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Abstract

We derive concentration inequalities for the supremum norm of the difference between a
kernel density estimator (KDE) and its point-wise expectation that hold uniformly over the
selection of the bandwidth and under weaker conditions on the kernel and the data generating
distribution than previously used in the literature. We first propose a novel concept, called
the volume dimension, to measure the intrinsic dimension of the support of a probability dis-
tribution based on the rates of decay of the probability of vanishing Euclidean balls. Our
bounds depend on the volume dimension and generalize the existing bounds derived in the
literature. In particular, when the data-generating distribution has a bounded Lebesgue density
or is supported on a sufficiently well-behaved lower-dimensional manifold, our bound recovers
the same convergence rate depending on the intrinsic dimension of the support as ones known
in the literature. At the same time, our results apply to more general cases, such as the ones
of distribution with unbounded densities or supported on a mixture of manifolds with different
dimensions. Analogous bounds are derived for the derivative of the KDE, of any order. Our
results are generally applicable but are especially useful for problems in geometric inference
and topological data analysis, including level set estimation, density-based clustering, modal
clustering and mode hunting, ridge estimation and persistent homology.

1 Introduction
Density estimation [see, e.g. Rao, 1983] is a classic and fundamental problem in non-parametric
statistics that, especially in recent years, has also become a key step in many geometric inferential
tasks. Among the numerous existing methods for density estimation, kernel density estimators
(KDEs) are especially popular because of their conceptual simplicity and nice theoretical proper-
ties. A KDE is simply the Lebesgue density of the probability distribution obtained by convolving
the empirical measure induced by the sample with an appropriate function, called kernel, [Parzen,
1962, Wand and Jones, 1994]. Formally, let X1, . . . ,Xn be an independent and identically distributed
sample from an unknown Borel probability distribution P in Rd . For a given kernel K, where K is
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an appropriate function on Rd (often a density), and bandwidth h > 0, the corresponding KDE is
the random Lebesgue density function defined as

x ∈ Rd 7→ p̂h(x) :=
1

nhd

n

∑
i=1

K
(

x−Xi

h

)
. (1)

The point-wise expectation of the KDE is the function

x ∈ Rd 7→ ph(x) := E[p̂h(x)],

and can be regarded as a smoothed version of the density of P, if such a density exists. In fact,
interestingly, both p̂h and ph are Lebesgue probability densities for any choice of h > 0, regardless
of whether P admits a Lebesgue density. What is more, ph is often times able to capture important
topological properties of the underlying distribution P or of its support [see, e.g. Fasy et al., 2014,
Section 4.4]. For instance, if a data-generating distribution consists of two point masses, it has no
Lebesgue density but the pointwise mean of the KDE with Gaussian kernel is a density of mixtures
of two Gaussian distributions whose mean parameters are the two point masses. Although P is
quite different from the distribution corresponding to ph, for practical purposes, one may in fact
rely on ph.

Though seemingly contrived, the previous example illustrates a general phenomenon encoun-
tered in many geometrical inference problems, namely that using ph as a target for inference leads
to not only well-defined statistical tasks but also to faster or even dimension independent rates. Re-
sults of this form, which require a uniform control over ‖p̂h− ph‖∞ := supx∈Rd ‖ p̂h(x)− ph(x)‖ are
plentiful in the literature on density-based clustering [Rinaldo and Wasserman, 2010, Wang et al.,
2017], modal clustering and mode hunting [Chacón et al., 2015, Azizyan et al., 2015], mean-shift
clustering [Arias-Castro et al., 2016], ridge estimation [Chen et al., 2015a,b] and inference for
density level sets [Chen et al., 2017], cluster density trees [Balakrishnan et al., 2013, Kim et al.,
2016] and persistent diagrams [Fasy et al., 2014, Chazal et al., 2014].

Asymptotic and finite-sample bounds on ‖p̂h− ph‖∞ under the existence of Lebesgue density
have been well-studied for fixed bandwidth cases [Rao, 1983, Giné and Guillou, 2002, Sriperum-
budur and Steinwart, 2012, Steinwart et al., 2017].

Bounds for KDEs not only uniform in x ∈Rd but also with respect the choice of the bandwidth
h have received relatively less attentions, although such bounds are important to analyze the con-
sistency of KDEs with adaptive bandwidth, which may depend on the location x. Einmahl et al.
[2005] showed that,

limsup
n→∞

sup
(c logn)/n≤h≤1

√
nhd‖p̂h− ph‖∞√

log(1/h)∨ log logn
< ∞,

for regular kernels and bounded Lebesgue densities. Jiang [2017] provided a finite-sample bound
on ‖p̂h− ph‖∞ that holds uniformly on h and under appropriate assumptions on K, and extended it
to case of densities over well-behaved manifolds.

The main goal of this paper is to extend existing uniform bounds on KDEs by weakening
the conditions on the kernel and making it adaptive to the intrinsic dimension of the underlying
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distribution. We first propose a novel concept, called the volume dimension, to characterize the
intrinsic dimension of the underlying distribution. In detail, the volume dimension dvol is the rate
of decay of the probability of vanishing Euclidean balls, i.e. fix a subset X⊂ Rd , then

dvol = sup
{

ν ∈ R : limsup
r→0

sup
x∈X

P(BRd(x,r))
rν

< ∞

}
.

We show that, if K satisfies mild regularity conditions, with probability at least 1−δ ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤C

√
(log(1/ln))++ log(2/δ )

nl2d−dvol+ε
n

, (2)

for any ε ∈ (0,dvol), {ln} a positive sequence approaching 0 and C is a constant that does not
depend on n nor ln. Under additional, weak regularity conditions on P, the quantity ε can be
taken to be 0 in (2). If the distribution has a bounded Lebesgue density, dvol = d so our result
recovers existing results in literature in terms of rates of convergence. For a bounded density on a
dM-dimensional manifold we obtain, under appropriate conditions, that dvol = dM. Thus, if KDEs
are defined with a correct normalizing factor hdM instead of hd , our rate also recovers the ones
in the literature on density estimation over manifolds. At the same time, our bounds apply to
more general cases, such as a distribution with an unbounded density or supported on a mixture of
manifolds with different dimensions. We have also shown the optimality of (2) up to log terms by
showing that under the mild regularity conditions on K and P,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≥C′
√

1

nl2d−dvol
n

. (3)

We make the following contributions:

1. We propose a novel concept, called the volume dimension, to characterize the convergence
rate of the KDE on arbitrary distributions.

2. We derive high probability finite sample bounds for ‖p̂− ph‖∞, uniformly over the choice of
h≥ ln, for a given ln depending on n.

3. We derive rates of consistency in the Ł∞ norm that are adaptive to the volume dimension
of the distribution under conditions on the kernel that, to the best of our knowledge, are
weaker than the ones existing in the literature, and without assumptions on the distribution.
Hence, our bounds recover known previous results, and apply to more general cases such as
a distribution with unbounded density or supported on a mixture of manifolds with different
dimensions.

4. We show that our bound is optimal up to log terms under weak conditions on the kernel and
the distribution.

5. We also obtain analogous bounds for all higher order derivatives of p̂h and ph.
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The closest results to the ones we present are by Jiang [2017], who relies on relative VC bounds
to derive finite sample bounds on ‖p̂h− ph‖∞ for a special class of kernels and assuming P to have
a well-behaved support. Our analysis relies instead on more sophisticated techniques rooted in
the theory of empirical process theory as outlined in Sriperumbudur and Steinwart [2012] and
are applicable to a broader class of kernels. In addition, we do not assume any condition on the
underlying distribution.

2 Notation
Below, we recap basic concepts and establish some notation that are used throughout the paper.
For more detailed definitions, see Appendix A.

We let ‖ · ‖ be the Euclidean 2-norm. For x ∈ Rd and r > 0, we use the notation BRd(x,r) for
the open Euclidean ball centered at x and radius r, i.e. BRd(x,r) = {y ∈ Rd : ‖y− x‖< r}. We fix
a subset X⊂ Rd on which we are considering the uniform convergence of the KDE.

The Hausdorff measure is a generalization of the Lebesgue measure to lower dimensional sub-
sets of Rd . The Hausdorff dimension is a generalization of the intrinsic dimension of a mani-
fold to general sets. For ν ∈ {1, . . . ,d}, let λν be a normalized ν-dimensional Hausdorff mea-
sure on Rd satisfying that its measure on any ν-dimensional unit cube is 1. We use the notation

ων := λν(BRν (0,1)) = π
ν
2

Γ( ν

2 +1)
for the volume of the unit ball in Rν for ν = 1, . . . ,d.

First introduced by [Federer, 1959], the reach has been the minimal regularity assumption in
the geometric measure theory. A manifold with positive reach means that the projection to the
manifold is well defined in a small neighborhood of the manifold.

3 Volume Dimension
We first characterize the intrinsic dimension of a probability distribution in terms of the rate of
decay of the probability of Euclidean balls of vanishing volumes. When a probability distribution
P has a bounded density p with respect to a well-behaved manifold M of dimension dM, it is known
that, for any point x ∈M, the measure on the ball BRd(x,r) centered at x and radius r decays as

P(BRd(x,r))∼ rdM ,

when r is small enough. From this, we define the volume dimension to be the maximum possible
exponent rate that can dominate the probability volume decay on balls.

Definition 1 (Volume Dimension). Let P be a probability distribution on Rd . The volume dimen-
sion of P is a non-negative real number defined as

dvol(P) := sup
{

ν ≥ 0 : limsup
r→0

sup
x∈X

P(BRd(x,r))
rν

< ∞

}
. (4)

We will use the notation dvol when P is clearly specified by the context.
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The volume dimension has a connection with the Hausdorff dimension. If a probability distri-
bution has a positive measure on a set, then the volume dimension is between 0 and the Hausdorff
dimension of the set. So, if that set is a manifold, then the volume dimension is always between 0
and the dimension of the manifold. In particular, the volume dimension of any probability distri-
bution is between 0 and the ambient dimension d.

Proposition 1. Let P be a probability distribution on Rd , and dvol be its volume dimension.
Suppose there exists a set A satisfying P(A∩X) > 0 and with Hausdorff dimension dH . Then
0≤ dvol ≤ dH . Hence if A is a dM-dimensional manifold, then 0≤ dvol ≤ dM. In particular, for any
probability distribution P on Rd , 0 ≤ dvol ≤ d. Also, if P has a point mass, i.e. there exists x ∈ X
with P({x})> 0, then dvol = 0.

The volume dimension is well defined with mixtures of distributions. Specifically, the volume
dimension of the mixture is the minimum of the volume dimensions of the component distributions.

Proposition 2. Let P1, . . . ,Pm be probability distributions on Rd , and λ1, . . . ,λm ∈ (0,1) with
∑

m
i=1 λi = 1. Then

dvol

(
m

∑
i=1

λiPi

)
= min{dvol(Pi) : 1≤ i≤ m} .

In particular, when dvol is understood as a real-valued function on the space of probability distri-
butions, both its sublevel sets and superlevel sets are convex.

The name “volume dimension” suggests that the volume dimension of a probability distribu-
tion has a connection with the dimension of the support. The two dimensions are indeed equal
when the support is a manifold with positive reach and the probability distribution has a bounded
density with respect to the uniform measure on the manifold (e.g. the Hausdorff measure). In par-
ticular when the probability distribution has a bounded density with respect to the d-dimensional
Lebesgue measure, the volume dimension equals the ambient dimension d.

Proposition 3. Let P be a probability distribution on Rd , and dvol be its volume dimension. Sup-
pose there exists a dM-dimensional manifold M with positive reach satisfying P(M∩X) > 0 and
supp(P)⊂M. If P has a bounded density p with respect to the normalized dM-dimensional Haus-
dorff measure λdM , then dvol = dM. In particular, when P has a bounded density p with respect to
the d-dimensional Lebesgue measure λd , then dvol = d.

See Section C for a comparison of the volume dimension with the Hausdorff dimension and
other notions of the dimension.

Even though, as we will soon show, our bounds for KDEs hold without any assumptions on
the probability distribution and lead to convergence rates arbitrary close to the optimal minimax
rates, in order to actually achieve such exact optimal rate, we require weak additional conditions
on the probability distributions. Note that, from the definition of the volume dimension, the ratio
P(BRd (x,r))

rν is uniformly bounded for ν smaller than the volume dimension.
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Lemma 4. Let P be a probability distribution on Rd , and dvol be its volume dimension. Then for
any ν ∈ [0,dvol), there exists a constant Cν ,P depending only on P and ν such that for all x ∈ X
and r > 0,

P(BRd(x,r))
rν

≤Cν ,P. (5)

For the exact optimal rate, we impose conditions on how the probability volume decay in (5)
behaves with respect to the volume dimension.

Assumption 1. Let P be a probability distribution P on Rd , and dvol be its volume dimension. We
assume that

limsup
r→0

sup
x∈X

P(BRd(x,r))
rdvol

< ∞. (6)

Assumption 2. Let P be a probability distribution on Rd , and dvol be its volume dimension. We
assume that

sup
x∈X

liminf
r→0

P(BRd(x,r))
rdvol

> 0. (7)

These assumptions are in fact weak and hold for common probability distributions. For exam-
ple, if a probability distribution is supported on a manifold, Assumption 1 and 2 hold under the
same condition as in Proposition 3. In particular, Assumption 1 and 2 hold when the probability
distribution has a bounded density with respect to the d-dimensional Lebesgue measure.

Proposition 5. Under the same condition as in Proposition 3, Assumption 1 and 2 hold.

Also, the Assumption 1 and 2 is closed under the convex combination. In other words, a
mixture of probability distributions satisfy Assumption 1 and 2 if all its component satisfy those
assumptions.

Proposition 6. The set of probability distributions satisfying Assumption 1 is convex. And so is the
set of probability distributions satisfying Assumption 2.

We end this section with an example of an unbounded density. In this case, the volume dimen-
sion is strictly smaller than the dimension of the support which illustrates why the dimension of
the support is not enough to characterize the dimensionality of a distribution.

Example 7. Let P be a distribution on Rd having a density p with respect to the d-dimensional
Lebesgue measure. Fix β < d, and suppose p : Rd → R is defined as

p(x) =
(d−β )Γ

(d
2

)
2π

d
2

‖x‖−β I(‖x‖ ≤ 1).

Then, for each fixed r ∈ [0,1],

sup
x∈Rd

P(BRd(x,r)) = P(BRd(0,r)) = rd−β .

Hence from Definition 1, the volume dimension is

dvol(P) = d−β ,

and from (6) and (7), Assumption 1 and 2 are satisfied.
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4 Uniform convergence of the Kernel Density Estimator
To derive a bound on the performance of a kernel density estimator that is valid uniformly in h and
x ∈ X, we first rewrite

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

as a supremum over a function class. Formally, for x ∈X and h≥ ln > 0, let Kx,h(·) := K
(x−·

h

)
and

consider the following class of normalized kernel functions centered around each point in X and
with bandwidth greater than or equal to ln > 0:

F̃ K,[ln,∞) :=
{
(1/hd)Kx,h : x ∈ X, h≥ ln

}
.

