies the request to the Koala instance on edge1 , which in turn forwards it to424

the Koala instance in core who then calls the service.425

We distinguish three kinds of requests, two HTTP REST calls and one WebSocket request.426

For the REST calls, we consider a call to tags, for which splitting is disallowed (À), and a427

call to chat, which is splittable using the project identifier as the object (Á). The WebSocket428

request updates the text (writing) Â. It is also a project-specific request and must reach the429

corresponding split of the document-updater service.430

We expect a slightly higher overhead for redirections to split services compared to non-split431

ones. For non-split services, a single interaction with Koala is required (follow À). For split432

services, two interactions are necessary: one to locate the object and one to redirect to the433

correct split (follow Á and Â).434

The operation latencies times of the three requests with and without the redirection are435

shown in Figure 10. We consider two cases for the redirection: without and with caching.436

When the cache is disabled, lookups on the Koala DHT can require multiple hops between437

G. Tato, M. Bertier, E. Rivière and C.Tedeschi 29:13

core

p

chat
tags

Core
Edge

50 ms

chat
tags

Core
Edge50 ms

Koala

Koala

web

web

web

p

edge1

core

real
time

real
time

123
1

2 3
1

2
3

1

2
3 2

3
2

3

1
2

3

1
2

3

...

...

...

...

vs.

Figure 9 Setup for the experiment evaluating the overheads of Koala and redirections.

Centralized Koala
no cache

Koala
cache

0

50

100

150

200

La
te

n
cy

 (
m

s)

Tags
(HTTP, not object-specific)

Centralized Koala
no cache

Koala
cache

0

20

40

60

80

100

120

140

Chat
(HTTP, object - specific)

Centralized Koala
0

10

20

30

40

50

60

Update text
(WebSocket, object-specific)

Figure 10 Evaluation of the overheads of Koala and redirections.

sites and incur a significant and unpredictable penalty. With caching, this penalty is only438

paid for the first access or after a migration invalidates the cached information. WebSocket439

requests occur on an established connection, therefore caching does not apply.440

Figure 10 presents the distribution of latencies for the three operations and for 500441

requests each. We observe a similar performance between the centralized setting and the442

setup using caching. The median overhead of proxying through the local edge site is ≈ 3 ms443

for the non-split service and ≈ 4 ms for the split one. For WebSockets operations this444

difference is smaller, ≈ 1 ms, which can be explained by the fact that this protocol is more445

lightweight than HTTP. Disabling caching leads to significant overheads as every operation446

leads to lookups in the DHT, bouncing between the core and edge Koala instances. This447

experiment shows that the latency impact of proxying through the edge is likely to be448

negligible compared to the gain of using locally-deployed services splits.449

7 Related work450

Previous research advocates to revisit the SOA paradigm for supporting service-based451

applications deployed in edge cloud platforms [19]: In light of the increase of the number of452

services at the edge able to answer a specific query, service registration must take into account453

spatial coverage, and service discovery must take locality into account. Our contributions454

are a step in that direction.455

The placement of applications on fog platforms has been an active research topic in the456

OPODIS 2019

29:14 Split and migrate

recent years. One target domain is IoT applications where data collected from connected457

objects must be processed on nearby resources [24, 34]. Stream processing is another458

application that benefits from deployments on a combination of core and edge resources. It459

explicits its communication patterns (i.e., the directed acyclic graph linking stream processing460

operators), which can be leveraged for optimal placement on edge resources [12]. The Balanced461

RePartitioning (BRP) [4] algorithm targets generic distributed cloud applications and devises462

online algorithms which find a good trade-off between communication and migration costs.463

Our work is linked with the concept of mobile edge clouds, where users move and464

connect to nearby resources dynamically [30]. When the mobility of users is modeled using465

Markov stochastic decision processes, analytical frameworks allow devising close-to-optimal466

algorithms for automating service placement [31]. Other approaches advocate the use of467

genetic algorithms to gradually refine an allocation of services to the edge [33].468

