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ABSTRACT: 

Background: Evaluating heterogeneity in tumor vascularization through texture 

analysis could improve predictions of patients’ outcome and response evaluation.  

Purpose: To investigate the influence of temporal parameters on texture features 

extracted from DCE-MRI parametric maps. 

Study type: Prospective cross-sectional study 

Subjects: 25 adults with soft-tissue sarcoma (STS), median age: 68 years. 

Field Strength/Sequence: DCE-MRI acquisition using a CAIPIRINHA-Dixon-

TWIST-VIBE sequence at 1.5T (temporal resolution: 2s, duration: 5min).  

Assessment: The area under time-intensity curve (AUC) and Ktrans maps were 

generated for several temporal resolution (dt=2s, 4s, 6s, 8s, 10s, 12s, 20s) and scan 

durations (T=3min, 4min, 5min for a 6s-sampling) by downsampling and truncating 

the initial DCE-MRI sequence. Tumor volume was manually segmented and 

propagated on all parametric maps. Thirty-two first- and second order-texture features 

were extracted per map to quantify the intra-tumoral heterogeneity.  

Statistical Tests: The influence of temporal parameters on texture features was 

studied with repeated-measures ANOVA (or non-parametric equivalent). The 

dispersion of each texture feature depending on temporal parameters was estimated 

with coefficients of variation (CV). The performances of multivariate models to 

predict the response to chemotherapy (i.e. binary logistic regression based on the 

baseline texture features) were compared. 
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Results: The temporal resolution had a significant influence on 12/32 (37.5%) and 

14/32 (43.8%) texture features evaluated on AUC and Ktrans maps, respectively (range 

of p-values: <0.0001-0.0395). Scan duration had a significant influence on 23/32 

(71.9%) texture features from Ktrans map (range of p-values: <0.0001-0.0321). 

Dispersion was high (: mean CV>0.5) with sampling for 2/32 (6.3%) and 10/32 

(31.3%) features from AUC and Ktrans maps, respectively; and with truncating for 6/32 

(18.8%) features from Ktrans map. The AUROC of predictive models ranged from 0.77 

(CI95%=[0.54-1.00], with dt=6s-T=4min) to 0.90 (CI95%=[0.74-1.00], with dt=6s-

T=5min). 

Data Conclusion: The values of texture features extracted from DCE-MRI 

parametric maps can be influenced by temporal parameters, which can lead to 

variations in performances of predictive models.  

Level of evidence: 2 

Technical efficacy: 2 
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ABBREVIATIONS 

AIF: Arterial input function 

AUC: Area under curve 

AUROC: Area under the receiver operating characteristics curve 

CI95%: 95% confidence interval  

CV: Coefficient of variation 

DCE-MRI: Dynamic contrast-enhanced MRI 

FNCLCC: French Federation Nationale des Centres de Lutte Contre le Cancer 

FOS: First order statistics 

GL: Grey level 

GLCM: Grey level occurrence matrix 

GLRLM: Grey level run-length matrix 

GLSZM: Grey level size zone matrix 

Ktrans: Influx volume transfer constant 

QIBA®: Quantitative Imaging Biomarkers Alliance 
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rm: Repeated measures 

SD: standard deviation 

STS: soft-tissue sarcomas 

TSE: turbo spin echo 

VIBE: Volume interpolated breath-hold examination 

VOI: Volume of interest 
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INTRODUCTION 

The extensive quantification of tumor heterogeneity on medical imaging is a growing 

field of research in oncology referred to as radiomics. The underlying hypothesis of 

radiomics is that the imaging phenotype of a tumor could reflect its intrinsic 

molecular identities and aggressiveness (1, 2). Texture analyses consist in the 

mathematical processing of images in order to extract numeric indices that objectively 

measure the heterogeneity, named texture features. The most commonly encountered 

ones in the medical literature are 1st order features, which are based on frequency 

histograms without spatial information, and 2nd order features, which quantify the 2D 

and/or 3D rearrangements of voxels of different gray-levels. Predictive radiomics 

approaches based on texture features, machine learning algorithms and the potential 

combination with clinical characteristics and other –omics data (i.e. genomics, 

transcriptomics, proteomics and metabolomics) could help better stratify the 

therapeutic strategy for cancer patients and evaluate treatment responses (2).  

