G. Van, H. Melenhorst, W. B. Turner, A. J. Holgate, and S. T. , Adamalysins in biology and disease, The Journal of Pathology, vol.219, pp.1096-9896, 2009.

, The ADAMTS hyalectanase family : biological insights from diverse species, 2019.

A. Naba, The extracellular matrix : Tools and insights for the "omics" era, Matrix Biology : Journal of the International Society for Matrix Biology, vol.49, pp.1569-1802, 2016.

D. Hubmacher and S. S. Apte, ADAMTS proteins as modulators of microfibril formation and function, Matrix Biology : Journal of the International Society for Matrix Biology, vol.47, pp.1569-1802

M. Bekhouche, Determination of the substrate repertoire of ADAMTS2, 3, and 14 significantly broadens their functions and identifies extracellular matrix organization and TGF? signaling as primary targets. FASEB journal : official publication of the Federation of American Societies for, Experimental Biology, vol.30, pp.1530-6860, 2016.
URL : https://hal.archives-ouvertes.fr/hal-02342452

K. Bourd-boittin, Protease profiling of liver fibrosis reveals the ADAM metallopeptidase with thrombospondin type 1 motif, 1 as a central activator of transforming growth factor beta, Hepatology, vol.54, pp.1527-3350, 2011.

C. Le-goff, ADAMTSL2 mutations in geleophysic dysplasia demonstrate a role for ADAMTS-like proteins in TGF-beta bioavailability regulation, Nature Genetics, vol.40, pp.1061-4036, 2008.

D. Ahram, A homozygous mutation in ADAMTSL4 causes autosomal-recessive isolated ectopia lentis, American Journal of Human Genetics, vol.84, pp.1537-6605, 2009.

K. Tsutsui, ADAMTSL-6 Is a Novel Extracellular Matrix Protein That Binds to Fibrillin-1 and Promotes Fibrillin-1 Fibril Formation, The Journal of Biological Chemistry, vol.285, pp.21-9258, 2010.

M. W. Pickup, J. K. Mouw, and V. M. Weaver, The extracellular matrix modulates the hallmarks of cancer, EMBO reports, vol.15, pp.1469-3178

S. Cal and C. López-otín, ADAMTS proteases and cancer, Matrix Biology : Journal of the International Society for Matrix Biology, vol.44, pp.1569-1802, 2015.

L. Wagstaff, R. Kelwick, J. Decock, and D. R. Edwards, The roles of ADAMTS metalloproteinases in tumorigenesis and metastasis, Frontiers in Bioscience, vol.16, pp.1093-4715, 2011.

Y. Sun, J. Huang, and Z. Yang, The roles of ADAMTS in angiogenesis and cancer, Tumour Biology : The Journal of the International Society for Oncodevelopmental Biology and Medicine, vol.36, pp.1423-0380

W. S. Valdar, Scoring residue conservation, Proteins : Structure, Function, and Bioinformatics, vol.48, pp.1097-0134, 2002.

J. A. Capra and M. Singh, Predicting functionally important residues from sequence conservation, Bioinformatics, vol.23, issue.1, pp.1367-4803, 2007.

W. R. Pearson and D. J. Lipman, Improved tools for biological sequence comparison. Proceedings of the National Academy of Sciences of the United States of America, vol.85, pp.27-8424, 1988.

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, pp.22-2836, 1990.

C. Camacho, BLAST+ : architecture and applications, BMC bioinformatics, vol.10, pp.1471-2105, 2009.

M. A. Larkin, Clustal W and Clustal X version 2.0, Bioinformatics, vol.23, pp.1367-4811, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00206210

J. D. Thompson, D. G. Higgins, and T. J. Gibson, CLUSTAL W : improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice, Nucleic Acids Research, vol.22, pp.305-1048, 1994.

M. Steinegger and J. Söding, MMseqs2 enables sensitive protein sequence searching for the analysis of massive data sets, Nature Biotechnology, vol.35, pp.1546-1696

F. Coste and G. Kerbellec, Learning Automata on Protein Sequences, 2006.
URL : https://hal.archives-ouvertes.fr/inria-00180429

J. Castresana, Selection of Conserved Blocks from Multiple Alignments for Their Use in Phylogenetic Analysis, Molecular Biology and Evolution, vol.17, pp.737-4038

N. J. Mulder and R. Apweiler, Tools and resources for identifying protein families, domains and motifs, Genome Biology, vol.3, pp.1465-6906, 2002.

S. Deng, J. Lu, W. Fu, and P. Yu, Prediction of protein function by combining phylogenetic tree and mathematical, 2014 7th International Conference on Biomedical Engineering and Informatics 2014 7th International Conference on Biomedical Engineering and Informatics, pp.896-901, 2014.

D. Brown and K. Sjölander, Functional Classification Using Phylogenomic Inference, PLoS Computational Biology, vol.2, pp.1553-734, 2006.

B. E. Engelhardt, M. I. Jordan, S. T. Repo, and S. E. Brenner, Phylogenetic molecular function annotation, Journal of physics. Conference series, vol.180, pp.1742-6588, 12024.