Then suph≥ln,x∈X |p̂h(x)− ph(x)| can be rewritten as a supremum of an empirical process indexed
by F̃ , that is,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|= sup
f∈F̃ K,[ln,∞)

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E[ f (X)]

∣∣∣∣∣ . (8)

We combine Talagrand’s inequality and a VC type bound to bound (8), following the approach
of Sriperumbudur and Steinwart [2012, Theorem 3.1]. The following version of Talagrand’s in-
equality is from Bousquet [2002, Theorem 2.3] and simplified in Steinwart and Christmann [2008,
Theorem 7.5].

Proposition 8. [Bousquet, 2002, Theorem 2.3], [Steinwart and Christmann, 2008, Theorem 7.5,
Theorem A.9.1]

Let (Rd,P) be a probability space and let X1, . . . ,Xn be i.i.d. from P. Let F be a class of func-
tions from Rd to R that is separable in L∞(Rd). Suppose all functions f ∈F are P-measurable,
and there exists B,σ > 0 such that EP f = 0, EP f 2 ≤ σ2, and ‖ f‖

∞
≤ B, for all f ∈F . Let

Z := sup
f∈F

∣∣∣∣∣1n n

∑
i=1

f (Xi)

∣∣∣∣∣ ,
Then for any δ > 0,

P

(
Z ≥ EP[Z]+

√(
2
n

log
1
δ

)
(σ2 +2BEP[Z])+

2B log 1
δ

3n

)
≤ δ .

By applying Talagrand’s inequality to (8), suph≥ln,x∈X |p̂h(x)− ph(x)| can be upper bounded in
terms of n,

∥∥Kx,h
∥∥

∞
, EP[K2

x,h], and

EP

 sup
f∈F̃ K,[ln,∞)

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E[ f (X)]

∣∣∣∣∣
 . (9)

To bound the last term, we use the uniformly bounded VC class assumption on the kernel. The
following bound on the expected suprema of empirical processes of VC classes of functions is
from Giné and Guillou [2001, Proposition 2.1].
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Proposition 9. (Giné and Guillou [2001, Proposition 2.1], [Sriperumbudur and Steinwart, 2012,
Theorem A.2])

Let (Rd,P) be a probability space and let X1, . . . ,Xn be i.i.d. from P. Let F be a class of
functions from Rd to R that is uniformly bounded VC-class with dimension ν , i.e. there exists pos-
itive numbers A,B such that, for all f ∈F , ‖ f‖

∞
≤ B, and the covering number N (F ,L2(Q),ε)

satisfies

N (F ,L2(Q),ε)≤
(

AB
ε

)ν

.

for every probability measure Q on Rd and for every ε ∈ (0,B). Let σ > 0 be a positive number
such that EP f 2 ≤ σ2 for all f ∈F . Then there exists a universal constant C not depending on any
parameters such that

EP

[
sup
f∈F

∣∣∣∣∣1n n

∑
i=1

f (Xi)

∣∣∣∣∣
]
≤C

(
νB
n

log
(

AB
σ

)
+

√
νσ2

n
log
(

AB
σ

))
.

By applying Proposition 8 and Proposition 9 to F̃ K,[ln,∞), it can be shown that the upper bound
of

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

can be written as a function of
∥∥Kx,h

∥∥
∞

and EP[K2
x,h]. When the lower bound on the interval ln is

not too small, the terms relating to EP[K2
x,h] are more dominant. Hence, to get a good upper bound

with respect to both n and h, it is important to get a tight upper bound for EP[K2
x,h]. Under the

existence of the Lebesgue density of P, it can be shown that

EP[K2
x,h]≤ ‖K‖2‖p‖∞hd,

by change of variables. (see, e.g. the proof of Proposition A.5. in Sriperumbudur and Steinwart
[2012].)

For general distributions (such as the ones supported on a lower-dimensional manifold), the
change of variables argument is no longer directly applicable. However, under an integrability
condition on the kernel, detailed below, we can provide a bound based on the volume dimension.

Assumption 3. Let K : Rd → R be a kernel function with ‖K‖
∞
< ∞, and fix k > 0. We impose an

integrability condition: either dvol = 0 or∫
∞

0
tdvol−1 sup

‖x‖≥t
|K(x)|kdt < ∞. (10)

We set k = 2 by default unless it is specified in otherwise.

Remark 10. It is important to emphasize that Assumption 3 is weak, as it is satisfied by commonly
used kernels. For instance, if the kernel function K(x) decays at a polynomial rate strictly faster
than dvol/k (which is at most d/k) as x→ ∞, that is, if

limsup
x→∞

‖x‖dvol/k+ε K(x)< ∞,
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for any ε > 0, the integrability condition (10) is satisfied. Also, if the kernel function K(x) is
spherically symmetric, that is, if there exists K̃ : [0,∞)→ R with K(x) = K̃(‖x‖), then the integra-
bility condition (10) is satisfied provided ‖K‖k < ∞. Kernels with bounded support also satisfy the
condition (10). Thus, most of the commonly used kernels including Uniform, Epanechnikov, and
Gaussian kernels satisfy the above integrability condition.

By combining Assumption 3 and Lemma 4, we can bound EP[K2
x,h] in terms of the volume

dimension dvol.

Lemma 11. Let (Rd,P) be a probability space and let X ∼ P. For any kernel K satisfying Assump-
tion 3 with k > 0, the expectation of the k-moment of the kernel is upper bounded as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
≤Ck,P,K,εhdvol−ε , (11)

for any ε ∈ (0,dvol), where Ck,P,K,ε is a constant depending only on k, P, K, and ε . Further, if
dvol = 0 or under Assumption 1, ε can be 0 in (11).

4.1 Uniformity on a ray of bandwidths
In this subsection, we demonstrate an L∞ convergence rate for kernel density estimators, that is
valid is uniformly on a ray of bandwidths [ln,∞).

To apply the VC type bound from Proposition 9, the function class,

F K,[ln,∞) :=
{

Kx,h : x ∈ X,h≥ ln
}
,

should be not too complex. One common approach is to assume that F K,[ln,∞) is a uniformly
bounded VC-class, which is defined imposing appropriate bounds on the metric entropy of the
function class [Giné and Guillou, 1999, Sriperumbudur and Steinwart, 2012].

Assumption 4. Let K : Rd → R be a kernel function with ‖K‖
∞
,‖K‖2 < ∞. We assume that,

F K,[ln,∞) :=
{

Kx,h : x ∈ X,h≥ ln
}

is a uniformly bounded VC-class with dimension ν , i.e., there exists positive numbers A and ν such
that, for every probability measure Q on Rd and for every ε ∈ (0,‖K‖

∞
), the covering numbers

N (FK,[ln,∞),L2(Q),ε) satisfies

N (FK,[ln,∞),L2(Q),ε)≤
(

A‖K‖
∞

ε

)ν

,

where the covering number is defined as the minimal number of open balls of radius ε with respect
to L2(Q) distance whose centers are in F K,[ln,∞) to cover F K,[ln,∞).
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Since [ln,∞)⊂ (0,∞), one sufficient condition for Assumption 4 is to impose uniformly bounded
VC class condition on a larger function class,

FK,(0,∞) =
{

Kx,h : x ∈ X,h > 0
}
.

This is implied by condition (K) in Giné et al. [2004] or condition (K1) in Giné and Guillou [2001],
which are standard conditions to assume for the uniform bound on the KDE. In particular, the con-
dition is satisfied when K(x) = φ(p(x)), where p is a polynomial and φ is a bounded real function
of bounded variation as in Nolan and Pollard [1987], which covers commonly used kernels, such
as Gaussian, Epanechnikov, Uniform, etc.

Under Assumption 3 and 4, we derive our main concentration inequality for suph≥ln,x∈X
∣∣p̂h(x)−

ph(x)
∣∣.

Theorem 12. Let P be a probability distribution and let K be a kernel function satisfying Assump-
tion 3 and 4. Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤C

(
(log(1/ln))+

nld
n

+

√
(log(1/ln))+
nl2d−dvol+ε

n
+

√
log(2/δ )

nl2d−dvol+ε
n

+
log(2/δ )

nld
n

)
,

(12)
for any ε ∈ (0,dvol), where C is a constant depending only on A, ‖K‖

∞
, d, ν , dvol, Ck=2,P,K,ε , ε .

Further, if dvol = 0 or under Assumption 1, ε can be 0 in (12).

When δ is fixed and ln < 1, the dominating terms in (12) are log(1/ln)
nld

n
and

√
log(1/ln)

nl
2d−dvol
n

. If ln does

not vanish too rapidly, then the second term dominates the upper bound in (12) as in the following
corollary.

Corollary 13. Let P be a probability distribution and let K be a kernel function satisfying Assump-
tion 3 and 4. Fix ε ∈ (0,dvol). Further, if dvol = 0 or under Assumption 1, ε can be 0. Suppose

limsup
n

(log(1/`n))++ log(2/δ )

n`dvol−ε
n

< ∞.

Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤C′
√

(log( 1
ln
))++ log( 2

δ
)

nl2d−dvol+ε
n

, (13)

where C′ depending only on A, ‖K‖
∞

, d, ν , dvol, Ck=2,P,K,ε , ε .

4.2 Fixed bandwidth
In this subsection, we prove a finite-sample uniform convergence bound on kernel density estima-
tors for one fixed choice hn > 0 of the bandwidth (we leave the dependence on n explicit in our
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notation to emphasize that the choice of the bandwidth may still depend on n). We are interested
in a high probability bound on

sup
x∈X
|p̂hn(x)− phn(x)| .

Of course, the above quantity can be bounded by the results in the previous subsection because

sup
x∈X
|p̂hn(x)− phn(x)| ≤ sup

h≥hn,x∈X
|p̂h(x)− ph(x)| , (14)

Therefore, the convergence bound uniform on a ray of bandwidths in Theorem 12 and Corollary 13
is applicable to fixed bandwidth cases.

However, if the set X is bounded, that is, if there exists R > 0 such that X⊂BRd(0,R), then, for
the kernel density estimator with a MK-Lipschitz continuous kernel and fixed bandwidth, we can
derive a uniform convergence bound without the finite VC condition of [Giné and Guillou, 2001,
Giné et al., 2004] based on the following lemma.

Lemma 14. Suppose there exists R > 0 with X⊂ BRd(0,R). Let the kernel K is MK-Lipschitz con-
tinuous. Then for all η ∈ (0,‖K‖

∞
), the supremum of the η-covering number N (FK,h,L2(Q),η)

over all measure Q is upper bounded as

sup
Q

N (FK,h,L2(Q),η)≤
(

2RMKh−1 +‖K‖
∞

η

)d

.

Corollary 15. Suppose there exists R > 0 with X ⊂ BRd(0,R). Let K be a MK-Lipschitz con-
tinuous kernel function satisfying Assumption 3. Fix ε ∈ (0,dvol). Further, if dvol = 0 or under
Assumption 1, ε can be 0. Suppose

limsup
n

(log(1/hn))++ log(2/δ )

nhdvol−ε
n

< ∞.

Then with probability at least 1−δ ,

sup
x∈X
|p̂hn(x)− phn(x)| ≤C′′

√
(log( 1

hn
))++ log( 2

δ
)

nh2d−dvol+ε
n

, (15)

where C′′ is a constant depending only on R, MK , ‖K‖
∞

, d, ν , dvol, Ck=2,P,K,ε , ε .

5 Lower bound for the convergence of the Kernel Density Esti-
mator

Consider the fixed bandwidth case. In Corollary 15, it was shown that, with probability 1−δ ,

sup
x∈X
|p̂hn(x)− phn(x)| ≤C′′

δ

√
(log(1/hn))+

nh2d−dvol
n

,

11



where C′′
δ

might depend on δ but not on n or hn. In this Section, we show that this upper bound is
not improvable and is therefore optimal up to a log(1/hn) term, by showing that there exists a high

probability lower bound of order 1/
√

nh2d−dvol
n .

Proposition 16. Suppose P is a distribution satisfying Assumption 2 and with positive volume di-
mension dvol > 0. Let K be a kernel function satisfying Assumption 3 with k= 1 and limt→0 inf‖x‖≤t K(x)>

0. Suppose limn nhdvol
n = ∞. Then, with probability 1−δ , the following holds for all large enough

n and small enough hn:

sup
x∈X
|p̂hn(x)− phn(x)| ≥CP,K,δ

√
1

nh2d−dvol
n

.

where CP,K,δ is a constant depending only on P, K,and δ .

This gives an immediate corollary for a ray of bandwidths.

Corollary 17. Assume the same condition as in Proposition 16, and suppose ln→ 0 with nldvol
n →

∞. Then, with probability 1−δ , the following holds for all large n:

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≥CP,K,δ

√
1

nl2d−dvol
n

.

By combining the lower and upper bounds together, we conclude that, with high probability,√
1

nh2d−dvol
n

. sup
x∈X
|p̂hn(x)− phn(x)|.

√
(log( 1

hn
))+

nh2d−dvol
n

,

for all large enough n. Similar holds for a ray of bandwidths as well. They imply that the uni-
form convergence KDE bounds in our paper are optimal up to log(1/hn) terms for both the fixed
bandwidth and the ray on bandwidths cases.

Example 18 (Example 7, revisited). Let P be as in Example 7 and let K be any Lipschitz continuous
kernel function with K(0) > 0 and compact support. It can be easily checked that the conditions
in Corollary 15 are satisfied with R = 2, dvol = d − β and the kernel satisfies the integrability
Assumption 3 with k = 1,2. It can be also shown that limt→0 inf‖x‖≤t K(x) > 0. Therefore, for
small enough hn, Corollary 15 and Proposition 16 imply

C′
√

1

nhd+β
n
≤ sup

x∈X
|p̂hn(x)− phn(x)| ≤C′′

√√√√ log( 1
hn
)

nhd+β
n

,

with high probability for all large enough n. That is, the L∞ convergence rate of the KDE is of order√
1

nhd+β
n

(up to a log(1/hn) term). Hence, although it has a Lebesgue density, its convergence rate

is different from
√

1
nhd

n
, which is the usual rate for probability distributions with bounded Lebesgue

density.

12



6 Uniform convergence of the Derivatives of the Kernel Density
Estimator

In this final section, we provide analogous finite-sample uniform convergence bound on the deriva-
tives of the kernel density estimator. For a nonnegative integer vector s = (s1, . . . ,sd)∈ ({0}∪N)d ,
define |s|= s1 + · · ·+ sd and

Ds :=
∂ |s|

∂xs1
1 · · ·∂xsd

d
.

For Ds operator to be well defined and interchange with integration, we need the following smooth-
ness condition on the kernel K.

Assumption 5. For given s ∈ ({0}∪N)d , let K : Rd → R be a kernel function satisfying such that
the partial derivative DsK : Rd → R exists and ‖DsK‖

∞
< ∞.

