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Abstract—We propose a new framework for deploying Re- of stencil computational kernels and I/O operations. RTM
verse Time Migration (RTM) simulations on distributed-memory  pelongs to the class of out-of-core algorithms, since its com-
systems equipped with multiple GPUs. Our software, TB-RTM, - ;tation requires to of oad to disk snapshots of the domain

infrastructure engine relies on the SARPU dynamic runtime luti t fi int s during the f d deli
system to orchestrate the asynchronous scheduling of RTM com- solution at many me intervals during the tforward modeling

putational tasks on the underlying resources. Besides dealing with Phase. During the backward time integration, these snapshots
the challenging hardware heterogeneity, TB-RTM supports tasks need to be read back at the same intervals. The backward
with different workload characteristics, which stress disparate sp|ution at the current time step is then differenced with its
components of the hardware system. RTM is challenging in that fraghly fetched-in counterpart from the forward modeling in

it operates intensively at both ends of the memory hierarchy, - . - .

with compute kernels running at the highest level of the memory order to Incrementally calgulqte the image condition, untll' the
system, possibly in GPU main memory, while /0 kernels are Subsurface image from this single shot is eventually obtained.
saving solution data to fast storage. We consider how to span We are interested in deploying large-scale RTM simula-
the wide performance gap between the two extreme ends of the tions on massively parallel systems equipped with multiple
memory system, i.e., GPU memory and fast storage, on which Gpys The hardware technology as well as the development

large-scale RTM simulations routinely execute. To maximize f high st it I to desi d imol ¢
hardware occupancy while maintaining high memory bandwidth  ©' N'gh storage capacilies aflow o design and impiemen

throughout the memory subsystem, our framework presents the advanced optimizations for enhancing RTM performance [2].
new out-of-core (OOC) feature from STARPU to prefetch data RTM usually suffers from 1/O performance bottlenecks due
solutions in and out not only from/to the GPU/CPU main memory to unnecessary synchronizations, which prevents overlapping
but also from/to the fast storage system. The OOC technique may q415 traf ¢ with computations. Moreover, the RTM simulation

trigger opportunities for overlapping expensive data movement . .
with computations. TB-RTM framework addresses this challeng- in a production mode actually operates several thousand shots

ing problem of heterogeneity with a systematic approach that is running simultaneously in an embarrassingly parallel fashion,
oblivious to the targeted hardware architectures. Our resulting until the shot gather phase is initiated and generates the nal
RTM framework can effectively be deployed on massively parallel sybsurface image. These inner and outer shot synchronization
GPU-based systems, while delivering performance scalability up points in the RTM may create idle time and make the overall
to 500 GPUs. . . :

RTM simulation running at the speed of the slowest shot.

Index Terms—Reverse Time Migration, Task-Based Program- .
ming Model, Out-Of-Core Algorithms, Asynchronous Executions, 1he RTM stresses all components of the underlying hardware

Overlapping 1/0 with Computation, STARPU OOC systems, i.e., vector units, memory/storage bandwidth, and
point-to-point hardware interconnect. Although the workload
l. INTRODUCTION between shots is usually identical, load imbalance may occur

Seismic imaging is the process of mapping out subsurfalbetween shots, which impedes performance scalability.
deposits of crude oil, natural gas, and minerals by sensing théVe propose a novel software framework based on a task-
response of waves sent into the earth to map its re ectivityased programming model to tackle asynchronous RTM (TB-
distribution. Reverse time Migration (RTM), initiated in theRTM) for seismic imaging that leverages the performance of
early 1980s [1], is a seismic imaging method that mapsulticore and GPU-based systems. The main idea is to taskify
the subsurface re ectivity using recorded seismic waveformthe RTM by considering its various kernels as a monolithic
RTM is one of the major workhorse simulations in the oil anthsk. The resulting TB-RTM can then be translated into a
gas industry. It calculates high-resolution images by solvirdirected acyclic graph (DAG), where nodes represent tasks and
the three dimensional acoustic wave equation using seisreitges correspond to data dependencies. Tir&BU [3] dy-
datasets recorded during a shot, a particular source locati@mic runtime system is then employed to map the scheduling
creating an acoustic wave. Applying nite-difference timeof these tasks onto the system' resourcesARFPU abstracts
domain, the time integration follows an adjoint-state formuhe hardware complexity from end-users and provides portabil-
lation with two successive phases, i.e., forward modelirity across heterogeneous shared/distributed-memory machines.
and backward integration. These phases are mostly compo€eate SARPU is integrated as the driving engine, TB-RTM