We note that all of the aforementioned work considers the placement (and in some cases469

the migration) of full instances of services. We are not aware of solutions proposing to split470

stateful microservices and support resource-based discovery. State splitting is used, in a471

different context, for the elastic scaling of publish/subscribe middleware [6].472

Research on collaborative edition has focused on enabling correctness and performance,473

including in the presence of network issues. The Jupiter protocol [21, 32] and the RGA474

protocol [22] implement a replicated list object abstraction and define how to propagate475

updates to achieve convergence [3]. Our work is complementary: The responsiveness of476

replicated list object algorithms (i.e. the time between an update and its visibility at the477

other clients) is sensitive to the latency between client nodes and a coordination server.478

Service discovery middleware solutions for data centers typically rely on strongly consistent,479

fully replicated stores maintaining the complete index of services instances and of their480

locations. SmartStack [2], used for example by the Synapse [29] microservices platform,481

is based on Apache ZooKeeper [18]. Similarly to Koala, Synapse instances provide local482

proxies to services, but each maintains a full copy of the index while Koala relies on a483

DHT and caching for scalability. Kubernetes [10] leverages etcd [11] for service discovery.484

Recent work [14] suggests to add support for network coordinates [13] to route requests485

based on network locality. Yet, service selection decision remains a centralized process unlike486

with Koala where it can happen at the edge. Eureka [20] is also centralized but introduces487

the notion of read clusters that can serve requests closer to the clients. Unlike lazy cache488

management in Koala, read clusters must be explicitly synchronized when the service index489

changes. Write clusters can also be replicated, but are only eventually consistent, which490

makes them ill-suited for implementing consistent service migration. Finally, Consul [16]491

supports deployment to multiple data centers, and use network coordinates for location-aware492

selection. Consul only uses consensus-based synchronization within each individual data493

center. Updates propagate lazily between data centers using gossip, preventing consistent494

service relocation across data centers.495

8 Conclusion496

We presented how microservices could be dynamically deployed on a combination of core497

and edge resources. Our approach leverages the possibility to split microservices for which498

partitions of the data can be used to answer subsets of service requests independently. The499

Koala middleware enables to transparently redirect requests to the appropriate split based500

on object information available in REST calls URIs. Migration policies enable a dynamic501

placement of microservices splits on edge sites, and as our evaluation with the ShareLatex502

application shows, allow following the users and reduce perceived latencies.503

G. Tato, M. Bertier, E. Rivière and C.Tedeschi 29:15

This work opens interesting perspectives that we intend to consider in our future work.504

First, we wish to explore the automation of the identification of splittable microservices, and505

the use of static and dynamic analysis techniques to infer the relation between objects and506

state partitions. Second, we intend to extend support middleware to support redirections507

with other forms of communication, such as publish/subscribe or event sourcing [8]. Finally,508

we would like to build tools to automatize the identification of placement policies based on509

dynamic observations of communications between microservices.510

Acknowledgments511

We thank the anonymous reviewers for their comments. This work was partially funded by512

the Belgian FNRS project DAPOCA (33694591) and partly supported by the Inria Project513

Lab program Discovery (http://beyondtheclouds.github.io/).514

References515

1 Locust: An open source load testing tool. https://www.locust.io.516

2 Airbnb. SmartStack Service Discovery in the Cloud. https://bit.ly/2SAvRHn.517

3 Hagit Attiya, Sebastian Burckhardt, Alexey Gotsman, Adam Morrison, Hongseok Yang, and518

Marek Zawirski. Specification and complexity of collaborative text editing. In ACM Symposium519

on Principles of Distributed Computing, PODC. ACM, 2016.520

4 Chen Avin, Andreas Loukas, Maciej Pacut, and Stefan Schmid. Online balanced repartitioning.521

In International Symposium on Distributed Computing, DISC. Springer, 2016.522

5 Daniel Balouek, Alexandra Carpen Amarie, Ghislain Charrier, Frédéric Desprez, Emmanuel523

Jeannot, Emmanuel Jeanvoine, Adrien Lèbre, David Margery, Nicolas Niclausse, Lucas524