Under Assumption 5, Leibniz’s rule is applicable and, for each x ∈ X, Ds p̂h(x)−Ds ph(x) can
be written as

Ds p̂h(x)−Ds ph(x) =
1
n

n

∑
i=1

1
hd+|s|D

sKx,h(Xi)−EP

[
1

hd+|s|D
sKx,h

]
,

where Kx,h(·) = K
(x−·

h

)
, as defined it in Section 4. Following the arguments from Section 4, let

F s
K,[ln,∞) :=

{
DsKx,h : x ∈ X,h≥ ln

}
be a class of unnormalized kernel functions centered on X and bandwidth greater than or equal to
ln, and let

F̃ s
K,[ln,∞) :=

{
1

hd+|s|D
sKx,h : x ∈ X, h≥ ln

}
be a class of normalized kernel functions. Then suph≥ln,x∈X |D

s p̂h(x)−Ds ph(x)| can be rewritten
as

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)|= sup
f∈F̃ s

K,[ln,∞)

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E[ f (X)]

∣∣∣∣∣ . (16)

To derive a good upper bound on suph≥ln,x∈X |D
s p̂h(x)−Ds ph(x)|, it is important to first show

a tight upper bound for EP[(DsKx,h)
2]. Towards that end, we impose the following integrability

condition.

Assumption 6. The derivative of kernel is such that∫
∞

0
tdvol−1 sup

‖x‖≥t
(DsK)2(x)dt < ∞. (17)

Under Assumption 6, we can bound EP[DsK2
x,h] in terms of the volume dimension dvol as

follows.

13



Lemma 19. Let (Rd,P) be a probability space and let X ∼ P. For any kernel K satisfying Assump-
tion 6, the expectation of the square of the derivative of the kernel is upper bounded as

EP

[(
DsK

(
x−X

h

))2
]
≤Cs,P,K,εhdvol−ε , (18)

for any ε ∈ (0,dvol), where Cs,P,K,ε is a constant depending only on s, P, K, ε . Further, if dvol = 0
or under Assumption 1, ε can be 0 in (18).

To apply the VC type bound on (16), the function class F s
K,[ln,∞) should be not too complex.

Like in Section 4, we assume that F s
K,[ln,∞) is a uniformly bounded VC-class.

Assumption 7. Let K : Rd → R be a kernel function with ‖DsK‖
∞
,‖DsK‖2 < ∞. We assume that

F s
K,[ln,∞) :=

{
DsKx,h : x ∈ X,h≥ ln

}
is a uniformly bounded VC-class with dimension ν , i.e. there exists positive numbers A and ν such
that, for every probability measure Q on Rd and for every ε ∈ (0,‖DsK‖

∞
), the covering numbers

N (F s
K,[ln,∞),L2(Q),ε) satisfies

N (F s
K,[ln,∞),L2(Q),ε)≤

(
A‖DsK‖

∞

ε

)ν

.

Finally, to bound suph≥ln,x∈X |D
s p̂h(x)−Ds ph(x)| with high probability, we combine the Ta-

lagrand inequality and VC type bound with Lemma 19. The following theorem provides a high
probability upper bound for (16), and is analogous to Theorem 12.

Theorem 20. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6, and 7.
Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)|

≤C

(
(log(1/ln))+

nld+|s|
n

+

√
(log(1/ln))+

nl2d+2|s|−dvol+ε
n

+

√
log(2/δ )

nl2d+2|s|−dvol+ε
n

+
log(2/δ )

nld+|s|
n

)
, (19)

for any ε ∈ (0,dvol), where C is a constant depending only on A, ‖DsK‖
∞

, d, ν , dvol, Cs,P,K,ε , ε .
Further, if dvol = 0 or under Assumption 1, ε can be 0 in (19).

When ln is not going to 0 too fast, then
√

log(1/ln)

nl
2d+2|s|−dvol
n

term dominates the upper bound in (19)

as follows.

Corollary 21. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6, and 7.
Suppose

limsup
n

(log(1/ln))++ log(2/δ )

nldvol−ε
n

< ∞,

14



for fixed ε ∈ (0,dvol). Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)| ≤C′
√

(log(1/ln))++ log(2/δ )

nl2d+2|s|−dvol+ε
n

, (20)

where C′ is a constant depending only on A, ‖DsK‖
∞

, d, ν , dvol, Cs,P,K,ε , ε . Further, if dvol = 0 or
under Assumption 1, ε can be 0.

We now turn to the case of a fixed bandwidth hn > 0. We are interested in a high probability
bound on

sup
x∈X
|Ds p̂hn(x)−Ds phn(x)| .

Of course, Theorem 20 and Corollary 21 are applicable to the fixed bandwidth case.
But if the support of P is bounded, then, for a MK-Lipschitz continuous derivative of kernel

density estimator and fixed bandwidth, we can again derive a uniform convergence bound without
the finite VC condition of [Giné and Guillou, 2001, Giné et al., 2004].

Lemma 22. Suppose there exists R > 0 with X ⊂ BRd(0,R). Also, suppose that DsK is MK-
Lipschitz, i.e.

‖DsK(x)−DsK(y)‖2 ≤MK ‖x− y‖2 .

Then for all η ∈ (0,‖DsK‖
∞
), the supremum of the η-covering number N (F s

K,h,L2(Q),η) over
all measure Q is upper bounded as

sup
Q

N (F s
K,h,L2(Q),η)≤

(
2RMKh−1 +‖DsK‖

∞

η

)d

.

Corollary 23. Suppose there exists R > 0 with supp(P) = X ⊂ BRd(0,R). Let K be a kernel
function with MK-Lipschitz continuous derivative satisfying Assumption 6. If

limsup
n

(log(1/hn))++ log(2/δ )

nhdvol−ε
n

< ∞,

for fixed ε ∈ (0,dvol). Then, with probability at least 1−δ ,

sup
x∈X
|Ds p̂h(x)−Ds ph(x)| ≤C′′

√√√√(log( 1
hn
))++ log( 2

δ
)

nh2d+2|s|−dvol+ε
n

, (21)

where C′′ is a constant depending only on A, ‖DsK‖
∞

, d, Mk, dvol, Cs,P,K,ε , ε . Further, if dvol = 0
or under Assumption 1, ε can be 0.
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Pertti Mattila, Manuel Morán, and José-Manuel Rey. Dimension of a measure. Studia Math., 142
(3):219–233, 2000. ISSN 0039-3223. doi: 10.4064/sm-142-3-219-233. URL https://doi.

org/10.4064/sm-142-3-219-233.

Partha Niyogi, Stephen Smale, and Shmuel Weinberger. Finding the homology of submanifolds
with high confidence from random samples. Discrete Comput. Geom., 39(1-3):419–441, 2008.

17

https://doi.org/10.1214/aop/1022874828
https://doi.org/10.1214/aop/1022874828
http://www.sciencedirect.com/science/article/pii/S0246020301010810
http://www.sciencedirect.com/science/article/pii/S0246020301010810
https://doi.org/10.1214/009117904000000063
http://jocg.org/index.php/jocg/article/view/278
http://jocg.org/index.php/jocg/article/view/278
https://books.google.com/books?id=o_TIoyeO7AsC&dq=isbn:038739351X&source=gbs_navlinks_s
https://books.google.com/books?id=o_TIoyeO7AsC&dq=isbn:038739351X&source=gbs_navlinks_s
https://doi.org/10.4064/sm-142-3-219-233
https://doi.org/10.4064/sm-142-3-219-233


ISSN 0179-5376. doi: 10.1007/s00454-008-9053-2. URL http://dx.doi.org/10.1007/

s00454-008-9053-2.

Deborah Nolan and David Pollard. u-processes: Rates of convergence. Ann. Statist., 15(2):
780–799, 06 1987. doi: 10.1214/aos/1176350374. URL https://doi.org/10.1214/aos/

1176350374.

Emanuel Parzen. On estimation of a probability density function and mode. The annals of mathe-
matical statistics, 33(3):1065–1076, 1962.

Yakov B. Pesin. Dimension theory in dynamical systems. Chicago Lectures in Mathemat-
ics. University of Chicago Press, Chicago, IL, 1997. ISBN 0-226-66221-7; 0-226-66222-
5. doi: 10.7208/chicago/9780226662237.001.0001. URL https://doi.org/10.7208/

chicago/9780226662237.001.0001. Contemporary views and applications.

BLS Prakasa Rao. Nonparametric functional estimation. Academic press, 1983.

Alessandro Rinaldo and Larry Wasserman. Generalized density clustering. Ann. Statist., 38(5):
2678–2722, 2010. ISSN 0090-5364. doi: 10.1214/10-AOS797. URL https://doi.org/10.

1214/10-AOS797.

Bharath Sriperumbudur and Ingo Steinwart. Consistency and rates for clustering with dbscan. In
Neil D. Lawrence and Mark Girolami, editors, Proceedings of the Fifteenth International Con-
ference on Artificial Intelligence and Statistics, volume 22 of Proceedings of Machine Learn-
ing Research, pages 1090–1098, La Palma, Canary Islands, 21–23 Apr 2012. PMLR. URL
http://proceedings.mlr.press/v22/sriperumbudur12.html.

Ingo Steinwart and Andreas Christmann. Support Vector Machines. Springer Publishing Company,
Incorporated, 1st edition, 2008. ISBN 0387772413.

Ingo Steinwart, Bharath K. Sriperumbudur, and Philipp Thomann. Adaptive Clustering Using
Kernel Density Estimators. arXiv e-prints, art. arXiv:1708.05254, August 2017.

Matt P Wand and M Chris Jones. Kernel smoothing. Chapman and Hall/CRC, 1994.

Daren Wang, Xinyang Lu, and Alessandro Rinaldo. Optimal rates for cluster tree estimation using
kernel density estimators. arXiv preprint arXiv:1706.03113, 2017.

Jonathan Weed and Francis Bach. Sharp asymptotic and finite-sample rates of convergence of
empirical measures in Wasserstein distance. arXiv e-prints, art. arXiv:1707.00087, Jun 2017.

18

http://dx.doi.org/10.1007/s00454-008-9053-2
http://dx.doi.org/10.1007/s00454-008-9053-2
https://doi.org/10.1214/aos/1176350374
https://doi.org/10.1214/aos/1176350374
https://doi.org/10.7208/chicago/9780226662237.001.0001
https://doi.org/10.7208/chicago/9780226662237.001.0001
https://doi.org/10.1214/10-AOS797
https://doi.org/10.1214/10-AOS797
http://proceedings.mlr.press/v22/sriperumbudur12.html


SUPPLEMENTARY MATERIAL

A Backgrounds and Basic Definitions
First, we define the Hausdorff measure ([Pesin, 1997, Section 6], [Falconer, 2014, Section 2.2]),
which is a generalization of the Lebesgue measure to lower dimensional subsets of Rd . For a
subset A⊂ Rd , we let diam(A) be its diameter, that is

diam(A) = sup{‖x− y‖ : x,y ∈ A}.

Definition 2. Fix ν > 0 and δ > 0. For any set A⊂ Rd , define Hν

δ
be

Hν

δ
(A) := inf

{
∞

∑
i=1

(diamUi)
ν : A⊂

∞⋃
i=1

Ui and diam(Ui)< δ

}
,

where the infimum is over all countable covers of A by sets Ui ⊂Rd satisfying diam(Ui)< δ . Then,
let the ν-dimensional Hausdorff measure Hν be

Hν(A) := lim
δ→0

Hν

δ
(A).

Then, the Hausdorff dimension of a set is the infimum over dimensions that make the Hausdorff
measure on that set to be 0.

Definition 3. For any set A⊂ Rd , its Hausdorff dimension dH(A) is

dH(A) := inf{ν : Hν(A) = 0} .

We use the normalized ν-dimensional Hausdorff measure so that when ν is an integer, its mea-
sure on ν-dimensional unit cube is 1. This can be done by defining the normalized ν-dimensional
Hausdorff measure λν as

λν =
π

ν

2

2νΓ(ν

2 +1)
Hν .

Now, we define the reach, which is a regularity parameter in geometric measure theory. Given a
closed subset A⊂Rd , the medial axis of A, denoted by Med(A), is the subset of Rd composed of the
points that have at least two nearest neighbors on A. Namely, denoting by d(x,A) = infq∈A ||q−x||
the distance function of a generic point x to A,

Med(A) =
{

x ∈ Rd \A|∃q1 6= q2 ∈ A, ||q1− x||= ||q2− x||= d(x,A)
}
. (22)

The reach of A is then defined as the minimal distance from A to Med(A).

Definition 4. The reach of a closed subset A⊂ Rd is defined as

τA = inf
q∈A

d (q,Med(A)) = inf
q∈A,x∈Med(A)

||q− x||. (23)
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B Proof for Section 3
We show Lemma 4 first, which is a simple argument from the definition of dvol in (4) in Definition
1.

Lemma 4. Let P be a probability distribution on Rd , and dvol be its volume dimension. Then
for any ν ∈ [0,dvol), there exists a constant Cν ,P depending only on P and ν such that for all x ∈X
and r > 0,

P(BRd(x,r))
rν

≤Cν ,P.

Proof of Lemma 4. From the definition of dvol in (4) in Definition 1, ν ∈ [0,dvol) implies that

limsup
r→0

sup
x∈X

P(BRd(x,r))
rν

< ∞.

Then there exist r0 > 0 and C′
ν ,P > 0 such that for all r ≤ r0 and for all x ∈ X,

P(BRd(x,r))
rν

≤C′ν ,P. (24)

And for all r ≥ r0 and for all x ∈ X,

P(BRd(x,r))
rν

≤ 1
rν

0
. (25)

Hence combining (24) and (25) gives that for all r > 0 and for all x ∈ X,

P(BRd(x,r))
rν

≤max
{

C′ν ,P,
1
rν

0

}
.

Then we can show Proposition 1 by using Lemma 4 and the definition of Hausdorff dimension
in Definition 3.

Proposition 1. Let P be a probability distribution on Rd , and dvol be its volume dimension.
Suppose there exists a set A satisfying P(A∩X) > 0 and with Hausdorff dimension dH . Then
0≤ dvol ≤ dH . Hence if A is a dM-dimensional manifold, then 0≤ dvol ≤ dM. In particular, for any
probability distribution P on Rd , 0 ≤ dvol ≤ d. Also, if P has a point mass, i.e. there exists x ∈ X
with P({x})> 0, then dvol = 0.

Proof of Proposition 1. We first show dvol ≥ 0. For any x ∈ X and r ≥ 0,

P(BRd(x,r))
r0 ≤ 1 < ∞.

Hence dvol ≥ 0 holds.
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Now we show dvol ≤ dH = dH(A). Fix any ν < dvol, and we will show that Hν(A∩X)> 0. Let
{Ui} be a countable cover of A∩X, i.e. A∩X⊂

⋃
∞
i=1Ui, and let ri = diam(Ui). For each i, we can

assume that Ui∩ (A∩X) 6= /0 and choose xi ∈Ui∩ (A∩X). Then Ui ⊂ BRd(xi,ri) ⊂ BRd(xi,2ri),
and hence

A∩X⊂
∞⋃

i=1

BRd(xi,2ri).

Then with xi ∈ X, applying (5) from Lemma 4 gives

P(A∩X)< P

(
∞⋃

i=1

BRd(xi,2ri)

)
=

∞

∑
i=1

P(BRd(xi,2ri))

≤
∞

∑
i=1

2νCν ,Prν
i .