B. Rost, Enzyme function less conserved than anticipated, Journal of Molecular Biology, vol.318, pp.22-2836, 2002.

J. A. Somarelli, Understanding cancer through phylogenetic analysis, Biochimica Et Biophysica Acta. Reviews on Cancer, vol.1867, pp.304-419, 2017.

I. J. Pepper, R. E. Van-sciver, and A. H. Tang, Phylogenetic analysis of the SINA/SIAH ubiquitin E3 ligase family in Metazoa, BMC evolutionary biology, vol.17, pp.1471-2148, 2017.

C. Solís-calero and H. F. Carvalho, Phylogenetic, molecular evolution and structural analyses of the WFDC1/prostate stromal protein 20 (ps20), Gene, vol.686, pp.1879-1917, 2019.

L. Y. Rusin, E. V. Lyubetskaya, K. Y. Gorbunov, and V. A. Lyubetsky, Reconciliation of Gene and Species Trees BioMed Research International, 2019.

C. Vogel, M. Bashton, N. D. Kerrison, C. Chothia, and S. A. Teichmann, Structure, function and evolution of multidomain proteins, Current Opinion in Structural Biology, vol.14, pp.959-440, 2004.

H. Tordai, A. Nagy, K. Farkas, L. Bányai, and L. Patthy, Modules, multidomain proteins and organismic complexity, The FEBS Journal, vol.272, pp.1742-4658

, , 2005.

T. Miyata and H. Suga, Divergence pattern of animal gene families and relationship with the Cambrian explosion, BioEssays : News and Reviews in Molecular, Cellular and Developmental Biology, vol.23, pp.265-9247, 2001.

I. Ben-shlomo, S. Yu-hsu, R. Rauch, H. W. Kowalski, and A. J. Hsueh, Signaling receptome : a genomic and evolutionary perspective of plasma membrane receptors involved in signal transduction. Science's STKE : signal transduction knowledge environment, vol.9, pp.1525-8882, 2003.

L. Patthy, Modular Assembly of Genes and the Evolution of New Functions, Genetica, vol.118, pp.1573-6857, 2003.

M. Stolzer, K. Siewert, H. Lai, M. Xu, and D. Durand, Event inference in multidomain families with phylogenetic reconciliation, BMC Bioinformatics, vol.16, pp.1471-2105, 2015.

M. Stolzer, Phylogenetic Inference for Multidomain Proteins Thesis (1 er juil, 2018.

L. Li and M. S. Bansal, Simultaneous Multi-Domain-Multi-Gene Reconciliation Under the Domain-Gene-Species Reconciliation Model in ISBRA, 2019.

, UniProt : a worldwide hub of protein knowledge, Nucleic Acids Research, vol.47, pp.305-1048, 2019.

N. Ward and G. Moreno-hagelsieb, Quickly Finding Orthologs as Reciprocal Best Hits with BLAT, LAST, and UBLAST : How Much Do We Miss ? PLOS ONE 9, pp.1932-6203, 2014.

E. W. Sayers, Database resources of the National Center for Biotechnology Information, Nucleic Acids Research, vol.37, 2009.

R. C. Edgar, MUSCLE : multiple sequence alignment with high accuracy and high throughput, Nucleic Acids Research, vol.32, pp.305-1048, 2004.

S. Capella-gutiérrez, J. M. Silla-martínez, and T. Gabaldón, trimAl : a tool for automated alignment trimming in large-scale phylogenetic analyses, Bioinformatics, vol.25, issue.1, pp.1367-4803, 2009.

S. Guindon and O. Gascuel, A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood, Systematic Biology, vol.52, pp.1063-5157, 2003.

M. S. Bansal, Y. Wu, E. J. Alm, and M. Kellis, Improved gene tree error correction in the presence of horizontal gene transfer, Bioinformatics, vol.31, pp.1367-4803

E. Turro, W. J. Astle, and S. Tavaré, Flexible analysis of RNA-seq data using mixed effects models, Bioinformatics, vol.30, pp.1367-4811, 2014.

Z. Galil and G. F. Italiano, Data Structures and Algorithms for Disjoint Set Union Problems, ACM Comput. Surv, vol.23, pp.319-344, 1991.

B. Aranda, PSICQUIC and PSISCORE : accessing and scoring molecular interactions, Nature Methods, vol.8, pp.1548-7105

C. De and E. , ScanProsite : detection of PROSITE signature matches and ProRuleassociated functional and structural residues in proteins, Nucleic Acids Research, vol.34, 2006.

S. T. Sherry, dbSNP : the NCBI database of genetic variation, Nucleic Acids Research, vol.29, pp.1362-4962, 2001.

J. Huerta-cepas, F. Serra, and P. Bork, ETE 3 : Reconstruction, Analysis, and Visualization of Phylogenomic Data, Molecular Biology and Evolution, vol.33, issue.1, pp.737-4038, 2019.

A. Kress, O. Lecompte, O. Poch, and J. D. Thompson, PROBE : analysis and visualization of protein block-level evolution, Bioinformatics, vol.34, pp.1367-4811, 2018.

, Mus musculus, Histoire des 76 paralogues et orthologues des espèces Homo sapiens, Bos taurus, Rattus norvegicus, vol.1