enables decoupling the 1/0O operations from the computatior{alg., Dirichlet) and do not consider the full RTM ecosys-
kernels. The overall TB-RTM application withTSRPU can tem and speci cations. For instance, the temporal blocking
then foster asynchronous executions, bringing to the fostencil kernel optimization from Girih [25] may encounter
new opportunities for overlapping primary with non-criticaperformance issues [27] when incorporating the Convolutional
operations. In particular, the write and read I/O operations m&erfectly Matched Layer (CPML) [28], which corresponds to
be overlapped with tasks that belong to the critical path, sutthe RTM reference in terms of absorbing boundary conditions.
as compute-bound GPU stencil kernels during the forwalihis highlights the importance of developing a modular RTM
and backward modeling, respectively. TB-RTM promotes feamework, where high performance stencil kernels can be
systematic approach to exploit parallelism at all computationategrated, validated and evaluated directly from the RTM
stages, while weakening the strong synchronization points gdrspective.

the native RTM and mitigating the overhead of load imbalance There have been few attempts to provide a modular frame-
due to on-node shared hardware resources. work for the stencil computations. Devito [29], [30] generates

All'in all, STARPU orchestrates at runtime the asynchronougptimized wave propagation kernels for use in seismic imag-
scheduling of various computational tasks of TB-RTM, ining. However, Devito relies on the fork-join paradigm from the
cluding stencil kernel computations (compute-bound), da@penMP programming model [31] and SIMD optimizations
transfers between host/device main memory (memory-bourid) parallel performance. Besides not supporting asynchronous
and data transfers between CPU memory and disk storagecutions, it only runs on homogeneous x86 systems. More-
(I0-bound). Last but not least, TB-RTM takes advantage ofaver, it does not provide a prefetching mechanism to mitigate
new out-of-core (OOC) feature fronTSRP U, which supports the I/O overheads. There are other RTM frameworks solving
prefetching mechanisms to further reduce the overheads3&i problems developed in the academic eld [32], [33] and
data movement not only from/to CPU and GPU main menm the context of industrial seismic applications ( [34]-[36]),
ory but also from/to CPU main memory and fast storageut, here again, they do not adopt a dynamic runtime system
drives. The OOC optimization technique is instrumental ito orchestrate the scheduling of the various RTM tasks.
maximizing the hardware occupancy. To our knowledge, TB- Out-of-core (OOC) algorithms have been extensively stud-
RTM is the rst task-based software framework to tackle thied in the literature [37]-[41]. Memory is typically a scare
full RTM application. We deploy TB-RTM on two world- resource, especially on GPUs, for which the memory capacity
class GPU-based HPC supercomputers, i.e., Tsubame 3.0 say be at least an order of magnitude lower than the main
Summit, ranked 22nd and 1st, respectively, in the Top500 framemory of a CPU. This memory capacity limitation has been
November 2018 [4]. We demonstrate the effectiveness of thether exacerbated with the advent of big data problems.
OOC feature and scale the TB-RTM framework up to 500here have been some software tools development [42], [43] to
GPUs. We run against 3D synthetic and real velocity modedsidress OOC algorithms but none provide seamlessly support
and assess the numerical property of the obtained seisruc transferring data from GPU main memory all the way to
subsurface image. fast storage drives.

The remainder of this paper is organized as follows. Sec-All in all, our proposed software framework implementing
tion Il provides related work in the context of out-of-coreTask-Based RTM (TB-RTM), powered by ther&PU dy-
approaches for scienti c applications. Section Il presentsamic runtime system, highlights a systematic approach for
our contributions. Section IV describes the seismic imagirtardware-oblivious scheduling of RTM tasks, for data traf c
applications and the related challenges. Section V highlighigerhead reduction thanks to the OOC feature, for mitigating
the components of our proposed software framework to deplmad imbalance due to shared resources, and for rapid deploy-
large-scale task-based RTM simulations usingafPU on  ment on large-scale systems equipped with multiple GPUs.
heterogeneous machines. Section VI details our high perfor-
mance implementation. Section VII reports the performance
impact of OOC techniques and demonstrates the scalability off he contributions of this paper are as follows:
our task-based RTM on two leading-edge supercomputers, i.e., Deploy a novel software framework for Task-Based
Tsubame 3.0 and Summit, using synthetic velocity models. Reverse Time Migration (TB-RTM) that leverages the
Section VIII summarizes the contributions of this paper and performance of large-scale GPU-based systems.
discusses future work. Integrate the $ARPU dynamic runtime system to asyn-
chronously schedule the various tasks of the RTM appli-
cation, while maximizing hardware occupancy.