Hence
∞

∑
i=1

rν
i ≥

P(A∩X)
2νCν ,P

> 0.

Since this holds for arbitrary covers of A∩X, Hν

δ
(A∩X) ≥ P(A∩X)

2νCν ,P
for all δ > 0. And A∩X ⊂ A

implies

Hν(A)≥ Hν(A∩X) = lim
δ→0

Hν

δ
(A∩X)≥ P(A∩X)

2νCν ,P
> 0.

Since this holds for arbitrary ν < dvol, the definition of Hausdorff dimension in Definition 3 gives
that

dH = inf{ν : Hν(A) = 0} ≥ dvol.

Now, if A is a dM-dimensional manifold, then the Hausdorff dimension of A is dM, and hence
0≤ dvol≤ dM holds. In particular, setting A=Rd gives 0≤ dvol≤ d for all probability distributions.
Also, if there exists x ∈ X with P({x})> 0, then setting A = {x} gives dvol = 0.

Proposition 2 is again a simple argument from the definition of dvol in (4) in Definition 1.
Proposition 2. Let P1, . . . ,Pm be probability distributions on Rd , and λ1, . . . ,λm ∈ (0,1) with

∑
m
i=1 λi = 1. Then

dvol

(
m

∑
i=1

λiPi

)
= min{dvol(Pi) : 1≤ i≤ m} .

In particular, when dvol is understood as a real-valued function on the space of probability distri-
butions, both its sublevel sets and superlevel sets are convex.

Proof of Proposition 2. It is enough to show for the case m = 2. Let P := λ1P1 +λ2P2.
We first show dvol(P)≥min{dvol(P1),dvol(P2)}. Fix ν < min{dvol(P1),dvol(P2)}, then Defini-

tion 1 gives that

limsup
r→0

sup
x∈X

P1(BRd(x,r))
rν

, limsup
r→0

sup
x∈X

P2(BRd(x,r))
rν

< ∞.
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And hence

limsup
r→0

sup
x∈X

P(BRd(x,r))
rν

= limsup
r→0

sup
x∈X

{
λ1P1(BRd(x,r))

rν
+

λ2P2(BRd(x,r))
rν

}
≤ λ1 limsup

r→0
sup
x∈X

P1(BRd(x,r))
rν

+λ2 limsup
r→0

sup
x∈X

P2(BRd(x,r))
rν

< ∞.

And hence dvol(P)≥min{dvol(P1),dvol(P2)} holds.
Next, we show dvol(P)≤min{dvol(P1),dvol(P2)}. Without loss of generality, suppose dvol(P1)≤

dvol(P2), and fix ν > dvol(P1). Then Definition 1 gives that

limsup
r→0

sup
x∈X

P1(BRd(x,r))
rν

= ∞.

Then from P≥ λ1P1,

limsup
r→0

sup
x∈X

P(BRd(x,r))
rν

≥ limsup
r→0

sup
x∈X

λ1P1(BRd(x,r))
rν

= ∞.

And hence dvol(P)≤ dvol(P1) = min{dvol(P1),dvol(P2)} holds.

For Proposition 3 and 5, we need to bound the volume of the ball on the manifold. The follow-
ing is rephrased from Lemma 3 in Kim et al. [2019].

Lemma 24. Let M ⊂ Rd be a dM-dimensional submanifold with reach τM. For a subset U ⊂ M
and r < τM, let Ur := {x ∈ Rd : dist(x,U)< r} be an r-neighborhood of U in Rd . Then

λdM(U)≤ d!
dM!

rdM−d
λd(Ur).

Then, the following Lemma is by combining Lemma 5.3 in Niyogi et al. [2008] and Lemma
24.

Lemma 25. Let M ⊂ Rd be a dM-dimensional submanifold with reach τM. Then, for x ∈M and
r < τM, (

1− r2

4τ2
M

) dM
2

rdM ωd ≤ λdM(M∩BRd(x,r))≤
d!

dM!
2drdM ωd.

Proof of Lemma 25. The LHS inequality is from Lemma 5.3 in Niyogi et al. [2008]. The RHS
inequality is applying U = M∩BRd(x,r) to Lemma 24 and λd(Ur)≤ λd(BRd(x,2r)) = (2r)dωd .

Now, we show Proposition 3 and 5 simultaneously via the following Proposition:
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Proposition 26. Let P be a probability distribution on Rd , and dvol be its volume dimension.
Suppose there exists a dM-dimensional manifold M with positive reach satisfying P(M ∩X) > 0
and supp(P) ⊂ M. If P has a bounded density p with respect to the normalized dM-dimensional
Hausdorff measure λdM , then dvol = dM, and Assumption 1 and 2 are satisfied. In particular, when
P has a bounded density p with respect to the d-dimensional Lebesgue measure λd , then dvol = d,
and Assumption 1 and 2 are satisfied.

Proof for Proposition 26. Let τM be the reach of M.
We first show dvol = dM and Assumption 1. Since the density p is bounded, for all x ∈ X and

r > 0, the probability on the ball BRd(x,r) is bounded as

P(BRd(x,r))≤ ‖p‖
∞

λdM(M∩BRd(0,r)). (26)

Then for r < τM, Lemma 25 implies λdM(M∩BRd(x,r))≤ d!
dM!2

drdM ωd , and hence

limsup
r→0

sup
x∈X

P(BRd(x,r))
rdM

≤ ‖p‖
∞

d!
dM!

2d
ωd < ∞, (27)

which implies
dvol ≥ dM.

Then from Proposition 1,
dvol = dM.

Now, (27) shows that Assumption 1 is satisfied.
For Assumption 2, define a density q : Rd → R as

q(x) = lim
r→0

Γ(dM
2 +1)

π
dM
2

P(BRd(x,r))
rdM

.

Since M is a submanifold with positive reach, P is λdM -rectifiable. This imply that such limit q(x)
exists a.e. [λdM ], and for any measurable set A,

P(A) =
∫

A∩M
q(x)dλdM(x).

See, for instance, Rinaldo and Wasserman [2010, Appendix], Mattila [1995, Corollary 17.9], or
Ambrosio et al. [2000, Theorem 2.83]. Then from

P(M∩X) =
∫

M∩X
q(x)dλdM(x)> 0,

there exists x0 ∈M∩X with q(x0)> 0. And hence

sup
x∈X

liminf
r→0

P(BRd(x,r))
rdM

≥ q(x0)> 0,

and hence Assumption 2 is satisfied.
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The proof of Proposition 6 is simply checking the convexities for Assumption 1 and Assump-
tion 2.

Proposition 6. The set of probability distributions satisfying Assumption 1 is convex. And so
is the set of probability distributions satisfying Assumption 2.

Proof of Proposition 6. Suppose P1, P2 are two probability distributions and λ ∈ (0,1). Let P :=
λP1 +(1−λ )P2. Then Proposition 2 implies that

dvol(P) = min{dvol(P1),dvol(P2)}.

Consider Assumption 1 first. Suppose P1 and P2 satisfies Assumption 1. Then for all x ∈X and
r ≤ 1, applying dvol(P1)≤ dvol(P1),dvol(P2) gives

P(BRd(x,r))
rdvol(P)

= λ
P1(BRd(x,r))

rdvol(P)
+(1−λ )

P2(BRd(x,r))
rdvol(P)

≤ λ
P1(BRd(x,r))

rdvol(P1)
+(1−λ )

P2(BRd(x,r))
rdvol(P2)

.

Hence,

limsup
r→0

sup
x∈X

P(BRd(x,r))
rdvol(P)

≤ limsup
r→0

sup
x∈X

{
λ

P1(BRd(x,r))
rdvol(P1)

+(1−λ )
P2(BRd(x,r))

rdvol(P2)

}
≤ λ limsup

r→0
sup
x∈X

P1(BRd(x,r))
rdvol(P1)

+(1−λ ) limsup
r→0

sup
x∈X

P2(BRd(x,r))
rdvol(P2)

< ∞,

and Assumption 1 is satisfied for P = λP1 +(1−λ )P2.
Now, consider Assumption 2. Suppose P1 and P2 satisfies Assumption 1, and without loss of

generality, assume dvol(P1)≤ dvol(P2). Then there exists x0 ∈ X such that

liminf
r→0

P1(BRd(x0,r))
rdvol(P1)

> 0.

Then P≥ λP1 and dvol(P) = dvol(P1) give

liminf
r→0

P(BRd(x0,r))
rdvol(P)

≥ liminf
r→0

λP1(BRd(x0,r))
rdvol(P1)

> ∞.

Hence

sup
x∈X

liminf
r→0

P(BRd(x,r))
rdvol(P)

> 0,

and Assumption 2 is satisfied for P = λP1 +(1−λ )P2.
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C Volume Dimension and Other Dimensions
In this section, we compare the volume dimension with other various dimensions.

For a set, one commonly used dimension other than the Hausdorff dimension is the box di-
mension ([Pesin, 1997, Section 6], [Falconer, 2014, Section 3.1]). This has various names as Kol-
mogorov entropy, entropy dimension, capacity dimension, metric dimension, logarithmic density
or Minkowski dimension.

Definition 5. For any set A⊂ Rd and δ > 0, let N(A,δ ) be the smallest number of balls of radius
δ to cover A. Then the lower box dimension of A is defined as

d−B (A) := liminf
δ→0

logN(A,δ )
− logδ

,

and the upper box dimension of A is defined as

d+
B (A) := limsup

δ→0

logN(A,δ )
− logδ

.

The Hausdorff dimension and the lower and upper box dimensions are related as [Pesin, 1997,
Theorem 6.2 (2)]:

forall A⊂ Rd, dH(A)≤ d−B (A)≤ d+
B (A). (28)

So far the Hausdorff dimension in Section A and the box dimension is defined for a set. For a
probability distribution, there are two ways for natural extension. One way is to take the infimum
of the set dimensions over all sets with positive probabilities ([Mattila et al., 2000, Section 2],
[Falconer, 2014, Section 13.7]). We will use this as the definition of the Hausdorff dimension and
the box dimension.

Definition 6. Let P be a probability distribution on Rd . Its Hausdorff dimension dH(P) is the
infimum of the Hausdorff dimensions over a set with positive probability, i.e.,

dH(P) := inf
A:P(A)>0

dH(A).

Similarly, the lower box dimension d−B (P) and the upper box dimension d+
B (P) is the infimum

of the lower box dimensions and the upper box dimensions, respectively, over a set with positive
probability, i.e.

d−B (P) := inf
A:P(A)>0

d−B (A),

d+
B (P) := inf

A:P(A)>0
d+

B (A).

Another way is to take the infimum of the set dimensions over all sets with probabilities 1
[Pesin, 1997, Section 6]. We will denote these dimensions as Hausdorff support dimension and the
box support dimension to differentiate from the previous dimensions.
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Definition 7. Let P be a probability distribution on Rd . Its Hausdorff support dimension dHS(P)
is the infimum of the Hausdorff dimensions over a set with probability 1, i.e.,

dHS(P) := inf
A:P(A)=1

dH(A).

Similarly, the lower box dimension d−BS(P) and the upper box dimension d+
BS(P) is the infimum

of the lower box dimensions and the upper box dimensions, respectively, over a set with positive
probability, i.e.

d−BS(P) := inf
A:P(A)=1

d−B (A),

d+
BS(P) := inf

A:P(A)=1
d+

B (A).

The volume dimension, the Hausdorff dimension, and the lower and upper box dimensions
have the following relations.

Proposition 27. Let P be a probability distribution on Rd with P(X)> 0. Then its volume dimen-
sion, Hausdorff dimension, lower and upper box dimension, Hausdorff support dimension, and
lower and upper box support dimension satisfy the following inequality:

dvol(P)≤ dH(P)≤ d−B (P)≤ d+
B (P),

and
dvol(P)≤ dHS(P)≤ d−BS(P)≤ d+

BS(P).

Proof. Since P(supp(P)∩X) = P(X) > 0, dvol(P) ≤ dH(P) is direct from Proposition 1. Now,
combining this with dH(P) ≤ d−B (P) ≤ d+

B (P) and dHS(P) ≤ d−BS(P) ≤ d+
BS(P) from (28) and that

dH(P)≤ dHS(P) gives the statement.

Now, we introduce the q-dimension, which generalizes the box support dimension [Lee and
Verleysen, 2007, Section 3.2.1].

Definition 8. Let P be a probability distribution on Rd . For q≥ 0 and δ > 0, define Cq(P,δ ) as

Cq(P,δ ) :=
∫
[P(BRd(x,δ ))]q−1dP(x).

Now for q≥ 0 and q 6= 1, the lower q-dimension of P is

d−q (P) := liminf
δ→0

logCq(P,δ )
(q−1) logδ

,

and the upper q-dimension of P is

d+
q (P) := limsup

δ→0

logCq(P,δ )
(q−1) logδ

.

For q= 1, we understand in the limit sense, i.e., d−1 (P)= limq→1 d−q (P) and d+
1 (P)= limq→1 d+

q (P).
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This q-dimension is a generalization of the box support dimension in the sense that when
q = 0, the lower and upper q-dimensions reduce to the lower and upper box support dimensions,
respectively, i.e. d−0 (P) = d−BS(P) and d+

0 (P) = d+
BS(P) Pesin [1997, Section 8]. When q = 1, the

q-dimension is called the information dimension, and when q = 2, the q-dimension is called the
correlation dimension.

The volume dimension and the q-dimension have the following relation.

Proposition 28. Let P be a probability distribution on Rd with P(X) = 1. Then for any q≥ 0, the
volume dimension and the q-dimension has the following inequality:

dvol(P)≤ d−q (P)≤ d+
q (P).

Proof. Since d−q (P)≤ d+
q (P) is obvious, we only need to show dvol(P)≤ d−q (P).

Fix any ν < dvol(P). Then from P(X) = 1, Cq(P,δ ) can be expressed as taking an integration
over X. Hence applying (5) from Lemma 4 gives

Cq(P,δ ) =
∫
X
[P(BRd(x,δ ))]q−1dP(x)

≤
∫
X
[P(BRd(x,2δ ))]q−1dP(x)

≤ (2νCν ,Pδ
ν)q−1.

And hence d−q (P) is lower bounded as

d−q (P) = liminf
δ→0

logCq(P,δ )
(q−1) logδ

≥ liminf
δ→0

log(2νCν ,Pδ ν)

logδ

= ν + liminf
δ→0

log(2νCν ,P)

logδ
= ν .

Since this holds for arbitrary ν < dvol(P), we have

dvol(P)≤ d−q (P).

We end this section by comparing the volume dimension and the Wasserstein dimension [Weed
and Bach, 2017, Definition 4].

Definition 9. Let P be a probability distribution on Rd . For any δ > 0 and τ ∈ [0,1], let the
(δ ,τ)-covering number of P be

N(P,δ ,τ) := inf{N(A,δ ) : P(A)≥ 1− τ},

and let the (δ ,τ)-dimension be

dδ (P,τ) :=
logN(P,δ ,τ)
− logδ

.
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Then for a fixed p > 0, the lower and upper Wasserstein dimensions are respectively,

d∗(P) = lim
τ→0

liminf
δ→0

dδ (P,τ)

d∗p(P) = inf{s ∈ (2p,∞) : limsup
δ→0

dε(P,δ
sp

s−2p )≤ s}.