Radiomics approaches can be applied to every imaging modality including dynamic 

contrast-enhanced MRI (DCE-MRI). DCE-MRI aims at providing a non-invasive 

macroscopic assessment of tumor perfusion and neo-angiogenesis – a key pro-

oncogenetic process – through the rapid acquisition of a time series of T1-weighted 

imaging (3). DCE-MRI parameters have been used to discriminate benign from 

malignant tumors or to monitor treatment efficacy especially anti-angiogenic 

regimens – the area under the time intensity curve (AUC) and the influx volume 

transfer constant (Ktrans) being the most studied) (4) . However, these studies were 

based on average values of the DCE-MRI parameters that do not reflect the 

complexity of tumors. Indeed, homogeneous poorly vascularized tumors could have 

the same mean AUC and Ktrans values as heterogeneous tumors with both 

hypervascularized and large avascular necrotic areas. Consequently, quantifying the 

spatial heterogeneity in vascularization of the whole tumor volume from DCE-MRI 

data may be more informative and realistic. In that sense, radiomics approaches on 

DCE-MRI have recently shown encouraging results, alone or with other MRI 

sequences, in order to improve the detection of prostate cancer, to distinguish benign 

and malignant adnexal masses, to identify relevant molecular subtypes of breast 

cancers, to detect lymph node metastases in breast cancers, or to predict response to 

neoadjuvant treatment for rectum, breast and nasopharyngeal cancers (5–12) . Soft-

tissue sarcomas (STS) are malignant mesenchymal tumors with important inter and 
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intra-tumoral heterogeneity known to be associated with high grade (13). Previous 

studies have shown that DCE-MRI could be useful to predict response to 

chemotherapy in high-grade STS (14–17), as well as radiomics approaches (16, 18, 

19). Thus, it can be hypothesized that combining radiomics and DCE-MRI could 

enhance the early prediction of tumor response to treatment.      

Robust radiomics models require the inclusion of a large number of patients, divided 

into training, validation and external test cohorts, before being implemented into 

clinical practice. Pooling data from different centers is necessary but it runs the risk of 

introducing bias to the values of texture features. Indeed, each step of the radiomics 

process can introduce variability independently from the intrinsic heterogeneity of the 

tumor, for instance: MRI field strength, manufacturers, coils, acquisition parameters, 

segmentation, voxel-size resampling, normalization techniques or grey-level 

discretization (20–23). Previous studies have demonstrated that temporal parameters 

(i.e. scan duration and temporal resolution) could significantly modify the ability to 

discriminate benign from malignant prostate or breast lesions (24–26), but they were 

based on average values of DCE-MRI indices or morphology of the time-intensity 

curves. Only one study has focused on the stability of texture features extracted from 

computed tomography perfusion maps identifying an influence of temporal resolution 

(27). Hence, data regarding the influence of temporal parameters on texture features 

extracted from DCE-MRI parametric maps are lacking. 

Thus, our aims were to investigate the influence of temporal parameters: (i) on the 

values of widely used texture features extracted from DCE-MRI parametric maps of 

STS, (ii) on the dispersion of these parameters, and (iii) on the performance of 

predictive models for chemotherapy responses. 
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MATERIALS AND METHODS 

Patient population 

In this prospective single-center study, the institutional review board waived the 

requirements of informed patient consent. From November 2017 to June 2018, 30 

consecutive adult patients were included as they presented at our sarcoma reference 

center for the management of a histologically-proven high-grade (according to the 

French Federation Nationale des Centres de Lutte contre le Cancer [FNCLCC] 

grading system) STS of the trunk wall or extremities of more than 4cm, and required 

a contrast-enhanced MRI for diagnostic and/or therapeutic management. Age, gender, 

histological type, tumor depth relative to superficial fascia, tumor location, longest 

diameter, specific treatments and short-term patients’ outcome were retrieved from 

medical records. We defined a good responder as: (i) <10% of stainable viable tumor 

cells on surgical specimen after neo-adjuvant chemotherapy for locally-advanced non-

metastatic STS (28), and (ii) a partial or complete response 6 months after performing 

DCE-MRI according to RECIST 1.1 criteria for metastatic or inoperable patients, 

without changing treatment – this last empirical definition being proposed regarding 

the usual median progression-free survivals of metastatic STS patients (29). 