Nussbaum, Olivier Richard, Christian Pérez, Flavien Quesnel, Cyril Rohr, and Luc Sarzyniec.525

Adding virtualization capabilities to the Grid’5000 testbed. In Cloud Computing and Services526

Science, volume 367 of Communications in Computer and Information Science. Springer, 2013.527

6 Raphaël Barazzutti, Thomas Heinze, André Martin, Emanuel Onica, Pascal Felber, Christof528

Fetzer, Zbigniew Jerzak, Marcelo Pasin, and Etienne Rivière. Elastic scaling of a high-529

throughput content-based publish/subscribe engine. In 34th International Conference on530

Distributed Computing Systems, ICDCS. IEEE, 2014.531

7 David Bernstein. Containers and cloud: From LXC to Docker to Kubernetes. IEEE Cloud532

Computing, 1(3):81–84, 2014.533

8 Dominic Betts, Julian Dominguez, Grigori Melnik, Fernando Simonazzi, and Mani Subrama-534

nian. Exploring CQRS and Event Sourcing: A journey into high scalability, availability, and535

maintainability with Windows Azure. Microsoft patterns & practices, 2013.536

9 Fabienne Boyer, Xavier Etchevers, Noël De Palma, and Xinxiu Tao. Architecture-based537

automated updates of distributed microservices. In International Conference on Service-538

Oriented Computing, ICSOC. Springer, 2018.539

10 Cloud Native Computing Foundation. Kubernetes. https://kubernetes.io/.540

11 CoreOS. Etcd reliable key-value store. https://coreos.com/etcd/.541

12 Alexandre da Silva Veith, Marcos Dias de Assuncao, and Laurent Lefevre. Latency-aware542

placement of data stream analytics on edge computing. In International Conference on543

Service-Oriented Computing, ICSOC. Springer, 2018.544

13 Frank Dabek, Russ Cox, Frans Kaashoek, and Robert Morris. Vivaldi: A decentralized network545

coordinate system. In ACM SIGCOMM Computer Communication Review, volume 34, 2004.546

14 Ali Fahs and Guillaume Pierre. Proximity-aware traffic routing in distributed fog computing547

platforms. In IEEE/ACM International Symposium in Cluster, Cloud, and Grid Computing,548

CCGrid, 2019.549

15 Yu Gan, Yanqi Zhang, Dailun Cheng, Ankitha Shetty, Priyal Rathi, Nayan Katarki, Ariana550

Bruno, Justin Hu, Brian Ritchken, Brendon Jackson, et al. An open-source benchmark suite551

for microservices and their hardware-software implications for cloud & edge systems. In 24th552

OPODIS 2019

https://www.locust.io
https://bit.ly/2SAvRHn
https://kubernetes.io/
https://coreos.com/etcd/

29:16 Split and migrate

International Conference on Architectural Support for Programming Languages and Operating553

Systems, ASPLOS. ACM, 2019.554

16 HashiCorp. Consul. https://www.consul.io/.555

17 Wilhelm Hasselbring and Guido Steinacker. Microservice architectures for scalability, agility556

and reliability in e-commerce. In Workshops of the Intl. Conf. on Software Architecture, ICSA557

Workshops. IEEE, 2017.558

18 Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. Zookeeper: Wait-free559

coordination for internet-scale systems. In USENIX Annual Technical Conference, ATC, 2010.560

19 Valérie Issarny, Georgios Bouloukakis, Nikolaos Georgantas, and Benjamin Billet. Revisiting561

service-oriented architecture for the IoT: a middleware perspective. In International Conference562

on Service-Oriented Computing, ICSOC. Springer, 2016.563

20 Netflix. Eureka 2.0. https://bit.ly/2Mcexda.564

21 David A Nichols, Pavel Curtis, Michael Dixon, John Lamping, et al. High-latency, low-565

bandwidth windowing in the jupiter collaboration system. In ACM Symposium on User566