Proposition 29. Let P be a probability distribution on Rd with P(X)> 0. Then its volume dimen-
sion and lower and upper Wasserstein dimensions satisfy the following inequality:

dvol(P)≤ dHS(P)≤ d∗(P)≤ d∗p(P).

Proof. Since P(supp(P)∩X) = P(X) > 0, dvol(P) ≤ dH(P) is direct from Proposition 1. The
inequality dH(P)≤ d∗(P)≤ d∗p(P) is from Weed and Bach [2017, Proposition 2].

D Uniform convergence on a function class
As we have seen in (8) in Section 4, uniform bound on the kernel density estimator suph≥ln,x∈X

∣∣p̂h(x)−
ph(x)

∣∣ boils down to uniformly bounding on the function class sup f∈F̃K,[ln,∞)

∣∣1
n ∑

n
i=1 f (Xi)−E[ f (X)]

∣∣.
In this section, we derive a uniform convergence for a more general class of functions. Let F be a
class of functions from Rd to R, and consider a random variable

sup
f∈F

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E[ f (X)]

∣∣∣∣∣ . (29)

As discussed in Section 4, we combine the Talagrand inequality (Theorem 8) and VC type bound
(Theorem 9) to bound (29), which is generalizing the approach in Sriperumbudur and Steinwart
[2012, Theorem 3.1].

Theorem 30. Let (Rd,P) be a probability space and let X1, . . . ,Xn be i.i.d. from P. Let F be a
class of functions from Rd to R that is uniformly bounded VC-class with dimension ν , i.e. there
exists positive numbers A,B such that, for all f ∈F , ‖ f‖

∞
≤ B, and for every probability measure

Q on Rd and for every ε ∈ (0,B), the covering number N (F ,L2(Q),ε) satisfies

N (F ,L2(Q),ε)≤
(

AB
ε

)ν

.

Let σ > 0 with EP f 2 ≤ σ2 for all f ∈F . Then there exists a universal constant C not depending
on any parameters such that sup f∈F

∣∣1
n ∑

n
i=1 f (Xi)−E[ f (X)]

∣∣ is upper bounded with probability
at least 1−δ ,

sup
f∈F

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E[ f (X)]

∣∣∣∣∣
≤C

νB
n

log
(

2AB
σ

)
+

√
νσ2

n
log
(

2AB
σ

)
+

√
σ2 log( 1

δ
)

n
+

B log( 1
δ
)

n

 .
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Proof of Theorem 30. Let G := { f −EP[ f ] : f ∈F}. Then it is immediate to check that for all
g ∈ G ,

EPg = EP f −EP f = 0,

EPg2 = EP( f −EP f )2 ≤ EP f 2 ≤ σ
2,

‖g‖
∞
≤ ‖ f‖

∞
+EP f ≤ 2B. (30)

Now, sup f∈F
∣∣1

n ∑
n
i=1 f (Xi)−E[ f (X)]

∣∣ is expanded as

sup
f∈F

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E[ f (X)]

∣∣∣∣∣= sup
g∈G

∣∣∣∣∣1n n

∑
i=1

g(Xi)

∣∣∣∣∣ .
Hence from (30), applying Proposition 8 to above gives the probabilistic bound on supg∈G

∣∣1
n ∑

n
i=1 g(Xi)

∣∣
as

P

sup
g∈G

∣∣∣∣∣1n n

∑
i=1

g(Xi)

∣∣∣∣∣< 4EP sup
g∈G

∣∣∣∣∣1n n

∑
i=1

g(Xi)

∣∣∣∣∣+
√

2σ2 log( 1
δ
)

n
+

2B log( 1
δ
)

n

≥ 1−δ . (31)

It thus remains to bound the term EP supg∈G
∣∣1

n ∑
n
i=1 g(Xi)

∣∣. Let F̃ := { f −a : f ∈F , a ∈ [−B,B]}.
Then F being a uniform VC-class with dimension ν implies that for all ε ∈ (0,B),

sup
P

N
(
F̃ ,L2(P),ε

)
≤ sup

P
N
(
F ,L2(P),

ε

2

)
sup

P
N
(
[−B,B], | · |, ε

2

)
≤
(

2AB
ε

)ν+1

.

Hence from (30), applying Proposition 9 yields the upper bound for EP supg∈G
∣∣1

n ∑
n
i=1 g(Xi)

∣∣ as

EPn sup
g∈G

∣∣∣∣∣1n n

∑
i=1

g(Xi)

∣∣∣∣∣≤ 2C

(
2(ν +1)B

n
log
(

2AB
σ

)
+

√
(ν +1)σ2

n
log
(

2AB
σ

))
. (32)

Hence applying (32) to (31) yields that, sup f∈F
∣∣1

n ∑
n
i=1 f (Xi)−E[ f (X)]

∣∣ is upper bounded with
probability at least 1−δ as

sup
f∈F

∣∣∣∣∣1n n

∑
i=1

f (Xi)−E[ f (X)]

∣∣∣∣∣
≤ 4C

(
2(ν +1)B

n
log
(

2AB
σ

)
+

√
(ν +1)σ2

n
log
(

2AB
σ

))

+

√
2σ2 log( 1

δ
)

n
+

2B log( 1
δ
)

n

≤ 16C

νB
n

log
(

2AB
σ

)
+

√
νσ2

n
log
(

2AB
σ

)
+

√
σ2 log( 1

δ
)

n
+

B log( 1
δ
)

n

 .
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E Proof for Section 4
Lemma 11 is shown by the calculation using integral by parts and change of variables.

Lemma 11. Let (Rd,P) be a probability space and let X ∼ P. For any kernel K satisfying
Assumption 3 with k > 0, the expectation of the k-moment of the kernel is upper bounded as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
≤Ck,P,K,εhdvol−ε ,

for any ε ∈ (0,dvol), where Ck,P,K,ε is a constant depending only on k, P, K, and ε . Further, if
dvol = 0 or under Assumption 1, ε can be 0 in (11).

Proof of Lemma 11. We first consider the case when dvol = 0. Then EP

[∣∣K (x−X
h

)∣∣k] is simply
bounded as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
≤ ‖K‖k

∞
h0.

Now, we consider the case when dvol > 0. Fix ε ∈ (0,dvol). Under Assumption 1, ε can be
chosen to be 0.

Let Ck,K,dvol,ε :=
∫

∞

0 tdvol−ε−1 sup‖x‖≤t |K(x)|kdt, then it is finite from (10) and ‖K‖
∞
< ∞ in

Assumption 4 as∫
∞

0
tdvol−ε−1 sup

‖x‖≤t
|K(x)|kdt ≤

∫ 1

0
tdvol−ε−1 ‖K‖

∞
dt +

∫
∞

1
tdvol−1 sup

‖x‖≤t
|K(x)|kdt

≤ ‖K‖∞

dvol− ε
+
∫

∞

0
tdvol−1 sup

‖x‖≤t
|K(x)|kdt < ∞.

Fix η > 0, and let K̃η : [0,∞)→ R be a continuous and strictly decreasing function satisfying
K̃η(t) > sup‖x‖≥t |K(x)|k for all t ≥ 0 and

∫
∞

0 tdvol−ε−1(K̃η(t)− sup‖x‖≥t |K(x)|k)dt = η . Such ex-
istence is possible since t 7→ sup‖x‖≥t |K(x)|k is nonincreasing function, so have at most countable
discontinuous points, and

∫
∞

0 tdvol−ε−1 sup‖x‖≤t |K(x)|kdt < ∞. Then it is immediate to check that

|K(x)|k < K̃η(‖x‖) for all x ∈ R. (33)

Then
∫

∞

0 tdvol−ε−1K̃(t)dt can be expanded as∫
∞

0
tdvol−ε−1K̃η(t)dt =

∫
∞

0
tdvol−ε−1 sup

‖x‖≤t
|K(x)|kdt +

∫
∞

0
tdvol−ε−1(K̃η(t)− sup

‖x‖≥t
|K(x)|k)dt

=Ck,K,dvol,ε +η < ∞. (34)
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Now since K̃η is continuous and strictly decreasing, change of variables t = K̃η(u) is applicable,

and then EP

[∣∣K (x−X
h

)∣∣k] can be expanded as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
=
∫

∞

0
P

(∣∣∣∣K(x−X
h

)∣∣∣∣k > t

)
dt

=
∫ 0

∞

P

(∣∣∣∣K(x−X
h

)∣∣∣∣k > K̃η(u)

)
dK̃η(u).

Now, from (33) and K̃η being a strictly decreasing, we can upper bound EP

[∣∣K (x−X
h

)∣∣k] as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
≤
∫ 0

∞

P
(

K̃η

(
‖x−X‖

h

)
> K̃η(u)

)
dK̃η(u)

=
∫ 0

∞

P
(
‖x−X‖

h
< u
)

dK̃η(u)

=
∫ 0

∞

P(BRd(x,hu))dK̃η(u).

Now, from Lemma 4 (and (6) for Assumption 1 case), there exists Cdvol−ε,P <∞ with P(BRd(x,r))≤
Cdvol−ε,Prdvol−ε for all x ∈ X and r > 0. Then EP

[∣∣K (x−X
h

)∣∣k] is further upper bounded as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
≤
∫ 0

∞

Cdvol−ε,P(hu)dvol−εdK̃(u)

=Cdvol−ε,Phdvol−ε

∫ 0

∞

udvol−εdK̃(u). (35)

Now,
∫ 0

∞
udvol−εdK̃(u) can be computed using integration by part. Note first that

∫
∞

0 tdvol−ε−1K̃(t)dt <
∞ implies

lim
t→∞

tdvol−ε K̃(t) = 0.

To see this, note that tdvol−ε K̃(t) is expanded as

tdvol−ε K̃(t) =
∫ t

0
udvol−εdK̃(u)+

∫ t

0
(dvol− ε)udvol−ε−1K̃(u)du,

then
∫

∞

0 (dvol− ε)udvol−ε−1K̃(u)du < ∞ and
∫ t

0 udvol−εdK̃(u) being monotone function of t imply
that limt→∞ tdvol−ε K̃(t) exists. Now, suppose limt→∞ tdvol−ε K̃(t) = a > 0, then we can choose t0 > 0
such that tdvol−ε K̃(t)> a

2 for all t ≥ t0, and then

∞ >
∫

∞

0
tdvol−ε−1K̃(t)dt ≥

∫
∞

t0
tdvol−ε−1K̃(t)dt ≥ a

2

∫
∞

t0
t−1dt = ∞,
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which is a contradiction. Hence limt→∞ tdvol−ε K̃(t) = 0. Now, applying integration by part to∫ 0
∞

udvol−εdK̃(u) with dvol− ε > 0 gives∫ 0

∞

udvol−εdK̃(u) =
[
udvol−ε K̃(u)

]0

∞

−
∫ 0

∞

(dvol− ε)udvol−ε−1K̃(u)du

=
∫

∞

0
(dvol− ε)udvol−ε−1K̃(u)du. (36)

Then applying (34) and (36) to (35) gives an upper bound for EP

[∣∣K (x−X
h

)∣∣k] as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
≤Cdvol−ε,P(dvol− ε)hdvol−ε(Ck,K,dvol,ε +η). (37)

And then note that RHS of (37) holds for any η > 0, and hence EP

[∣∣K (x−X
h

)∣∣k] is further upper
bounded as

EP

[∣∣∣∣K(x−X
h

)∣∣∣∣k
]
≤ inf

η>0

{
Cdvol−ε,P(dvol− ε)hdvol−ε(Ck,K,dvol,ε +η)

}
=Cdvol−ε,P(dvol− ε)Ck,K,dvol,εhdvol−ε

=Ck,P,K,εhdvol−ε ,

where Ck,P,K,ε =Cdvol−ε,P(dvol− ε)Ck,K,dvol,ε .

E.1 Proof for Section 4.1
Theorem 12 follows from applying Theorem 30.

Theorem 12. Let P be a probability distribution and let K be a kernel function satisfying
Assumption 3 and 4. Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤C

(
(log(1/ln))+

nld
n

+

√
(log(1/ln))+
nl2d−dvol+ε

n
+

√
log(2/δ )

nl2d−dvol+ε
n

+
log(2/δ )

nld
n

)
,

for any ε ∈ (0,dvol), where C is a constant depending only on A, ‖K‖
∞

, d, ν , dvol, Ck=2,P,K,ε , ε .
Further, if dvol = 0 or under Assumption 1, ε can be 0 in (12).

Proof of Theorem 12. For x∈X and h≥ ln, let Kx,h :Rd→R be Kx,h(·)=K
(x−·

h

)
, and let F̃K,[ln,∞) :={

1
hd Kx,h : x ∈ X,h≥ ln

}
be a class of normalized kernel functions centered on X and bandwidth

in [ln,∞). Note that p̂h(x)− ph(x) can be expanded as

p̂h(x)− ph(x) =
1

nhd

n

∑
i=1

K
(

x−Xi

h

)
−EP

[
1
hd K

(
x−Xi

h

)]
=

1
n

n

∑
i=1

1
hd Kx,h(Xi)−EP

[
1
hd Kx,h

]
.
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Hence suph≥ln,x∈X |p̂h(x)− ph(x)| can be expanded as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|= sup
f∈F̃K,[ln,∞)

∣∣∣∣∣1n n

∑
i=1

f (Xi)−EP [ f (X)]

∣∣∣∣∣ . (38)

Now, it is immediate to check that
‖ f‖

∞
≤ l−d

n ‖K‖∞
. (39)

For bounding the VC dimension of F̃K,[ln,∞), consider FK,[ln,∞) :=
{

Kx,h : x ∈ X,h≥ ln
}

be a class
of unnormalized kernel functions centered on X and bandwidth in [ln,∞). Fix η < l−d

n ‖K‖∞
and a

probability measure Q on Rd . Suppose
[

ln,
(

η

2‖K‖
∞

)−1/d
]

is covered by balls
{(

hi− ld+1
n η

2d‖K‖
∞

,hi +

ld+1
n η

2d‖K‖
∞

)
: 1≤ i≤ N1

}
and (FK,[ln,∞),L2(Q)) is covered by balls

{
BL2(Q)

(
f j,

ld
n η

2

)
: 1≤ j ≤ N2

}
,

and let fi, j := h−d
i f j for 1≤ i≤ N1 and 1≤ j ≤ N2. Also, choose h0 >

(
η

2‖K‖
∞

)−1/d
, x0 ∈ X, and

let f0 =
1
hd

0
Kx0,h0 . We will show that

{
BL2(Q)

(
fi, j,η

)
: 1≤ i≤ N1, 1≤ j ≤ N2

}
∪
{
BL2(Q) ( f0,η)

}
covers F̃K,[ln,∞). (40)

For the first case when h ≤
(

η

‖K‖
∞

)−1/d
, find hi and f j with h ∈

(
hi− ld+1

n η

2d‖K‖
∞

,hi +
ld+1
n η

2d‖K‖
∞

)
and

Kx,h ∈ BL2(Q)

(
f j,

ld
n η

2

)
. Then the distance between 1

hd Kx,h and 1
hd

i
f j is upper bounded as∥∥∥∥ 1

hd Kx,h−
1
hd

i
f j

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd Kx,h−
1
hd

i
Kx,h

∥∥∥∥
L2(Q)

+

∥∥∥∥ 1
hd

i
Kx,h−

1
hd

i
f j

∥∥∥∥
L2(Q)

. (41)

Now, the first term of (41) is upper bounded as∥∥∥∥ 1
hd Kx,h−

1
hd

i
Kx,h

∥∥∥∥
L2(Q)

=

∣∣∣∣ 1
hd −

1
hd

i

∣∣∣∣∥∥Kx,h
∥∥

L2(Q)

= |hi−h|
d−1

∑
k=0

hk−d
i h−1−k∥∥Kx,h

∥∥
L2(Q)

≤ |hi−h|dl−d−1
n ‖K‖

∞
<

η

2
. (42)

Also, the second term of (41) is upper bounded as∥∥∥∥ 1
hd

i
Kx,h−

1
hd

i
f j

∥∥∥∥
L2(Q)

=
1
hd

i

∥∥Kx,h− f j
∥∥

L2(Q)

≤ l−d
n
∥∥Kx,h− f j

∥∥
L2(Q)

<
η

2
. (43)
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Hence applying (42) and (43) to (41) gives∥∥∥∥ 1
hd Kx,h−

1
hd

i
f j

∥∥∥∥
L2(Q)

< η .