 

Data acquisition 

Patients underwent MRI scans in the same 1.5T MR-system (MAGNETOM Aera; 

Siemens Healthineers, Erlangen, Germany) with adapted coils depending on tumor 

locations and sizes, i.e. 15 channels transmit/receiver coil for knee and extremities 

and 18 channels transmit/receiver body coil for trunk wall and thighs. Patients were 

examined in supine position. The protocol followed the Quantitative Imaging 

Biomarkers Alliance recommendations (QIBA®) and consisted in a T1-mapping 

followed by the DCE-MRI acquisition with the same field-of-view (350 x 320 mm) 

and spatial resolution (1.1 x 1.1 x 4 mm3), in order to optimize the conversion of the 

signal in Gadolinium chelates concentration. We used a CAIPIRINHA (Controlled 

Aliasing in Parallel Imaging Results in Higher Acceleration) Dixon TWIST (Time-

resolved angiography With Stochastic Trajectories) VIBE (Volume Interpolated 

Breath hold Examination) sequence (30).  The T1-mapping used a similar spoiled 

gradient-echo sequence with variable flip angles (2° and 15°) and with echo and 

repetition times of 1.41ms and 3.79ms, respectively. In brief, the principle of TWIST 
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is to divide the k-space in a central region, which encodes information about contrast, 

and a peripheral region, which encodes information about shapes, edges and details 

and is undersampled (30). The suppression of the fat signal was performed using a 

Dixon-based water-fat separation  (echo times were 2.39ms for in-phase and 4.77ms 

for opposite-phase conditions). A repetition time of 6.89ms and a flip angle of 25° 

were used. The sampling was accelerated with a parallel acquisition technique with an 

undersampling factor of 2. The value of the TWIST view-sharing parameters A (i.e. 

the percentage sizes of the central portion of the k-space) and B (i.e. the percentage 

sizes of the peripheral portion of the k-space) were 15% and 20%, respectively. The 

temporal resolution resulted in dt=2s, except for the first TWIST phase (6.9s for the 

full k-space sampling). Five phases were acquired before the intra-venous power-

injection of 0.1mmol/kg of gadoteric acid (Dotarem, Guerbet, Villepinte, France) at a 

rate of 2mL/s followed by a 20mL flush of 0.9% of NaCl solution thanks to a MRI-

compatible automatic injector (Sonic Shot 7, Nemoto Kyorindo, Tokyo, Japan). The 

total scan duration was 5min and included 144 phases (full-dataset).  

 

Data reconstruction  

Data reconstruction and post-processing were achieved with Olea Sphere®, v3.0 

SP14 Software (Olea Medical, La Ciotat, France) by a senior radiologist with 7 years 

of experience in MRI blinded to clinical data. First, motion artifacts were 

systematically corrected with a rigid body co-registration method. For each patient, 

the full-dataset was downsampled and truncated to obtain the datasets to assess the 

effect of scan duration and temporal resolution. In any case, the 5 first phases were 

kept in the datasets to ensure a similar baseline for all maps. In total, 7 DCE-MRI 

datasets per patient were generated to evaluate temporal resolution, namely: dt=2s 

(raw data), 4s, 6s, 8s, 10s, 12s, 20s, with a scan duration of 5min. Three DCE-MRI 

datasets were generated to evaluate the influence of scan duration, namely: T=3min, 

4min, 5min, all with a temporal resolution of dt=6s. Figure 1 shows how the datasets 

were built. 

The next step consisted in the calculation of the parametric maps using the 

permeability plug-in of Olea Sphere®. First, the senior radiologist manually chose the 

largest feeding artery within the field-of-view of the raw DCE-MRI dataset, with the 

exclusion of the first and the last slices to avoid artifacts. A fixed voxel was manually 

placed in this artery and the arterial input function (AIF) was measured as the average 
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of 4 directly adjacent voxels within this artery that demonstrated an arterial 

enhancement and the less noise. The same artery and the same voxels were used for 

the other reconstructed datasets. Hence, even if the baseline of the AIF was preserved, 

the AIF was also downsampled and truncated (Fig. 1). Second, the AIF signal 

intensity time-course was converted into blood R1 time-course, with the hematocrit = 

0.45 and the gadoteric acid relaxivity at 1.5T = 3.6 L/mmol.s-1. We chose to focus on 

the most widely used parameters: the area under the time-intensity curve (AUC), at 

90s (units: mmol/L/s) and the pharmacokinetic parameter Ktrans (influx volume 

transfer constant from plasma to extra-vascular, extracellular space, which represents 

the capillary permeability, units: min-1). Ktrans maps were calculated using the 

Extended Tofts model (31). Of note, AUC was not evaluated for scan duration 

because we focused on the first 90 seconds of the time-intensity curve. 

Five out of the 30 MRI examinations were excluded due to Dixon fat-water swap 

artifacts (n=3) and motion artifacts (that were too large to be well corrected with the 

motion correction, n=2) biasing the quantitative assessment. 