Interface Software and Technology, 1995.567

22 Hyun-Gul Roh, Myeongjae Jeon, Jin-Soo Kim, and Joonwon Lee. Replicated abstract data568

types: Building blocks for collaborative applications. Journal of Parallel and Distributed569

Computing, 71(3):354–368, 2011.570

23 Sanhaji A. (Orange Labs Networks, France). Private communication, 2019.571

24 Olena Skarlat, Matteo Nardelli, Stefan Schulte, Michael Borkowski, and Philipp Leitner.572

Optimized iot service placement in the fog. Service Oriented Computing and Applications,573

11(4), 2017.574

25 Genc Tato, Marin Bertier, Etienne Rivière, and Cédric Tedeschi. Sharelatex on the edge:575

Evaluation of the hybrid core/edge deployment of a microservices-based application. In 3rd576

Workshop on Middleware for Edge Clouds & Cloudlets, MECC. ACM, 2018.577

26 Genc Tato, Marin Bertier, and Cédric Tedeschi. Designing overlay networks for decentralized578

clouds. In Int. Conf. on Cloud Computing Technology and Science, CloudCom. IEEE, 2017.579

27 Genc Tato, Marin Bertier, and Cédric Tedeschi. Koala: Towards lazy and locality-aware580

overlays for decentralized clouds. In 2nd IEEE International Conference on Fog and Edge581

Computing, ICFEC, 2018.582

28 Giovanni Toffetti, Sandro Brunner, Martin Blöchlinger, Florian Dudouet, and Andrew Ed-583

monds. An architecture for self-managing microservices. In AIMC Workshop. ACM, 2015.584

29 Nicolas Viennot, Mathias Lécuyer, Jonathan Bell, Roxana Geambasu, and Jason Nieh. Synapse:585

A microservices architecture for heterogeneous-database web applications. In 10th European586

Conference on Computer Systems, ACM EuroSys, 2015.587

30 Shiqiang Wang, Rahul Urgaonkar, Ting He, Kevin Chan, Murtaza Zafer, and Kin K Leung.588

Dynamic service placement for mobile micro-clouds with predicted future costs. IEEE589

Transactions on Parallel and Distributed Systems, 28(4), 2016.590

31 Shiqiang Wang, Rahul Urgaonkar, Murtaza Zafer, Ting He, Kevin Chan, and Kin K Leung.591

Dynamic service migration in mobile edge-clouds. In IFIP Networking Conference, 2015.592

32 Hengfeng Wei, Yu Huang, and Jian Lu. Specification and Implementation of Replicated List:593

The Jupiter Protocol Revisited. In 22nd International Conference on Principles of Distributed594

Systems, OPODIS, Leibniz International Proceedings in Informatics (LIPIcs), 2018.595

33 Hongyue Wu, Shuiguang Deng, Wei Li, Min Fu, Jianwei Yin, and Albert Y Zomaya. Service596

selection for composition in mobile edge computing systems. In International Conference on597

Web Services, ICWS. IEEE, 2018.598

34 Ye Xia, Xavier Etchevers, Loic Letondeur, Adrien Lebre, Thierry Coupaye, and Frédéric599

Desprez. Combining heuristics to optimize and scale the placement of iot applications in the600

fog. In IEEE/ACM 11th Int. Conf. on Utility and Cloud Computing, UCC, 2018.601

35 Uwe Zdun, Elena Navarro, and Frank Leymann. Ensuring and assessing architecture confor-602

mance to microservice decomposition patterns. In International Conference on Service-Oriented603

Computing, ICSOC. Springer, 2017.604

https://www.consul.io/
https://bit.ly/2Mcexda

	Introduction
	ShareLatex and its core/edge deployment
	Splitting microservices
	Discovering and redirecting to microservice splits
	Discovery of microservice splits with Koala
	Transparent redirection of REST service calls

	Splits creation and migration policy
	Evaluation
	Adaptation and split migrations for moving users
	Evolution of splits distributions
	Overheads of Koala and redirections

	Related work
	Conclusion