For the second case when h >
(

η

2‖K‖
∞

)−1/d
,
∥∥∥ 1

hd Kx,h

∥∥∥
L2(Q)

≤
∥∥∥ 1

hd Kx,h

∥∥∥
∞

< η

2 holds, and hence

∥∥∥∥ 1
hd Kx,h− f0

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd Kx,h

∥∥∥∥
L2(Q)

+‖ f0‖L2(Q) < η .

Therefore, (40) is shown. Hence combined with Assumption 4 gives that for every probability
measure Q on Rd and for every η ∈ (0,h−d ‖K‖

∞
), the covering number N (F̃K,[ln,∞),L2(Q),η)

is upper bounded as

sup
Q

N (F̃K,[ln,∞),L2(Q),η)

≤N

([
ln,
(

η

2‖K‖
∞

)−1/d
]
, | · |, ld+1

n η

2d ‖K‖
∞

)
sup

Q
N

(
FK,[ln,∞),L2(Q),

ld
n η

2

)
+1

≤ 2d ‖K‖
∞

ld+1
n η

(
2‖K‖

∞

η

)1/d(2A‖K‖
∞

ld
n η

)ν

+1

≤
(

2Ad ‖K‖
∞

ld
n η

)ν+2

. (44)

Also, Lemma 11 implies that under Assumption 3, for any ε ∈ (0,dvol) (and ε can be 0 if dvol = 0
or under Assumption 1),

EP

[(
1
hd Kx,h

)2
]
≤Ck=2,P,K,ε l−2d+dvol−ε

n . (45)

Hence from (39), (44), and (45), applying Theorem 30 to (38) gives that suph≥ln,x∈X |p̂h(x)− ph(x)|
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is upper bounded with probability at least 1−δ as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤C


2(ν +2)‖K‖

∞
log
(

2Ad‖K‖
∞√

Ck=2,P,K,ε l
(dvol−ε)/2
n

)
nld

n
+

√√√√√2(ν +2)Ck=2,P,K,ε log
(

2Ad‖K‖
∞√

Ck=2,P,K,ε l
(dvol−ε)/2
n

)
nl2d−dvol+ε

n

+

√
Ck=2,P,K,ε log( 1

δ
)

nl2d−dvol+ε
n

+
‖K‖

∞
log( 1

δ
)

nld
n


≤CA,‖K‖

∞
,d,ν ,dvol,Ck=2,P,K,ε


(

log
(

1
ln

))
+

nld
n

+

√√√√(log
(

1
ln

))
+

nl2d−dvol+ε
n

+

√
log
( 2

δ

)
nl2d−dvol+ε

n
+

log
( 2

δ

)
nld

n

 ,

where CA,‖K‖
∞
,d,ν ,dvol,Ck=2,P,K,ε ,ε depends only on A, ‖K‖

∞
, d, ν , dvol, Ck=2,P,K,ε , ε .

Then Corollary 13 is just simplifying the result in Theorem 12.
Corollary 13. Let P be a probability distribution and let K be a kernel function satisfying

Assumption 3 and 4. Fix ε ∈ (0,dvol). Further, if dvol = 0 or under Assumption 1, ε can be 0.
Suppose

limsup
n

(log(1/`n))++ log(2/δ )

n`dvol−ε
n

< ∞.

Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|p̂h(x)− ph(x)| ≤C′
√

(log( 1
ln
))++ log( 2

δ
)

nl2d−dvol+ε
n

,

where C′ depending only on A, ‖K‖
∞

, d, ν , dvol, Ck=2,P,K,ε , ε .

Proof of Corollary 13. From (12) in Theorem 12, suph≥ln,x∈X |p̂h(x)− ph(x)| is upper bounded

35



with probability at least 1−δ as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤CA,‖K‖
∞
,d,ν ,dvol,Ck=2,P,K,ε ,ε


(

log
(

1
ln

))
+

nld
n

+

√√√√(log
(

1
ln

))
+

nl2d−dvol+ε
n

+

√
log
( 2

δ

)
nl2d−dvol+ε+ε

n
+

log
( 2

δ

)
nld

n


=CA,‖K‖

∞
,d,ν ,dvol,Ck=2,P,K,ε ,ε

×


√√√√(log

(
1
ln

))
+

nl2d−dvol+ε
n


√√√√(log

(
1
ln

))
+

nldvol−ε
n

+1

+

√
log
( 2

δ

)
nl2d−dvol+ε

n

√ log
( 2

δ

)
nldvol−ε

n
+1


 .

Then from limsupn
(log( 1

ln ))++log( 2
δ
)

nl
dvol−ε

n
< ∞, there exists some constant C′ with

(
log
(

1
ln

))
+
+

log
( 2

δ

)
≤ C′nldvol+ε

n . And hence suph≥ln,x∈X |p̂h(x)− ph(x)| is upper bounded with probability
1−δ as

sup
h≥ln,x∈X

|p̂h(x)− ph(x)|

≤CA,‖K‖
∞
,d,ν ,dvol,Ck=2,P,K,ε ,ε


√√√√(log

(
1
ln

))
+

nl2d−dvol+ε
n

(√
C′+1

)
+

√
log
( 1

δ

)
nl2d−dvol+ε

n

(√
C′+1

)
≤C′A,‖K‖

∞
,d,ν ,dvol,Ck=2,P,K,ε ,ε

√√√√(log
(

1
ln

))
+
+ log

( 1
δ

)
nl2d−dvol+ε

n
,

where C′A,‖K‖
∞
,d,ν ,dvol,Ck=2,P,K,ε ,ε

depending only on A, ‖K‖
∞

, d, ν , dvol, Ck=2,P,K,ε , ε .

E.2 Proof for Section 4.2
Lemma 14 is by covering X and then using the Lipschitz property of the kernel function K.

Lemma 14. Suppose there exists R > 0 with X⊂ BRd(0,R). Let the kernel K is MK-Lipschitz
continuous. Then for all η ∈ (0,‖K‖

∞
), the supremum of the η-covering number N (FK,h,L2(Q),η)

over all measure Q is upper bounded as

sup
Q

N (FK,h,L2(Q),η)≤
(

2RMKh−1 +‖K‖
∞

η

)d

.
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Proof of Lemma 14. For fixed η > 0, let x1, . . . ,xM be the maximal η-covering of BRd(0,R),
with M = M (BRd(0,R),‖·‖2 ,η) being the packing number of BRd(0,R). Then BRd(xi,η) and
BRd(x j,η) do not intersect for any i, j and

⋃M
i=1BRd(xi,η)⊂ BRd(xi,R+η), and hence

M

∑
i=1

λd (BRd(xi,η))≤ λd (BRd(xi,R+η)) . (46)

Then λd (BRd(x,r)) = rdλd (BRd(0,1)) gives the upper bound on M (BRd(0,R),‖·‖2 ,η) as

M (BRd(0,R),‖·‖2 ,η)≤
(

1+
R
η

)d

.

Then X⊂ BRd(0,R) and the relationship between covering number and packing number gives the
upper bound on the covering number N (X,‖·‖2 ,η) as

N (X,‖·‖2 ,η)≤N (BRd(0,R),‖·‖2 ,η)≤M
(
BRd(0,R),‖·‖2 ,

η

2

)
≤
(

1+
2R
η

)d

. (47)

Now, note that for all x,y ∈ X and for all z ∈ Rd ,
∣∣Kx,h(z)−Ky,h(z)

∣∣ is upper bounded as

∣∣Kx,h(z)−Ky,h(z)
∣∣= ∣∣∣∣K(x− z

h

)
−K

(
y− z

h

)∣∣∣∣≤ MK

h
‖(x− z)− (y− z)‖2 =

MK

h
‖x− y‖2 .

Hence for any measure Q on Rd ,
∥∥Kx,h−Ky,h

∥∥
L2(Q)

is upper bounded as

∥∥Kx,h−Ky,h
∥∥

L2(Q)
=

√∫
(Kx,h(z)−Ky,h(z))2dQ(z)≤ MK

h
‖x− y‖2 .

Hence applying this to (47) implies that for all η > 0, the supremum of the covering number
N (FK,h,L2(Q),η) over all measure Q is upper bounded as

sup
Q

N (FK,h,L2(Q),η)≤N

(
X,‖·‖2 ,

hη

MK

)
≤
(

1+
2RMK

hη

)d

.

Hence for all η ∈ (0,‖K‖
∞
),

sup
Q

N (FK,h,L2(Q),η)≤
(

2RMKh−1 +‖K‖
∞

η

)d

.

Then Corollary 15 follows from applying Theorem 30 with bounding the covering number
from Lemma 14.
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Corollary 15. Suppose there exists R > 0 with X ⊂ BRd(0,R). Let K be a MK-Lipschitz
continuous kernel function satisfying Assumption 3. Fix ε ∈ (0,dvol). Further, if dvol = 0 or under
Assumption 1, ε can be 0. Suppose

limsup
n

(log(1/hn))++ log(2/δ )

nhdvol−ε
n

< ∞.

Then with probability at least 1−δ ,

sup
x∈X
|p̂hn(x)− phn(x)| ≤C′′

√
(log( 1

hn
))++ log( 2

δ
)

nh2d−dvol+ε
n

,

where C′′ is a constant depending only on R, MK , ‖K‖
∞

, d, ν , dvol, Ck=2,P,K,ε , ε .

Proof of Corollary 15. For x∈X, let Kx,h : Rd→R be Kx,h(·) = K
(x−·

h

)
, and let F̃K,h :=

{ 1
hd Kx,h :

x ∈ X
}

be a class of normalized kernel functions centered on X and bandwidth h. Note that
p̂h(x)− ph(x) can be expanded as

p̂h(x)− ph(x) =
1

nhd

n

∑
i=1

K
(

x−Xi

h

)
−EP

[
1
hd K

(
x−Xi

h

)]
=

1
n

n

∑
i=1

1
hd Kx,h(Xi)−EP

[
1
hd Kx,h

]
.

Hence supx∈X |p̂h(x)− ph(x)| can be expanded as

sup
x∈X
|p̂h(x)− ph(x)|= sup

f∈F̃K,h

∣∣∣∣∣1n n

∑
i=1

f (Xi)−EP [ f (X)]

∣∣∣∣∣ . (48)

Now, it is immediate to check that
‖ f‖

∞
≤ h−d ‖K‖

∞
. (49)

Also, Since F̃K,h = h−dFK,h, VC dimension is uniformly bounded as Lemma 14 gives that
for every probability measure Q on Rd and for every η ∈ (0,h−d ‖K‖

∞
), the covering number

N (F̃K,h,L2(Q),η) is upper bounded as

sup
Q

N (F̃K,h,L2(Q),η) = sup
Q

N (FK,h,L2(Q),hd
η)

≤
(

2RMKh−1 +‖K‖
∞

hdη

)d

≤
(

2RMK ‖K‖∞

hd+1η

)d

. (50)

Also, Lemma 11 implies that under Assumption 3, for any ε ∈ (0,dvol) (and ε can be 0 if dvol = 0
or under Assumption 1),

EP

[(
1
hd Kx,h

)2
]
≤Ck=2,P,K,εh−2d+dvol−ε . (51)
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Hence from (49), (50), and (51), applying Theorem 30 to (48) gives that supx∈X |p̂h(x)− ph(x)| is
upper bounded with probability at least 1−δ as

sup
x∈X
|p̂h(x)− ph(x)|

≤C


2d ‖K‖

∞
log
(

2RMK‖K‖∞√
Ck=2,P,K,ε h1+(dvol−ε)/2

)
nhd +

√√√√√2dCk=2,P,K,ε log
(

2RMK‖K‖∞√
Ck=2,P,K,ε h1+(dvol−ε)/2

)
nh2d−dvol+ε

+

√
Ck=2,P,K,ε log( 1

δ
)

nh2d−dvol+ε
+
‖K‖

∞
log( 1

δ
)

nhd


≤CR,MK ,‖K‖∞

,d,ν ,dvol,Ck=2,P,K,ε ,ε

(log
(1

h

))
+

nhd +

√(
log
(1

h

))
+

nh2d−dvol+ε
+

√
log
( 2

δ

)
nh2d−dvol+ε

+
log
( 2

δ

)
nhd

 ,

where CR,MK ,‖K‖∞
,d,ν ,dvol,Ck=2,P,K,ε ,ε depends only on R, MK , ‖K‖

∞
, d, ν , dvol, Ck=2,P,K,ε , ε .

F Proof for Section 5
Proposition 16 is shown by finding x0 ∈X where the volume dimension is obtained, and analyzing
the behavior of |p̂hn(x0)− phn(x0)| by applying Central Limit Theorem.

Proposition 16. Suppose P is a distribution satisfying Assumption 2 and with positive vol-
ume dimension dvol > 0. Let K be a kernel function satisfying Assumption 3 with k = 1 and
limt→0 inf‖x‖≤t K(x) > 0. Suppose limn nhdvol

n = ∞. Then, with probability 1− δ , the following
holds for all large enough n and small enough hn:

sup
x∈X
|p̂hn(x)− phn(x)| ≥CP,K,δ

√
1

nh2d−dvol
n

.

where CP,K,δ is a constant depending only on P, K,and δ .