 

Data analysis 

Texture analysis. For each patient, the entire tumor volume was manually segmented 

by the same senior radiologist using OleaSphere®, slice-by-slice, on the last phase of 

the DCE-MRI acquisition (because the tumor demonstrated the best contrast with 

surrounding tissues compared with the other phases) and with the help of the 

conventional sequences acquired during the same MRI examination, i.e.: axial turbo 

spin echo (TSE) T2-weighted imaging (refocusing angle = 150°, repetition time = 

6860ms, echo time = 120ms, slice thickness = 4mm, field-of-view = 250 x 250mm), 

coronal or sagittal TSE short time inversion recovery T2-weighted imaging 

(refocusing angle = 150°, repetition time = 4150ms, echo time = 69ms, inversion time 

= 150ms, slice thickness = 4mm, field-of-view = 350 x 350mm), axial TSE T1-

weighted imaging (refocusing angle = 150°, repetition time = 420ms, echo time = 

10ms, slice thickness = 4mm, field-of-view = 250 x 250mm), pre- and post-contrast 

agent injection axial Fat-Sat TSE T1-weighted imaging (refocusing angle = 180°, 

repetition time = 581ms, echo time = 10ms, slice thickness = 4mm, field-of-view = 

250 x 250mm). The voxels located at the extreme edge of the tumor were excluded to 

avoid partial volume effect. The volume of interest (VOI) was then propagated on all 

the parametric maps (Ktrans and AUC for the 7 samplings, Ktrans for the 3 truncations). 
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Texture analysis consisted in the 3D extraction of 32 quantitative features, provided in 

Table 1, from histogram analysis (: first order statistics, FOS), grey-level co-

occurrence matrix (GLCM), grey-level run-length matrix (GLRM) and grey-level size 

zone matrix (GLSZM) (32–34). Before, Ktrans and AUC values were discretized in 

256 bins. The spatial offset was fixed to a displacement of 4 pixels and an angle of 

45° (details regarding the definitions and calculations of the texture features are given 

in Supplementary Data 1). No technique for resampling or standardization was 

applied because the voxel size was initially the same for all patients and texture 

analysis was performed on scaled parametric maps and not on raw MRI data.  

For each patient ‘p’ (i Î {1;2;…;Np} where Np is the total number of included 

patients), for each feature ‘Fi’ (i Î {1;2;…;32}) and for each DCE-MRI map ‘X (X Î 

{Ktrans;AUC}), we extracted 7 paired values of Fp,i,X regarding  sampling and 3 paired 

values of Fp,i,X regarding scan duration (Fp,i,X(dt) and Fp,iX(T), respectively).  

Coefficient of variation (CV). We calculated the mean CV and its standard deviation 

(SD) on each feature Fi in order to assess the influence of sampling (: CV-dt, with 

AUC or Ktrans), and scan duration (: CV-T, with Ktrans) on the dispersion of the texture 

features, as follows:  

CV-dt= ∑ (#$(%&, (, )*2; %&, (, )*4;./
/01 … ; %&, (, )*20)/6789(	%&, (, )*2; %&, (, )*4; … ; %&, (, )*20))/;(  

CV-T= ∑ (#$(%&, (, <3; %&, (, <4,./
/01 ; %&, (, <5)/6789(	%&, (, <3; %&, (, <4; %&, (, <5))/;(  

We defined a texture feature as very poorly variable if CV<0.1, poorly variable if CV 

Î [0.1-0.2[, mildly variable if CV Î [0.2-0.5[, highly variable if CV Î [0.5-1[ and 

extremely variable if CV³1.0. 

 

Statistical analysis 

Statistical analyses were performed using SPSS (IBM corp, version 21.0, Armonk, 

NY) and GraphPad Prism (GraphPad Software, version 7, San Diego, CA). Variables 

were expressed as average, standard deviation, median, and range, as appropriate. A 

p-value < 0.05 was deemed significant. All tests were two-tailed.  

Normality was assessed for each continuous value by using the Shapiro-Wilk test.  

Repeated-measures (rm-) ANOVA with Geisser-Greenhouse correction for non-

sphericity and post-hoc Tukey tests with corrections for multiple comparisons using 

statistical hypothesis testing (or non-parametric equivalent rm-Friedman tests with 
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post-hoc Dunn tests) were used to study the influence of sampling and truncating on 

texture features extracted from Ktrans and AUC maps.  

For texture features with a statistical influence of temporal resolution, a linear model 

was applied for correlation analysis. A Bonferroni correction was applied for multiple 

comparisons and a p-value of 0.01 was considered significant. 