With the development of advanced vector instruction sets, Leverage the out-of-core feature fromARPU to further
there have been many research studies addressing the chal- mitigate the 1/0O overheads during the RTM simulation.
lenges of a faster computational stencil kernels on homoge- Promote a systematic approach within TB-RTM to ensure
neous x86 and GPU-based systems using spatial [5]-[15] or software portability and to address load imbalance.
temporal blocking [16]-[26]. These stencil kernel optimiza- Demonstrate performance scalability up to 500 GPUs on
tions are key components to the Reverse Time Migration two large-scale GPU-based systems, i.e., Tsubame 3.0
(RTM), but they usually rely on simple boundary conditions  and Summit.

IIl. CONTRIBUTIONS

Il. RELATED WORK



Assess the TB-RTM numerical accuracy by using a symaves into the subsurface. The waves get re ected off layer
thetic velocity model and generating the correspondifgpundaries called re ectors in the seismic literature. The
seismic subsurface image. arrival times and amplitudes of the re ected waves on the

To our knowledge, our TB-RTM software framework is théurface is recorded then detected by the receivers (R), these
rst task-based library designed holistically driven by a dytraces are stored for every shot independently.

namic runtime system (i.e., TARPU) to tackle full RTM
simulations.

Algorithm 1 Pseudo-code of the full RTM application.

1: Init Buffers
IV. REVERSETIME MIGRATION FOR SEISMIC IMAGING 2: for Shot=0 to Last 1do
Read Sismos Traces

The Reverse Time Migration (RTM) solves a two-way s ) .
for Timestep =0 to LastTimestep FWD do

numerical PDE based on the rst or second-order formulatior"
of the 3D wave equation. The equation is discretized usiné: Update Source Wavelet
a nite-difference time-domain method. RTM relies on the & Compute Wave eld
Convolutional Perfectly Matched Layer (CPML) [44] to set ” Write Snapshotf (Timestep%K = 0)
up the absorbing boundary conditions. & end for _

The work ow of the RTM is a collection of several shots, & or Timestep = LastTimestep to 0 BWD do
which accumulates the local data solution from individualt® Update Receivers Data
shots to eventually generate the nal seismic subsurface imade Compute Waveeld
As shown in Fig. 1, the RTM work ow starts with a velocity *° Read FWD Snapshat (Timestep%K = 0)
model of the earth as an input for each shot experiment Apply Image Conditionf (Timestep%K = 0)

It illustrates the kernels of the RTM with green circles ford  €nd for
15: end for

16: for All Shots do
17:  Gather Images
18: end for

19: Save Final Image

"#$ o, 6 KRW "#$ o

The source wave eld, i.e., the wave eld whose origin is
the seismic source, is propagated forward in time during a
computational phase referred as the seismic modeling phase.
77777 R Y The receiver wave eld, i.e., a wave eld that is incident from
=ty . the receivers, is then propagated back in time, during the
backward modeling phase. The stencil computational kernels,
which include CPML, are the main substance of both afore-
mentioned propagations. Finally, the imaging condition phase
is incrementally calculated throughout the backward modeling
phase. The latter phase requires the source wave eld, com-
puted during the forward modeling, and the receiver wave eld,
N both at the same time step. Algorithm 1 provides the standard

L5988, 52 | RTM pseudo-code and highlights both forward (i.e., lines 4-
8) and backward (i.e., lines 9-14) computational phases of the
Fig. 1: Color-coded RTM owchart fon shots: green circles RTM.
represents GPU computation kernels, red (and blue) circles foDuring the forward modeling, the source wave eld is stored
I/0 and memory kernels, purple circles for reduction kerneleyery K time step. Given that the source and receiver
and yellow diamonds for conditionals to trigger I/O operationsvave elds are advanced along opposite time directions, this
means that their values need to be stored at a specic time
GPU computation kernels, red (and blue) circles for I/Gtep period that does not excekd for someK > 1. The
and memory kernels, purple circles for reduction kernel, amthoice of the value oK is based on the Nyquist-Shannon
yellow diamonds for conditionals to trigger /0O operationssampling theorem [32]. During the backward propagation, the
The time-stepping loop in each shot is independent of theeded forward value is loaded evéfy" time step and the
others. The communication occurs after the backward phaseging condition is performed at the same time step.
when gathering and stacking the image per shot into theFor example, ifK =20, a snapshot of the solution has to
nal image. In Fig. 1, Sismos refers to a set of data inpuie saved in memory ever30 time steps during the forward
required by each shot and obtained prior running RTM (in ghase and read back during the backward phase at identical
seismic acquisition step). In modeling the seismic acquisitiotime steps. Since RTM simulations run for thousands of
we activate a source (S) to send arti cially-generated seisntime steps, this results in an enormous burden on memory,