Proof of Proposition 16. Note that limt→0 inf‖x‖≤t K(x)> 0 implies that there exists t0,K0 ∈ (0,∞)
such that

K(x)≥ K0I(‖x‖ ≤ t0). (52)

Also, from supx∈X liminfr→0
P(BRd (x,r))

rdvol
> 0, we can choose x0 ∈X such that liminfr→0

P(BRd (x0,r))

rdvol
>

0. From {hn}n∈N bounded, there exists r0 > 0 and p0 > 0 such that r0 ≥ hnt0 for all n ∈ N and for
all r ≤ r0,

P(BRd(x0,r))≥ p0rdvol . (53)
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For x ∈ X and h > 0, let fx,h : Rd → R be fx,h =
1
hd

(
Kx,h−EP[Kx,h]

)
, so that at x0 ∈ X, p̂hn(x0)−

phn(x0) is expanded as

p̂hn(x0)− phn(x0) =
1
n

n

∑
i=1

fx0,hn(Xi).

Below we get a lower bound for EP[ f 2
x0,hn

]. First, fix ε < dvol
2 . Then from Lemma 11,

EP
[∣∣Kx0,h

∣∣]≤Ck=1,P,K,εhdvol−ε . (54)

Now, we lower bound EP[K2
x0,h]. By applying (52), EP[K2

x0,h] is lower bounded as

EP
[
K2

x0,h
]
≥ EP

[
K0I
(∥∥∥∥x0−Xi

h

∥∥∥∥≥ t0

)]
= K2

0 P(BRd(x0,ht0)).

Then applying (53) gives a further lower bound as

EP
[
K2

x0,h
]
≥ K2

0 p0tdvol
0 hdvol. (55)

Then combining (54) and (55) gives a lower bound of EP[ f 2
x0,h] as

EP
[

f 2
x0,h
]
=

1
h2d

(
EP
[
K2

x0,h
]
−
(
EP
[
Kx0,h

])2
)

≥ hdvol−2d(K2
0 p0tdvol

0 −C2
k=1,P,K,εhdvol−2ε).

Hence from dvol−2ε > 0, there exists hP,K and C′P,K depending only on P and K such that hn≤ hP,K
implies

EP
[

f 2
x0,hn

]
≥C′P,Khdvol−2d

n . (56)

Now, let sn :=
√

∑
n
i=1EP[ f 2

x0,hn
(Xi)]. Then (56) gives

sn ≥
√

C′P,Knhdvol−2d
n .

Then for any ε > 0, when n is large enough so that nhdvol
n >

‖K‖2
∞

ε2C′P,K
, then

∥∥ fx0,hn

∥∥
∞
≤ h−d ‖K‖

∞
< ε

√
C′P,Knhdvol−2d

n ≤ sn.

Hence Lindeberg condition holds as for n large enough so that nhdvol
n >

‖K‖2
∞

ε2C′P,K
, then

1
s2

n

n

∑
i=1

E
[

f 2
x0,hn

(Xi)I
(
| fx0,hn(Xi)| ≥ εsn

)]
= 0.

40



Hence, Lindeberg-Feller Central Limit Theorem gives√
n

EP[ f 2
x0,hn

]
(p̂hn(x0)− phn(x0))

d→ N (0,1) .

Hence, for fixed δ ∈ (0,1), let qδ/2 ∈ R be such that P(|Z| ≤ qδ/2) =
δ

2 for Z ∼ N(0,1), then

lim
n→∞

P

∣∣∣∣∣∣
√

n
EP[ f 2

x0,hn
]
(p̂hn(x0)− phn(x0))

∣∣∣∣∣∣≥ qδ/2

= 1− δ

2
.

And hence there exists N < ∞ that for all n≥ N,

P

|p̂hn(x0)− phn(x0)| ≥ qδ/2

√
EP[ f 2

x0,hn
]

n

≥ 1−δ .

Then applying (56) implies that with probability at least 1−δ ,

|p̂hn(x0)− phn(x0)| ≥

√√√√q2
δ/2C′P,K

nh2d−dvol
n

=CP,K,δ

√
1

nh2d−dvol
n

,

where CP,K,δ = qδ/2

√
C′P,K depends only on P, K, and δ . Then from

sup
x∈X
|p̂hn(x)− phn(x)| ≥ |p̂hn(x0)− phn(x0)| ,

we get the same lower bound for supx∈X |p̂hn(x)− phn(x)| with probability at least 1−δ as

sup
x∈X
|p̂hn(x)− phn(x)| ≥

√√√√q2
δ/2C′P,K

nh2d−dvol
n

=CP,K,δ

√
1

nh2d−dvol
n

.

G Proof for Section 6
For showing Lemma 19, we proceed similarly to proof of Lemma 11, where we plug in DsK in the
place of K.

Lemma 19. Let (Rd,P) be a probability space and let X ∼ P. For any kernel K satisfying
Assumption 6, the expectation of the square of the derivative of the kernel is upper bounded as

EP

[(
DsK

(
x−X

h

))2
]
≤Cs,P,K,εhdvol−ε ,

for any ε ∈ (0,dvol), where Cs,P,K,ε is a constant depending only on s, P, K, ε . Further, if dvol = 0
or under Assumption 1, ε can be 0 in (18).
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Proof of Lemma 19. We first consider the case when dvol = 0. Then EP

[(
DsK

(x−X
h

))2
]

is simply
bounded as

EP

[(
DsK

(
x−X

h

))2
]
≤ ‖DsK‖2

∞
h0.

Now, we consider the case when dvol > 0. Fix ε ∈ (0,dvol). Under Assumption 1, ε can be
chosen to be 0.

Let Cs,K,dvol,ε :=
∫

∞

0 tdvol−ε−1 sup‖x‖≤t(D
sK(x))2dt, then it is finite from (17) and ‖DsK‖

∞
< ∞

in Assumption 7 as∫
∞

0
tdvol−ε−1 sup

‖x‖≤t
(DsK(x))2dt ≤

∫ 1

0
tdvol−ε−1 ‖DsK‖

∞
dt +

∫
∞

1
tdvol−1 sup

‖x‖≤t
(DsK(x))2dt

≤ ‖D
sK‖

∞

dvol− ε
+
∫

∞

0
tdvol−1 sup

‖x‖≤t
(DsK(x))2dt < ∞.

Fix η > 0, and let K̃η : [0,∞)→ R be a continuous and strictly decreasing function satisfying
K̃η(t)> sup‖x‖≥t(D

sK(x))2 for all t ≥ 0 and
∫

∞

0 tdvol−ε−1(K̃η(t)−sup‖x‖≥t(D
sK(x))2)dt = η . Such

existence is possible since t 7→ sup‖x‖≥t(D
sK(x))2 is nonincreasing function, so have at most count-

able discontinuous points, and
∫

∞

0 tdvol−ε−1 sup‖x‖≤t(D
sK(x))2dt < ∞. Then it is immediate to

check that
(DsK(x))2 < K̃η(‖x‖) for all x ∈ R. (57)

Then
∫

∞

0 tdvol−ε−1K̃(t)dt can be expanded as∫
∞

0
tdvol−ε−1K̃η(t)dt =

∫
∞

0
tdvol−ε−1 sup

‖x‖≤t
(DsK(x))2dt +

∫
∞

0
tdvol−ε−1(K̃η(t)− sup

‖x‖≥t
(DsK(x))2)dt

=Cs,K,dvol,ε +η < ∞. (58)

Now since K̃η is continuous and strictly decreasing, change of variables t = K̃η(u) is applicable,

and then EP

[(
DsK

(x−X
h

))2
]

can be expanded as

EP

[(
DsK

(
x−X

h

))2
]
=
∫

∞

0
P

((
DsK

(
x−X

h

))2

> t

)
dt

=
∫ 0

∞

P

((
DsK

(
x−X

h

))2

> K̃η(u)

)
dK̃η(u).
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Now, from (57) and K̃η being a strictly decreasing, we can upper bound EP

[(
DsK

(x−X
h

))2
]

as

EP

[(
DsK

(
x−X

h

))2
]
≤
∫ 0

∞

P
(

K̃η

(
‖x−X‖

h

)
> K̃η(u)

)
dK̃η(u)

=
∫ 0

∞

P
(
‖x−X‖

h
< u
)

dK̃η(u)

=
∫ 0

∞

P(BRd(x,hu))dK̃η(u).

Now, from Lemma 4 (and (6) for Assumption 1 case), there exists Cdvol−ε,P <∞ with P(BRd(x,r))≤
Cdvol−ε,Prdvol−ε for all x ∈ X and r > 0. Then EP

[(
DsK

(x−X
h

))2
]

is further upper bounded as

EP

[(
DsK

(
x−X

h

))2
]
≤
∫ 0

∞

Cdvol−ε,P(hu)dvol−εdK̃(u)

=Cdvol−ε,Phdvol−ε

∫ 0

∞

udvol−εdK̃(u). (59)

Now,
∫ 0

∞
udvol−εdK̃(u) can be computed using integration by part. Note first that

∫
∞

0 tdvol−ε−1K̃(t)dt <
∞ implies

lim
t→∞

tdvol−ε K̃(t) = 0.

To see this, note that tdvol−ε K̃(t) is expanded as

tdvol−ε K̃(t) =
∫ t

0
udvol−εdK̃(u)+

∫ t

0
(dvol− ε)udvol−ε−1K̃(u)du,

then
∫

∞

0 (dvol− ε)udvol−ε−1K̃(u)du < ∞ and
∫ t

0 udvol−εdK̃(u) being monotone function of t imply
that limt→∞ tdvol−ε K̃(t) exists. Now, suppose limt→∞ tdvol−ε K̃(t) = a > 0, then we can choose t0 > 0
such that tdvol−ε K̃(t)> a

2 for all t ≥ t0, and then

∞ >
∫

∞

0
tdvol−ε−1K̃(t)dt ≥

∫
∞

t0
tdvol−ε−1K̃(t)dt ≥ a

2

∫
∞

t0
t−1dt = ∞,

which is a contradiction. Hence limt→∞ tdvol−ε K̃(t) = 0. Now, applying integration by part to∫ 0
∞

udvol−εdK̃(u) with dvol− ε > 0 gives∫ 0

∞

udvol−εdK̃(u) =
[
udvol−ε K̃(u)

]0

∞

−
∫ 0

∞

(dvol− ε)udvol−ε−1K̃(u)du

=
∫

∞

0
(dvol− ε)udvol−ε−1K̃(u)du. (60)

Then applying (58) and (60) to (59) gives an upper bound for EP

[(
DsK

(x−X
h

))2
]

as

EP

[(
DsK

(
x−X

h

))2
]
≤Cdvol−ε,P(dvol− ε)hdvol−ε(Cs,K,dvol,ε +η). (61)
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And then note that RHS of (61) holds for any η > 0, and hence EP

[(
DsK

(x−X
h

))2
]

is further
upper bounded as

EP

[(
DsK

(
x−X

h

))2
]
≤ inf

η>0

{
Cdvol−ε,P(dvol− ε)hdvol−ε(Cs,K,dvol,ε +η)

}
=Cdvol−ε,P(dvol− ε)Cs,K,dvol,εhdvol−ε

=Cs,P,K,εhdvol−ε ,

where Ck,P,K,ε =Cdvol−ε,P(dvol− ε)Cs,K,dvol,ε .

For proving Theorem 20, we proceed similarly to the proof of Theorem 12. Analogous to
bounding EP[K2

x,h] by Lemma 11, we bound EP[(DsKx,h)
2] by Lemma 19.

Theorem 20. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6,
and 7. Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)|

≤C

(
(log(1/ln))+

nld+|s|
n

+

√
(log(1/ln))+

nl2d+2|s|−dvol+ε
n

+

√
log(2/δ )

nl2d+2|s|−dvol+ε
n

+
log(2/δ )

nld+|s|
n

)
,

for any ε ∈ (0,dvol), where C is a constant depending only on A, ‖DsK‖
∞

, d, ν , dvol, Cs,P,K,ε , ε .
Further, if dvol = 0 or under Assumption 1, ε can be 0 in (19).

Proof of Theorem 20. For x ∈X and h≥ ln, let DsKx,h : Rd→R be DsKx,h(·) = DsK
(x−·

h

)
, and let

F̃ s
K,[ln,∞) :=

{
1

hd+|s|D
sKx,h : x ∈ X,h≥ ln

}
be a class of normalized kernel functions centered on X

and bandwidth in [ln,∞). Note that Ds p̂h(x)−Ds ph(x) can be expanded as

Ds p̂h(x)−Ds ph(x) =
1

nhd+|s|

n

∑
i=1

DsK
(

x−Xi

h

)
−EP

[
1

hd+|s|D
sK
(

x−Xi

h

)]
=

1
n

n

∑
i=1

1
hd+|s|D

sKx,h(Xi)−EP

[
1

hd+|s|D
sKx,h

]
.

Hence suph≥ln,x∈X |D
s p̂h(x)−Ds ph(x)| can be expanded as

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)|= sup
f∈F̃ s

K,[ln,∞)

∣∣∣∣∣1n n

∑
i=1

f (Xi)−EP [ f (X)]

∣∣∣∣∣ . (62)

Now, it is immediate to check that

‖ f‖
∞
≤ l−d−|s|

n ‖DsK‖
∞
. (63)
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For bounding the VC dimension of F̃ s
K,[ln,∞), consider F s

K,[ln,∞) :=
{

DsKx,h : x ∈ X,h≥ ln
}

be a

class of unnormalized kernel functions centered on X and bandwidth in [ln,∞). Fix η < l−d−|s|
n ‖DsK‖

∞

and a probability measure Q on Rd . Suppose
[

ln,
(

η

2‖DsK‖
∞

)−1/(d+|s|)
]

is covered by balls
{(

hi−

ld+|s|+1
n η

2(d+|s|)‖DsK‖
∞

,hi+
ld+|s|+1
n η

2(d+|s|)‖DsK‖
∞

)
: 1≤ i≤N1

}
and (F s

K,[ln,∞),L2(Q)) is covered by balls
{
BL2(Q)

(
f j,

ld+|s|
n η

2

)
:

1 ≤ j ≤ N2

}
, and let fi, j := h−d−|s|

i f j for 1 ≤ i ≤ N1 and 1 ≤ j ≤ N2. Also, choose h0 >(
η

2‖DsK‖
∞

)−1/(d+|s|)
, x0 ∈ X, and let f0 =

1
hd+|s|

0

DsKx0,h0 . We will show that{
BL2(Q)

(
fi, j,η

)
: 1≤ i≤ N1, 1≤ j ≤ N2

}
∪
{
BL2(Q) ( f0,η)

}
covers F̃ s

K,[ln,∞). (64)

For the first case when h ≤
(

η

2‖DsK‖
∞

)−1/(d+|s|)
, find hi and f j with h ∈

(
hi− ld+|s|+1

n η

2(d+|s|)‖DsK‖
∞

,hi +

ld+|s|+1
n η

2(d+|s|)‖DsK‖
∞

)
and Kx,h ∈ BL2(Q)

(
f j,

ld+|s|
n η

2

)
. Then the distance between 1

hd+|s|D
sKx,h and 1

hd+|s|
i

f j

is upper bounded as∥∥∥∥∥ 1
hd+|s|D

sKx,h−
1

hd+|s|
i

f j

∥∥∥∥∥
L2(Q)

≤

∥∥∥∥∥ 1
hd+|s|D

sKx,h−
1

hd+|s|
i

DsKx,h

∥∥∥∥∥
L2(Q)

+

∥∥∥∥∥ 1

hd+|s|
i

DsKx,h−
1

hd+|s|
i

f j

∥∥∥∥∥
L2(Q)

. (65)

Now, the first term of (65) is upper bounded as∥∥∥∥∥ 1
hd+|s|D

sKx,h−
1

hd+|s|
i

DsKx,h

∥∥∥∥∥
L2(Q)

=

∣∣∣∣∣ 1
hd+|s| −

1

hd+|s|
i

∣∣∣∣∣∥∥DsKx,h
∥∥

L2(Q)

= |hi−h|
d+|s|−1

∑
k=0

hk−d−|s|
i h−1−k∥∥DsKx,h

∥∥
L2(Q)

≤ |hi−h|(d + |s|)l−d−|s|−1
n ‖DsK‖

∞
<

η

2
. (66)

Also, the second term of (65) is upper bounded as∥∥∥∥∥ 1

hd+|s|
i

DsKx,h−
1

hd+|s|
i

f

∥∥∥∥∥
L2(Q)

=
1

hd+|s|
i

∥∥DsKx,h− f
∥∥

L2(Q)

≤ l−d−|s|
n

∥∥DsKx,h− f
∥∥

L2(Q)
<

η

2
. (67)

Hence applying (66) and (67) to (65) gives∥∥∥∥∥ 1
hd+|s|D

sKx,h−
1

hd+|s|
i

f j

∥∥∥∥∥
L2(Q)

< η .
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For the second case when h >
(

η

2‖DsK‖
∞

)−1/(d+|s|)
,
∥∥∥ 1

hd+|s|D
sKx,h

∥∥∥
L2(Q)

≤
∥∥∥ 1

hd+|s|D
sKx,h

∥∥∥
∞

< η

2

holds, and hence∥∥∥∥ 1
hd+|s|D

sKx,h− f0

∥∥∥∥
L2(Q)

≤
∥∥∥∥ 1

hd+|s|D
sKx,h

∥∥∥∥
L2(Q)

+‖ f0‖L2(Q) < η .