Finally, we investigated the influence of temporal parameters on the performance of a 

model aiming at predicting the treatment response based on texture features from 

Ktrans and AUC maps. Twenty patients were analyzable for this part of the study; the 5 

others were either operated directly after the MRI without chemotherapy or were not 

sufficiently followed-up. Texture features that were associated with the response at 

univariate level according to Student t-tests (or Mann-Whitney tests) with a p-value 

<0.05 were entered in a multivariate binary logistic regression using a backward 

stepwise selection method based on the probability of the Wald statistics. The area 

under the receiver operating characteristics curve (AUROC) of the models were 

calculated according to scan durations and temporal resolutions and compared 

according to the Delong methods (35). 
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RESULTS 

Patients (Table 2) 

Twenty-five patients were finally included (9/25 (36%) women, median age 68 years 

old, range: 31-94). The most frequent histotype was undifferentiated pleomorphic 

sarcoma. The median size was 81mm (range: 42-180) and the median tumor volume 

was 0.357L (range: 0.023 – 1.048).  

 

Influence of temporal parameters on DCE-MRI texture features 

Table 3 provides the results of the rm-ANOVA (or rm-Friedman test). Regarding the 

effect of temporal resolution, 12/32 (37.5%) AUC-based texture features were 

significantly influenced: 5/7 FOS features, 1/9 GLCM features, 2/9 GLRLM features 

and 4/7 GLSZM features (range of p-value=0.0395 to <0.0001). Fourteen out of 32 

(43.8%) Ktrans-based texture features were significantly influenced by temporal 

resolution: 1/7 FOS features, 5/9 GLCM features, 4/9 GLRLM features and 4/7 

GLSZM features (range of p-value=0.0331 to 0.0007). 

Regarding the effect of scan duration, 23/32 (71.9%) Ktrans-based texture features 

were significantly influenced: 7/7 FOS features, 8/9 GLCM features, 6/9 GLRLM 

features and 2/7 GLSZM features (range of p-value=0.0321 to <0.0001). 

Three texture features were influenced by temporal parameters in the 3 settings: 

GLRLM_GL_Variance, GLSZM_Large_area_emphasis, and 

GLSZM_Zone_variance. Six texture features were not, no matter the setting: 

GLCM_Correlation, GLRLM_Gray_level_non-uniformity, GLRLM_Run_entropy, 

GLRLM_Run_variance, GLSZM_Small_area_emphasis and GLSZM_Zone_entropy.  

A summary of post-hoc tests is given in Table 4. Regarding the influence of temporal 

resolution on AUC maps, the highest number of texture features that statistically 

differed was observed in post-hoc comparisons between dt=20s and dt=2s (10/32, 

31.3%) and dt=20s and dt=4s (9/32, 28.1%). On Ktrans maps, the highest differences 

were seen between dt=20s and dt=2s (10/32, 59.4%), followed by dt=20s versus dt=6s 

(6/32, 18.8%). Regarding the influence of truncating on Ktrans maps, 23/32 (71.9%) 

and 17/32 (53.1%) texture features were significantly different between T=5min and 

T=4min, and between T=5min and T=3min, respectively. 

Significant linear correlations were found between sampling on AUC and 

GLSZM_Size_zone_non-uniformity (p=0.0018, r2=0.879) and 

GLSZM_Zone_variance (p=0.0043, r2=0.830). Similarly, there were significant linear 
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correlations between sampling on Ktrans and 4 texture features: GLSZM_non-

uniformity (p<0.0001, r2=0.978), GLSZM_Large area emphasis (p=0.0009, r2=0.909), 

GLSZM_Size_zone_non-uniformity (p=0.0002, r2=0.954), GLSZM_Zone_variance 

(p=0.0002, r2=0.950) (Fig. 2). Variations in scan duration did not reveal any linear 

correlations. Details for linear regressions are given in Supplementary Data 2. Figure 

3 shows an example of variation of parametric maps and corresponding histograms 

with changes in scan duration and temporal resolution. 

 

Effect of temporal parameters on the dispersion of DCE-MRI texture features 

Figure 4 and Table 5 summarize the analysis of dispersion of texture features 

according to the 3 configurations (i.e. AUC-sampling, Ktrans-sampling, Ktrans-

truncating). Most texture features extracted from AUC maps remained poorly to 

mildly variable with changes in sampling. Only GLCM_Cluster_prominence was 

categorized as highly variable (CV-dt=0.50), while 11 out of 32 (34.4%) texture 

features extracted from Ktrans were highly to extremely variable (range of CV-dt=0.50-

1.11).  