‘‘‘‘‘




which current memory technologies cannot accommodafdlgorithm 2 SIMWAVE Pseudo-code for Stencil Computa-
This makes the RTM an I/O-intensive application, in additiofional Kernel

to being compute-intensive. Given that the compute workload: Input: U(Ny; Ny;N;t)

may usually be executed faster than the 1/O workload, the: Output:U(Ny;Ny;N;t+1)

overall time to solution may be solely driven by the 1/0 3: for z=0 to N, do

bandwidth. For small time step perid¢l, frequently hitting 4: for y =0 to Ny do

disk storage may not be an option, so a systematic approach %o for x =0 to Ny do

provide out-of-core feature in the context of RTM simulationss: COMPUTE LAPLACIAN
iSs necessary. 7 if z, x, y is inner eld then
8: UPDATE INNER FIELDS
V. TASK-BASED RTM SOFTWARE FRAMEWORK 9 else

Our software infrastructure of the TB-RTM frameworkaio: UPDATE PML FIELDS

depends on two main libraries: SIMWAVE and&RPU [3]. 11 end if
. . 12: end for

A. The SIMWAVE Stencil Computational Kernels 13 end for

SIMWAVE is a core library that provides CPU and GPUi4: end for
stencil kernels to TB-RTM. It is an in-house implementation
of RTM kernels, as introduced in Algorithm 2. It includes
CPML absorbing boundary conditions and generated veloc#yivironment through an MPI layer withirTSRPU-MPI [45].
models. The second-order formulation of the 3D acoustic waliring execution, the runtime system can automatically decide
equation is: which task implementation is suited to achieve the highest

N+l _ n n o1 2 2. performance based on cost models, which are automatically

Uik =2V Ui +°|%j;k % Ui +Cﬁi?k st (1) computed by $ARPU when executing the application. A
The Equation 1, which is explicitly second-order in time, iginique feature from 8RPU is the support of Out-Of-Core
discretized to eighth-order in space by replacing thd, ~ (OOC) data management. The OOC feature enabfeBU
term with a 25-point star stencil. This is a proxy discretizatiol® monitor the GPU/CPU memory usage at runtime. In case
for seismic imaging in oil and gas industry. This high-ordethe de ned memory capacity is reached on GPU and CPU,
discretization scheme renders the stencil computational k&FARPU may start ushing in and out to CPU and disk storage
nels compute-intensive. The algorithmic complexity is furthdhe data registered inT8RPU radar, respectively. T8RPU
exacerbated when considering CPML into the stencil kerne@xposes environment variables, which enables end-users to
Algorithm 2 highlights the SIMWAVE Pseudo-code for thecontrol and monitor internal settings and tunable parameters.
stencil kernel. The 3D data is fetched slice by slice from Every task in RTM (see Fig. 1) needs to be de ned as a
GPUs global memory and stored in local memory whef@TARPU codelet, along with data directions (i.e., IN, OUT,
each CUDA worker thread sweeps along the Z dimensiodnd INOUT), which are used as a basis bya8PU to track
The Z dimension is the fastest index since data solution dgta dependencies among the various computational tasks.
contiguously stored in memory along this dimension. While
TB-RTM is currently tailored for SIMWAVE stencil kernels' V1. IMPLEMENTATION DETAILS
APIs, integrating other stencil implementations is also possibleIn TB-RTM, we matricize the three dimensional domains (or
thanks to the modularity of TB-RTM. The default valuekof tensor) so that we can leverage the Chameleon library [46],
in SIMWAVE is given by the Nyquist limit, which is computed designed for dense linear algebra tile algorithms, in addition
asKny s= ((2:0 FrequenCyma)=t) ¥ +1. to the SSARPU dynamic runtime system. Computational tasks
can then operate on data that is contiguous in memory to
reduce cache misses.