Therefore, (64) is shown. Hence combined with Assumption 7 gives that for every probability
measure Q on Rd and for every η ∈ (0,h−d ‖DsK‖

∞
), the covering number N (F̃K,[ln,∞),L2(Q),η)

is upper bounded as

sup
Q

N (F̃K,[ln,∞),L2(Q),η)

≤N

([
ln,
(

η

2‖DsK‖
∞

)−1/(d+|s|)
]
, | · |, ld+|s|+1

n η

2(d + |s|)‖DsK‖
∞

)
sup

Q
N

(
FK,[ln,∞),L2(Q),

ld+|s|
n η

2

)
+1

≤ 2(d + |s|)‖DsK‖
∞

ld+|s|+1
n η

(
2‖DsK‖

∞

η

)1/(d+|s|)
(

2A‖DsK‖
∞

ld+|s|
n η

)ν

+1

≤

(
2A(d + |s|)‖DsK‖

∞

ld+|s|
n η

)ν+2

. (68)

Also, Lemma 19 implies that under Assumption 6, for any ε ∈ (0,dvol) (and ε can be 0 if dvol = 0
or under Assumption 1),

EP

[(
1

hd+|s|D
sKx,h

)2
]
≤Cs,P,K,ε l−2d−2|s|+dvol−ε

n . (69)

Hence from (63), (68), and (69), applying Theorem 30 to (62) gives that suph≥ln,x∈X
∣∣Ds p̂h(x)−

Ds ph(x)
∣∣ is upper bounded with probability at least 1−δ as

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)|

≤C


2(ν +2)‖DsK‖

∞
log
(

2A(d+|s|)‖DsK‖
∞√

Cs,P,K,ε l
(dvol−ε)/2
n

)
nld+|s|

n

+

√√√√√2(ν +2)Cs,P,K,ε log
(

2A(d+|s|)‖DsK‖
∞√

Cs,P,K,ε l
(dvol−ε)/2
n

)
nl2d+2|s|−dvol+ε

n

+

√
Cs,P,K,ε log( 1

δ
)

nl2d+2|s|−dvol+ε
n

+
‖DsK‖∞

log( 1
δ
)

nld+|s|
n

)

≤CA,‖DsK‖
∞
,d,ν ,dvol,Cs,P,K,ε


(

log
(

1
ln

))
+

nld+|s|
n

+

√√√√√
(

log
(

1
ln

))
+

nl2d+2|s|−dvol+ε
n

+

√
log
( 2

δ

)
nl2d+2|s|−dvol+ε

n

+
log
( 2

δ

)
nld+|s|

n

 ,
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where CA,‖DsK‖
∞
,d,ν ,dvol,Cs,P,K,ε ,ε depends only on A, ‖DsK‖

∞
, d, ν , dvol, Cs,P,K,ε , ε .

For showing Corollary 21, we proceed similarly to the proof of Corollary 13, where we plug in
DsK in the place of K.

Corollary 21. Let P be a distribution and K be a kernel function satisfying Assumption 5, 6,
and 7. Suppose

limsup
n

(log(1/ln))++ log(2/δ )

nldvol−ε
n

< ∞,

for fixed ε ∈ (0,dvol). Then, with probability at least 1−δ ,

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)| ≤C′
√

(log(1/ln))++ log(2/δ )

nl2d+2|s|−dvol+ε
n

,

where C′ is a constant depending only on A, ‖DsK‖
∞

, d, ν , dvol, Cs,P,K,ε , ε . Further, if dvol = 0 or
under Assumption 1, ε can be 0.

Proof of Corollary 21. From (19) in Theorem 20, suph≥ln,x∈X |D
s p̂h(x)−Ds ph(x)| is upper bounded

with probability at least 1−δ as

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)|

≤CA,‖DsK‖
∞
,d,ν ,dvol,Cs,P,K,ε


(

log
(

1
ln

))
+

nld+|s|
n

+

√√√√√
(

log
(

1
ln

))
+

nl2d+2|s|−dvol+ε
n

+

√
log
( 2

δ

)
nl2d+2|s|−dvol+ε

n

+
log
( 2

δ

)
nld+|s|

n


=CA,‖DsK‖

∞
,d,ν ,dvol,Cs,P,K,ε

×


√√√√√

(
log
(

1
ln

))
+

nl2d+2|s|−dvol+ε
n


√√√√(log

(
1
ln

))
+

nldvol−ε
n

+1

+

√
log
( 2

δ

)
nl2d+2|s|−dvol+ε

n

√ log
( 2

δ

)
nldvol−ε

n
+1


 .

Then from limsupn
(log( 1

ln ))++log( 2
δ
)

nl
dvol−ε

n
< ∞, there exists some constant C′ with

(
log
(

1
ln

))
+
+

log
( 2

δ

)
≤C′nldvol+ε

n . And hence suph≥ln,x∈X |D
s p̂h(x)−Ds ph(x)| is upper bounded with probabil-
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ity 1−δ as

sup
h≥ln,x∈X

|Ds p̂h(x)−Ds ph(x)|

≤CA,‖DsK‖
∞
,d,ν ,dvol,Cs,P,K,ε


√√√√√

(
log
(

1
ln

))
+

nl2d+2|s|−dvol+ε
n

(√
C′+1

)
+

√
log
( 1

δ

)
nl2d+2|s|−dvol+ε

n

(√
C′+1

)

≤C′A,‖DsK‖
∞
,d,ν ,dvol,Cs,P,K,ε

√√√√√
(

log
(

1
ln

))
+
+ log

( 1
δ

)
nl2d+2|s|−dvol+ε

n

,

where C′A,‖DsK‖
∞
,d,ν ,dvol,Cs,P,K,ε

depending only on A, ‖DsK‖
∞

, d, ν , dvol, Cs,P,K,ε , ε .

For proving Lemma 22, we proceed similarly to the proof of Lemma 14, where we plug in DsK
in the place of K.

Lemma 22. Suppose there exists R > 0 with X ⊂ BRd(0,R). Also, suppose that DsK is
MK-Lipschitz, i.e.

‖DsK(x)−DsK(y)‖2 ≤MK ‖x− y‖2 .

Then for all η ∈ (0,‖DsK‖
∞
), the supremum of the η-covering number N (F s

K,h,L2(Q),η) over
all measure Q is upper bounded as

sup
Q

N (F s
K,h,L2(Q),η)≤

(
2RMKh−1 +‖DsK‖

∞

η

)d

.

Proof of Lemma 22. For fixed η > 0, let x1, . . . ,xM be the maximal η-covering of BRd(0,R),
with M = M (BRd(0,R),‖·‖2 ,η) being the packing number of BRd(0,R). Then BRd(xi,η) and
BRd(x j,η) do not intersect for any i, j and

⋃M
i=1BRd(xi,η)⊂ BRd(xi,R+η), and hence

M

∑
i=1

λd (BRd(xi,η))≤ λd (BRd(xi,R+η)) . (70)

Then λd (BRd(x,r)) = rdλd (BRd(0,1)) gives the upper bound on M (BRd(0,R),‖·‖2 ,η) as

M (BRd(0,R),‖·‖2 ,η)≤
(

1+
R
η

)d

.

Then X⊂ BRd(0,R) and the relationship between covering number and packing number gives the
upper bound on the covering number N (X,‖·‖2 ,η) as

N (X,‖·‖2 ,η)≤N (BRd(0,R),‖·‖2 ,η)≤M
(
BRd(0,R),‖·‖2 ,

η

2

)
≤
(

1+
2R
η

)d

. (71)
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Now, note that for all x,y ∈ X and for all z ∈ Rd ,
∣∣DsKx,h(z)−DsKy,h(z)

∣∣ is upper bounded as

∣∣DsKx,h(z)−DsKy,h(z)
∣∣= ∣∣∣∣DsK

(
x− z

h

)
−DsK

(
y− z

h

)∣∣∣∣
≤ MK

h
‖(x− z)− (y− z)‖2 =

MK

h
‖x− y‖2 .

Hence for any measure Q on Rd ,
∥∥DsKx,h−DsKy,h

∥∥
L2(Q)

is upper bounded as

∥∥DsKx,h−DsKy,h
∥∥

L2(Q)
=

√∫
(DsKx,h(z)−DsKy,h(z))2dQ(z)≤ MK

h
‖x− y‖2 .

Hence applying this to (71) implies that for all η > 0, the supremum of the covering number
N (FK,h,L2(Q),η) over all measure Q is upper bounded as

sup
Q

N (F s
K,h,L2(Q),η)≤N

(
X,‖·‖2 ,

hη

MK

)
≤
(

1+
2RMK

hη

)d

.

Hence for all η ∈ (0,‖DsK‖
∞
),

sup
Q

N (F s
K,h,L2(Q),η)≤

(
2RMKh−1 +‖DsK‖

∞

η

)d

.

For Corollary 23, we proceed similarly to the proof of Corollary 15, where we plug in DsK in
the place of K.

Corollary 23. Suppose there exists R > 0 with supp(P) = X ⊂ BRd(0,R). Let K be a kernel
function with MK-Lipschitz continuous derivative satisfying Assumption 6. If

limsup
n

(log(1/hn))++ log(2/δ )

nhdvol−ε
n

< ∞,

for fixed ε ∈ (0,dvol). Then, with probability at least 1−δ ,

sup
x∈X
|Ds p̂h(x)−Ds ph(x)| ≤C′′

√√√√(log( 1
hn
))++ log( 2

δ
)

nh2d+2|s|−dvol+ε
n

,

where C′′ is a constant depending only on A, ‖DsK‖
∞

, d, Mk, dvol, Cs,P,K,ε , ε . Further, if dvol = 0
or under Assumption 1, ε can be 0.

Proof of Corollary 23. For x ∈ X, let DsKx,h : Rd → R be DsKx,h(·) = DsK
(x−·

h

)
, and let F̃ s

K,h :={
1

hd+|s|D
sKx,h : x ∈ X

}
be a class of normalized kernel functions centered on X and bandwidth h.
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Note that Ds p̂h(x)−Ds ph(x) can be expanded as

Ds p̂h(x)−Ds ph(x) =
1

nhd+|s|

n

∑
i=1

DsK
(

x−Xi

h

)
−EP

[
1

hd+|s|D
sK
(

x−Xi

h

)]
=

1
n

n

∑
i=1

1
hd+|s|D

sKx,h(Xi)−EP

[
1

hd+|s|D
sKx,h

]
.

Hence supx∈X |Ds p̂h(x)−Ds ph(x)| can be expanded as

sup
x∈X
|Ds p̂h(x)−Ds ph(x)|= sup

f∈F̃K,h

∣∣∣∣∣1n n

∑
i=1

f (Xi)−EP [ f (X)]

∣∣∣∣∣ . (72)

Now, it is immediate to check that

‖ f‖
∞
≤ h−d−|s| ‖DsK‖

∞
. (73)

Also, since F̃ s
K,h = h−d−|s|F s

K,h, VC dimension is uniformly bounded as Lemma 22 gives that for
every probability measure Q on Rd and for every η ∈ (0,h−d−|s| ‖DsK‖

∞
), the covering number

N (F̃ s
K,h,L2(Q),η) is upper bounded as

sup
Q

N (F̃ s
K,h,L2(Q),η) = sup

Q
N (FK,h,L2(Q),hd+|s|

η)

≤
(

2RMKh−1 +‖DsK‖
∞

hd+|s|η

)d

≤
(

2RMK ‖DsK‖
∞

hd+|s|+1η

)d

. (74)

Also, Lemma 19 implies that under Assumption 3, for any ε ∈ (0,dvol) (and ε can be 0 if dvol = 0
or under Assumption 1),

EP

[(
1

hd+|s|D
sKx,h

)2
]
≤Cs,P,K,εh−2d−2|s|+dvol−ε . (75)

Hence from (73), (74), and (75), applying Theorem 30 to (72) gives that supx∈X |Ds p̂h(x)−Ds ph(x)|
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is upper bounded with probability at least 1−δ as

sup
x∈X
|p̂h(x)− ph(x)|

≤C


2d ‖DsK‖

∞
log
(

2RMK‖DsK‖
∞√

Cs,P,K,ε h1+(dvol−ε)/2

)
nhd+|s| +

√√√√√2dCs,P,K,ε log
(

2RMK‖DsK‖
∞√

Cs,P,K,ε h1+(dvol−ε)/2

)
nh2d+2|s|−dvol+ε

+

√
Cs,P,K,ε log( 1

δ
)

nh2d+2|s|−dvol+ε
+
‖DsK‖

∞
log( 1

δ
)

nhd


≤CR,MK ,‖DsK‖

∞
,d,ν ,dvol,Cs,P,K,ε ,ε

×

(log
(1

h

))
+

nhd +

√ (
log
(1

h

))
+

nh2d+2|s|−dvol+ε
+

√
log
( 2

δ

)
nh2d+2|s|−dvol+ε

+
log
( 2

δ

)
nhd

 ,

where CR,MK ,‖DsK‖
∞
,d,ν ,dvol,Cs,P,K,ε ,ε depends only on R, MK , ‖DsK‖

∞
, d, ν , dvol, Cs,P,K,ε , ε .
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