Five texture features extracted from Ktrans maps were highly variable with changes in 

scan duration: FOS_Average, FOS_Energy, FOS_Inter-quartile_range, 

FOS_Standard_deviation and GLSZM_Zone_entropy (range of CV-T=0.54-0.96). 

Supplementary Data 3 provides all the values of CV with SD. 

 

Effect of temporal parameters on a prediction based on DCE-MRI texture features 

Twenty patients were treated with chemotherapy and were analyzable for this sub-part 

of the study. There were 5/20 (25%) good responses (4 good histological responses 

and 1 partial response after 6 months without changing treatment). Table 6 shows the 

results of univariate analyses and performances of the models quantified by AUROC. 

After univariate analyses, the selected variables entered in the binary logistic 

regression were not systematically the same when temporal resolution and scan 

duration changed, even if some were frequently encountered: 

AUC_GLRLM_Run_entropy (in 8 models), Ktrans_GLSZM_Small_area_emphasis 

(in 3 models). AUROC ranged from 0.77 (CI95%=(0.54-1.00)) with a scan duration 

of 5min and a temporal resolution of 6s, to 0.90 (CI95%=(0.74-1.00)) with a scan 

duration of 4min and a temporal resolution of 6min. Details of the univariate analyses 
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for each model and comparisons between AUROC can be found in Supplementary 

Data 4 and Supplementary Data 5, respectively. 
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DISCUSSION 

In this study, we examined the influence of temporal parameters on a large set of 

widely used and easily available statistical texture features extracted from whole 

tumor volumes segmented on Ktrans and AUC parametric maps. We found that a large 

number of them were significantly dependent on the scan duration and temporal 

resolution. Moreover, merely half of them remained poorly variable with changes in 

temporal parameters. This led to non-negligible variations in the AUROCs of the 

models for a response prediction to chemotherapy, even though the comparisons did 

not provide statistical differences. 

 

A major challenge for radiomics approaches is to ensure a good quality of the 

quantitative data on which they rely. Besides reproducibility, repeatability, non-

redundancy and validity, quality here means controlling the bias due to slight 

variations in the imaging acquisition parameters (2). Standardizing the imaging 

protocols between radiological centers is unavoidable. However, thousands of MRI 

examinations (and DCE-MRI sequences) have already been acquired and the 

temptation to pool data from different MR-systems in order to begin to build and test 

predictive models for key oncological questions is understandable. Our study focused 

on STS as a tumor model to examine the influence of temporal parameters. High-

grade STS are characterized by complex architectures and changes during treatments, 

making them particularly appropriate for radiomics. In particular, Vallières et al. 

stressed the influence of the post-processing parameters of imaging on a prediction 

model of occurrence of lung metastases in STS patients (36).  

Our results are in agreement with previous studies that investigated the influence of 

temporal parameters on dynamic acquisitions. Othman et al. showed that shorter scan 

duration was responsible for overestimation of pharmacokinetic parameters and lead 

to incorrect classifications of benign prostate lesions as malignant (24). A similar 

influence on prediction models was found with breast lesions (26). This could be 

explained by the Tofts model itself because it assumes an immediate equilibrium 

between the compartments though it requires up to 2min in case of breast imaging 

(37). Poor temporal resolutions can also lead to incorrect assessments of 

pharmacokinetic parameters according to pre-clinical and clinical studies regarding 

prostate lesions – even if it did not significantly modify the ability of these parameters 

to discriminate benign and malignant tumors (25). Heisen et al. showed that the Ktrans 
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variations could go up to 25% of its initial value with varying temporal resolutions 

(38). In the single study that focused on the acquisition parameters at risk of 

influencing perfusion maps, Bogowicz et al. found that the percentage of unstable 

texture features ranged from 56 to 98% with different artery contouring, and from 58 

to 75% with different temporal resolution, which is higher than in our study (27).	This 

highest variability in their study may be explained by the difference in histological 

types, in imaging modality (CT vs. MRI), in the texture features that were calculated 

and in the perfusion maps that were studied (blood flow, mean time transit and blood 

volume vs. AUC and Ktrans in our studies).  

Regarding STS, our results also highlight potential cut-offs for temporal resolution 

and scan duration beyond which statistical differences in texture features from DCE-

MRI maps may occur. Indeed, even if temporal resolution had an influence on several 

texture features, post-hoc tests with correction for multiple comparisons showed that 

data with temporal resolution below 8s could be pooled, as well as data with temporal 

resolution above 8s. On the contrary, we found that data obtained with a scan duration 

of 5min should not be pooled with those with a scan duration of 3 or 4min.  