STARPU is a dynamic runtime system of task-based
scheduling on heterogeneous multicore and manycore archi- 12sks and Concurrency
tectures. It is perhaps one of the most mature, comprehensivéndeed, TB-RTM supports two task granularities: at the level
dynamic task-based runtime systems. There are three ceha full domain (i.e., coarse granularity) and at the level of a
tral components: data, codelets and tasks. Application datzhdomain within a single shot (i.e., ne granularity) in case
is registered to $ARPU so that the latter can manage it®f domain decomposition. For both granularities, we matricize
location at will between the GPU memory, the main memorthe three dimensional domains (or tensor) so that we can
and the disk. Codelets group under the same name multifdeerage the Chameleon library [46], designed for dense linear
implementations (CPU, CUDA, etc.) of the same computatiaigebra tile algorithms, in addition to ther&kPU dynamic
function (e.g., stencil kernel). Tasks correspond then to thentime system. Computational tasks can then operate on data,
application of a codelet on data inputs and outputs. Thehich is contiguous in memory to reduce cache misses. The
runtime system is able to transparently handle the executi@msor is registered inTBRPU so that the runtime monitor the
on multiple heterogeneous nodes in a distributed-mematsta location and task readiness for the prefetching mechanism

B. TheSTARPU Dynamic Runtime System
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(a) Tsubame node: P100 GPU with SSDs.
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(b) Tsubame node: V100 GPU with NVMe.

Fig. 2: Time to the solution of single shot RTM simulation on one node of Tsubame and Summit against different snapshotting
methods supported in TB-RTM in addition to SIMWAVE as our baseline.

Algorithm 3 TB-RTM

1: Insert Task: Init Buffers
2: for Shot=0 to Last 1do

3:
4:
5

© o N2

10:
11:
12:
13:

14:
15:
16:
17:
18:

19:
20:

21
22

23:

24
25

Insert Task: Read Sismos Traces
for Timestep = 0 to LastTimestep FWD do

scheduling heuristics to driveT8RPU behavior at runtime
and to make various compromises between data locality and
task priorities. Privileging task priorities tends to execute
rst the tasks which will release other tasks, thus unfolding
parallelism early, but this will usually come with more memory

Insert Task: Update Source Wavelet(INOUT: U, INfransfers for these tasks. On the other hand, privileging data

Src)
Insert Task: Compute Wave eld(INOUT: U)
if Timestep%K=0then
Insert Task: Copy(IN: U, OUT: Snap)
Insert Task: Write Snapshot(IN: Snap)
end if
end for
for Timestep = LastTimestep to 0 BWD do

OUT: V)
Insert Task: Compute Wave eld(INOUT: U)
if Timestep%K=0then
Insert Task: Read FWD Snapshot(OUT: Snap)
Insert Task: Copy(IN: Snap, OUT: FWD)
Insert Task: Apply Image Condition(IN: U, IN:
FWD, OUT: IMGSHOT)
end if
end for
: end for
: for All Shots do

: end for
. Insert Task: Save Final Image(IN: IMG)

and hide the costly data movement. The dif culty reside

locality tends to execute rst the tasks for which data is already
within the GPU, thus requiring no data transfer, before tasks
which will release other tasks but require data transfers. In
I/O-intensive situations, the latter approach becomes more and
more critical, so the 88sRPU Scheduler heuristicdmdar and

Iws are our choices of schedulers because they privilege that
approach. More preciselgmdar sorts tasks in its queues by
data availability over task priority, anldvs only balances the

Insert Task: Update Receivers Data(IN: Sismos, INead between GPUs when some of them are really idle. We

map the computation of a shot to GPU where all the stencil
computations are executed on GPU and the CPU workers
manage and monitor data and I/O operations.

In this paper, we focus on the coarse granularity of a shot.
We want to highlight two main features of TB-RTM: out-
of-core and 1/0O overlap with the compute tasks using the
STARPU runtime. Algorithm 3 shows the data ow of RTM
and the additional copy kernels (line number 8 and 17). These
additional copy kernels decouple the I/O from the compute
tasks for asynchronous execution. The task dependency graph
is rather skinny and has an odd shape where tasks are serialized

Insert Task: Gather Images(IN: IMGSHOT, OUT:IMG)within shots but embarrassingly parallel across shots. Task-

based parallelism opens up a new avenue of possibilities for
a systematic approach to overlap I/O with computation, and
out-of-core algorithms.

@. Snapshotting

in ensuring the data coherency between the three layers of B-RTM supports three snapshotting modes: asynchronous
memory/storage, i.e., GPU, CPU and disk. There are sevdf@l, OOC, and in memory. The rst one, TB-RTM IO,
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Fig. 3: Weak scaling for TB-RTM simulating multiple shots for 2000 TS, on multiple nodes of Tsubame.
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decouples the dependency between 1/O tasks and compute
tasks in the FWD and BWD phases and allows overlap of
possible computations to avoid lack of parallelism and stalling
the computation waiting for I/O. The second mode, TB-RTM
OOC, the stencil kernel switches between in-core and out-
of-core modes based on the scheduling heuristics of the task
dependency graph. The 1/O operation here is only a copy to a
memory buffer which is monitored by theT&RPU runtime.

In OOC mode, Lines 9 and 16 in Algorithm 3 are removed,
and instead 8aRPU will handle the data availability in the
Snap buffer. The third mode is in memory; as its name implies
all the snaps are alive in memory and it fails when there is no
space available.

Fig. 5: Time to the solution of single shot RTM of larger size The OOC mode is controlled using a memory limit environ-
on one node of Summit (V100 GPU with NVMe) against difment variable. This variable, STARPUIMIT _CPU MEM,
ferent snapshotting methods supported in TB-RTM in additidimits the memory visible to ARPU and when the applica-
to SIMWAVE as our baseline.

tion data reaches this thresholdiARPU OOC support starts
evicting data to disk, and will reload it as appropriate.
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Fig. 6: Weak and strong scaling for TB-RTM simulating multiple shots for 2000 TS, on single nodes of Summit.

VIl. PERFORMANCERESULTS

1200

Domain 1035 x 633 x 517 - 2000 TS K=4 - SUMMIT
T T

A. Environment Settings I:ITé-RTM 10 - StarPU+MPI - Shot/Node
I TB-RTM IO - StarPU - 6 Shot/Node
1) Apparatus for TB-RTM and Test CaseSur TB-RTM 1000| | HEITB-RTM [0 - StarPUsPI - 6 ShotiNode 1

library is written in C, while the GPU stencil kernels are
written in CUDA. It is compiled with CUDA 10 and ®\RPU
1.3 release. We test both single and multiple shots of full RT
simulation of a 3D Finite Difference Time Domain, 8th orde
in space, 2nd order in time, with PML dampi®g 18 18for
2000time-steps. We choose two domain siZ&35 633 317
(0.25 GB) and1035 633 517(1.25 GB). We also include
a synthetic velocity of a 3D SEG/EAGE salt model [47], [48
that includes Sismos traces for 109 shots for good qual
image. The nal test case is extended with the 1.25 GB mod

800 - b

600 - b

Time (seconds)

400 - 4

200 - B

to 1000 shots. ° 1 2 4 6
2) Platforms: No. Shots
Tsubame Fig. 7: Plotting SARPU +MPI and SARPU implementations

Tsubame 3.0 supercomputer at GSIC Center, Tokyo InS§f TB-RTM for simulating multiple shots RTM foK =4.
tute of Technology, Japan, a SGI ICE XA with 540 nodes

each with two Xeon E5-2680v4 (14 Cores, 2.4GHz), and

four NVIDIA Tesla P100 SXM2. Each compute node ha§

4 ports of Intel Omni-Path interface. The nodes are Iinkegsk' ForK =10, the application nee(_JI, for 2000 time-steps,
in a fat tree topology by an Omni-Path switch. IS a storage of 200 snaps each of size 0.25 GB, for a total

Summit application need is 50 GB.

Summit, the top ranked supercomputer system inTB‘RTM 10 offers 59% performance gain from overlapping
November 2018 Top500 list, an IBM supercomputef@mputation tasks with I/O tasks. TB-RTM OOC offers
running at the Department of Energy's Oak Ridgé\nother level of prefetching and hiding the I/O cost. The
National Laboratory, consisting of; 356 nodes, each performance gain varies from 1.8x, 2x, to 2.25x speedup

one equipped with two 22-core Power9 CPUs, and sfased on the available memory (M) 10, 50, and 200 GB,
NVIDIA Tesla V100 GPUs. respectively. FolK = 4, the required storage is 125 GB. In

this case, TB-RTM 10 has fewer computation tasks (only 4)
in order to hide the 1/O penalty, therefore, the performance
B. Performance Impact of OOC gain is only 15%. The performance gain varies from 1.3x,
In Fig. 2a, we compare different snapshotting methods suf%, t0 2.15x speedup based on the available memory (M) 25,
ported in TB-RTM in addition to SIMWAVE as our baseline.125, and 200 GB, respectively.
TB-RTM IO can be considered as the task-based SIMWAVE,
where each kernel in the time stepping loop is ®&PU We repeat the same set of experiments on Tsubame. In Fig.