After correction of multiple tests, some radiomics features extracted from AUC and 

Ktrans maps demonstrated linear relationships with sampling. All belonged to the 

GLSZM category. GLSZM_Size_zone_non_uniformity and 

GLSZM_Grey_level_non_uniformity increased with downsampling, suggesting more 

heterogeneity in intensity values and in size zone volumes of the same grey level 

voxels with low temporal resolutions (high dt). Conversely, 

GLSZM_Large_area_emphasis and GLSZM_Zone_variance tended to decrease, 

suggesting that poor temporal resolution (high dt) led to smaller size zones. No linear 

correlation was found with truncating, probably because we only generated 3 time 

points. Poor temporal resolution (high dt) can be responsible for less accurate 

estimations, especially when the tumor – or areas in the tumor –demonstrates a rapid 

and strong enhancement (wash-in and peak on time-intensity curves). Consequently, 

hypervascularized intra-tumoral areas with high Ktrans and AUC values could be 

missed, resulting in areas with lower values of Ktrans and AUC.  

All the categories of texture features seemed equally influenced by temporal 

resolution, but the dispersion was more marked with FOS, then GLCM, GLRLM and 

finally GLSZM. The high sensitivity of FOS could be due to their lack of spatial 

information. Indeed, all the voxels are pooled without considering the fact that 
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adjacent voxels may react similarly and proportionally to changes in temporal 

parameters, which is the case of GLCM, GLSZM and GLRLM. 

Regarding the influence of temporal parameters on the performance of a model for 

response prediction based on AUC and Ktrans of STS, we identified 6 relevant features 

that were selected across the different models, namely: FOS_Inter_quartile_range, 

FOS_Standard_deviation, GLCM_Correlation, GLRLM_Long_run_emphasis, 

GLRLM_Run_entropy and GLSZM_Small_area_emphasis. Interestingly, 

GLRLM_Run_entropy and GLRLM_Small_area_emphasis were not significantly 

influenced by temporal resolution and showed low CVs. Thus, these texture features 

could be good candidates for multi-center studies based on DCE-MRI sequences of 

STS. However, these results do not mean that ultra-fast DCE-MRI acquisitions are 

unnecessary. The aim of DCE-MRI is to represent and estimate at best the vascular 

characteristics of tumors. Hypervascularized tumors require excellent temporal 

resolutions. If some researchers want to increase the statistical power of their 

radiomics study by putting together DCE-MRIs with different temporal parameters, 

then it should be carefully done because it could introduce a significant bias in their 

results.    

We did not investigate the test-retest reproducibility of DCE-MRI-based texture 

features because it was hardly justifiable to inject a contrast agent twice in cancer 

patients. However, further radiomics studies performed on perfusion phantoms could 

help analyzing this crucial aspect. It should be noted that we designed our study to 

limit bias that could have been introduced in the quantification of heterogeneity: we 

utilized the same 1.5T MR-system, the same DCE-MRI sequences with the same 

acquisition parameters following QIBA® recommendations, the same contrast agent, 

the same imaging filters, the same software for post-processing and the same feature 

extraction parameters. Nevertheless, we had to adjust the coils because of variations 

in tumor sizes and locations, which may have introduced some bias. Moreover, 

truncating and downsampling the AIFs probably contributed to the variations in 

texture features from DCE-MRI parametric maps, even if we kept the same voxels in 

the same artery of interest. Indeed, the AIF is crucial in pharmacokinetic modeling 

(31). For instance, a recent study showed that Ktrans could range from 0.25/min to 

more 2/min in prostate cancers in a same series of DCE-MRI acquisitions depending 

on the method to determine the AIF from different cancer centers, which led to 

variations in times to peak and peak amplitudes (39). Herein, poor temporal 
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resolutions could lead to missing the real AIF peak though the Ktrans estimation 

strongly relies on it, as well as to superposition of the AIF and the tumor enhancement 

curve during the first part of the acquisition.   

 

Our study has several limits. First, the population was small and made of 

heterogeneous histological types, though all were high-grade. Some tumors enhanced 

rather homogeneously and progressively (for instance myxoid/round cell 

liposarcomas) while others showed more heterogeneous enhancements, with the time-

intensity curves of some components displaying a strong wash-in, followed by a peak 

and a wash-out (for instance, undifferentiated pleomorphic sarcomas). Temporal 

parameters were certainly more influential in the second case. Nevertheless, until 

now, the inclusion of STS patients in clinical trials relies on tumor grade and not on 

histotypes. Second, we did not investigate other semi-quantitative and 

pharmacokinetic DCE-MRI parameters (such as Time-to-peak, Wash-in, Wash-out, 

Kep [efflux rate constant from the extra-cellular, extra-vascular space to the plasma 

compartment], Kel [contrast agent elimination rate constant], Ve [extra-cellular, extra-

vascular space volume], Vp [plasmatic volume]), or other perfusion models than 

extended Tofts. We decided to focus on the most studied parameters in the literature. 