, 10'D0main 1035 x 639 x 517 2000 TS K=4 - SUMMIT lizing the resources without performance degradation due to
oversubscription.

D. Performance Impact and Proling with Larger Domain
Size

Fig. 5 shows the execution time of a single shot RTM
simulation applying different TB-RTM snapshotting methods
and SIMWAVE of a larger domain size 1.25 GB for 2000 time-
steps and two different period of snapshotting. Ror= 10,
total application need (SM) is 240 GB, the performance gain
is 1.4x, 1.8x, 1.9x, and 2x for TB-RTM 10, OOC M=48, 240,

Data Movement to Device (GB)
N

0
StarPU+MPI
6

S[arF’U6 shots.

TBRTM,, Configurations and 300 GB, respectively. Fd¢ = 4, SM is 600 GB, the
erformance gain is 1.2x, 1.4x, 1.8x, 1.8x for TB-RTM IO,
OC M=120, 300 GB, and all memory, respectively.

Fig. 6a whereK = 10, we can see that BRPU helps
schedule and fuse the computation of multiple shots using

Domein 1035 x 633 x 517 2000 TS k=g ST the available GPUs showing both strong (vertical points) and

hots

Fig. 8: Data movement from memory to device of TB-RT
IO for simulating multiple shots RTM foK =4 on one node.

&~ TB-RTM 0 - StarPU+MPI - 1 MPIIGPU
—v- TB-RTM IO - StarPU+MP! - 2 MPIIGPU

] weak (horizontal points) scalability with negligible penalty.
] Figure 6b wher&K =4, the performance degradation is more
o0 ] pronounced as it goes to more than 50% due to resource

g eor sweTt6R | contention.
v e | Sharing the resources is one reason for this degradation
0 e, SR ] of performance. The other reason is suboptimal scheduler

decisions. We investigate the performance of using differ-
| ent scheduling context instead of the defawts STARPU
L | | | schedulerlws uses a Locality-aware Work-Stealing approach:
No.shis whenever a worker is idle it steals a task from the neighbor
workers. dmdar, instead, takes the task-execution and data-
transfer performance models into account for a Heterogeneous
Earliest Finish Time (HEFT) scheduler [49], that makes a
compromise between task duration and data transfer cost.
2b, for K = 10, TB-RTM 10 and TB-RTM OOC offers 2x dmdarthus requires preliminary cal|t_>r_at|on runs _forthe perfor-

S : mance models to converggmdaradditionally privileges tasks

speedup as witlk =10 there are enough computation tasks .
. ~ . Whose data buffers are already available on the GPU memory.
that can hide the I/O cost. F&t = 4, the performance gain Fiqure 7 shows the case & = 4 and compares the three
is 1.4x, 1.7x, 2x, and 2x for TB-RTM 10, OOC M=25, 125, '9 . . . omp ) .
. . N different con gurations of simulating multiple shots: classical
and 200 GB, respectively. Comparing Summit with Tsuba . . .

. ; ot/Node using 8ARPU +MPI, the same implementation
results, there is more than 2x speedup from Summit due QARPU +MP! but Shot/GPU. and1@RPU shared-memor
V100 GPUs and NVLINK between Power9 and GPUs. EacWith multiole GPUs ' y
Summit node consists of two sockets of POWERY each ha P i

NVLINK of 50 GB/s bandwidth connection to three V100 he resource contention is more pronoun<_:ed in this case of
GPUs. K = 4 and this becomes clear by comparing theasPU

+MPI using multiple nodes with the one in one node.
This degradation of performance is exacerbated further with
STARPU shared-memory. In the TSRPU shared memory
Figures 3 and 4 show the weak scaling of multiple shot®n guration, STARPU has to decide the data mapping over
RTM on Tsubame and Summit. As expected, TB-RTM weakPUs as shown in Fig. 8. Thémdar scheduling heuristic
scales perfectly. Dedicating each shot to a separate noddéagsvever only has limited sight of the task graph to keep its
the typical way of executing multiple shots RTM simulationcost reasonable. This prevents it from making proper data
However, at the node level, not all resources may be utilizgglacement taking future use into account. Consequently, the
There are two ways to utilize the underlying resources: talditional costs of blindly moving the data across GPUs
go with domain decomposition or to oversubscribe the nodegrade the performance dramatically in this case. A static
with multiple shots. The rst option, domain decompositiongrid of processors as in theTSRPU +MPI case improves the
is good for a very large domain size that exceeds one GRgrformance. In Fig. 9, dedicating two MPI processors and
memory, i.e., 16 GB. The second option can scale down/uaries the number of GPUs per MPI improves the performance
to small and very large domain sizes. The challenge is utisrther of STARPU +MPI for the 4 shots case where each 2

Fig. 9: Impact of pinning on time to solution TB-RTM IO for
simulating multiple shots RTM foK =4 on one node.

C. Weak Scalability
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(a) CaseK =4. (b) CaseK =10. (c) CaseK =12.

Fig. 10: Time to the solution of multiple shots RTM simulations on one node of Summit against different snapshotting methods
supported in TB-RTM: 10 and OOC.
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Fig. 11: Weak Scaling of Salt 3D model witk =12 using Fig. 12: Weak Scaling of a synthetic 3D model with=12 us-
TB-RTM OOC on Summit (1 Shot/GPU - 6 GPUs/Node). ing TB-RTM OOC on Summit (1 Shot/GPU - 6 GPUs/Node).

shots are pinned to one socket (instead of three in sockestibws the weak scalability of TB-RTM OOC with all memory
and one in socket 1). available running this model: 109 shots, computational size:
Fig. 10 compares the TR-RTM 10 and TB-RTM OOC913 709 117 and image dimensior841 673 99. Fig.
simulating 1 to 6 shots using = 4, 10, and 12 on one 12 shows the weak scalability with ef ciency 85% a synthetic
node of Summit. As expected, thanks to the memory availal#® model withK = 12 using TB-RTM OOC on Summit
for prefetching, there is speedup in computation of the 1 tf the large domain up to 500 shots. Finally, Fig. 13 depicts
6 shots. This is important in terms of energy saving as tllee migrated image of the 3D SEG/EAGE salt model [48]
performance of using 6 nodes each with 1 GPU to executeobstacking 15 shots after modeling the propagation a 25 Hz
shots can be done in one node with 6 GPUs. TB-RTM with theicker wavelet source in an isotropic medium. We can clearly
shot granularity demonstrated a clear path toward a modutacognize the synthetic re ectors of the model.
RTM framework unleashing the abilities and productivity of
using S/ARPU runtime system particularly and task-based VIIl. CONCLUSION

parallelism in general. TB-RTM opens up this path to take \we propose a novel Task-Based framework of RTM, TB-
advantage of highly heterogeneous computing architectytgm, for seismic imaging that leverages the performance
brought by current and coming exascale systems. of multicore and GPU-based systems by relying on a dy-
namic runtime system,RPU, to schedule the various tasks
of the RTM. TB-RTM ultimately can serve as a unied
We use the synthetic velocity model 3D SEG/EAGE saftamework implementation that is modular and easily adapts
model to simulate the wave propagation in an isotropligh-performance kernels. It enables asynchronous execution
medium with a constant density. This model was built bgf RTM tasks based on the data- ow of the application.
the SEG research committee, and created as part of therovides a systematic approach for out-of-core execution
Advanced Computational Technology Initiative [48]. Fig. 1lith data prefetching. We plan in the future to add sup-

E. Realistic Velocity Model Simulation



(8]

Bl
(20]
(11]
(12]
(13]

Fig. 13: The nal image of stacking 15 shots of the 3D
SEG/EAGE salt model. (14]

[15]
port in STARPU OOC for two stages of storage paths for
NVMe/SSDs and parallel le systems. Currently, TB-RTM[lB]
supports only SIMWAVE CUDA-based kernels. We plan in
the future to include Girih [25] CPU-based kernels. Also,
we plan to activate domain decomposition and investigate tél
performance of this granularity. Our main goal is to provide
TB-RTM a robust library-quality open-source task-based RTM
framework. (18]
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