However, given that some areas in STS can show a wash-out, it is also possible that 

the pharmacokinetics that quantify the decreasing part of the time-intensity curve are 

also influenced by temporal parameters. Third, alternative methods for downsampling 

could have been applied by recombining k-space data instead of removing some 

phases (38). In a clinical setting, there is a compromise between temporal resolution, 

signal-to-noise ratio and spatial resolution. A decrease in temporal resolution will 

benefit signal-to-noise-ratio (by averaging twice if there is a down-sampling by a 

factor 2, for instance). Fourth, our multivariate models for the outcome sub-study can 

be questioned since only 20 patients were included with 2 definitions of good 

treatment responses depending on the patient’s operability. We used a classical 

statistical approach without validation cohort to build the predictive models. More 

advanced selection methods could have been used (for instance: least absolute 

shrinkage and selection operator, ElasticNet, supervised principal component 

analysis), as well as supervised machine-learning classifiers (for instance: random 

forest, k-nearest neighbors, support vector machines) or deep learning (40). 
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Consequently, we did not test if the influence of temporal parameters was still present 

with these other statistical methods. The aim of this part of the study was to illustrate 

the influence of temporal parameters on a prediction and not to validate a radiomics 

model for response prediction. However, we hope that further prospective studies will 

take into account this research aiming at improving the quality of radiomics methods 

in order to build clean and robust models to answer key oncological questions. 

 

To conclude, our study screened several aspects of the influence of temporal 

parameters on texture features extracted from DCE-MRI parametric maps of STS. We 

showed that both scan duration and temporal resolution introduced a non-negligible 

variability in the quantification of heterogeneity that could lead to a decreased 

performance of prediction models for response to chemotherapy. In addition to all the 

other acquisition and post-processing parameters, standardizing the scan duration and 

temporal resolution of DCE-MRI must be considered in prospective multi-centric 

trials to build reliable radiomics approaches. 
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TABLE 1. MRI texture features extracted from Ktrans and AUC maps. 

 

First-order Feature Grey level co-
occurrence matrix 

Grey level run length 
matrix 

Grey level size zone 
matrix 

Average Cluster prominence GL non-uniformity GL non-uniformity 
Energy Cluster shade GL variance GL variance 
Entropy Cluster tendency High GL run emphasis Large area emphasis 

Inter-quartile range Contrast Low GL run emphasis Small area emphasis 
Kurtosis Correlation Long run emphasis Size zone non-uniformity 

Skewness Inverse difference moment Run entropy Zone entropy 
Standard deviation Joint average Run length non-uniformity Zone variance 

 Joint energy Run variance  
  Joint entropy Short run emphasis   

 

NOTE. Abbreviations: GL: grey level
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TABLE 2. Epidemiological features of the population study. 

Characteristics Patients 

Gender  

 Men 16/25 (64%) 
 Women 9/25 (36%) 
Age (years) 68 (31-94) 
Histological types  

 Undifferentiated pleomorphic sarcoma 13/25 (52%) 
 Myxoid/round cells liposarcoma 4/25 (16%) 
 Rhabdomyosarcoma 2/25 (8%) 
 Myxofibrosarcoma 1/25 (4%) 
 Synovial sarcoma 2/25 (8%) 
 Pleomorphic liposarcoma 1/25 (4%) 
 Undifferentiated sarcoma - others 2/25 (8%) 
Location  

 Upper limb 4/25 (16%) 
 Shoulder girdle 1/25 (4%) 
 Trunk wall 2/25 (8%) 
 Lower limb 18/25 (72%) 
Size (mm) 81 (42-180) 
Number of voxels 356 959 (22 816-1 048 136) 
Volume (L) 0.357 (0.023-1.048) 
Tumor depth  

 Deep 16/25 (64%) 
 Deep and superficial 8/25 (32%) 
  Superficial 1/25 (4%) 

	
NOTE. Data are number of patients with percentage in parentheses, except for age, size, 
number of voxels and volume of the tumor, given as median and range.  
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TABLE 3. Assessment of the influence of temporal resolution (sampling) and scan 
duration (truncating) on texture parameters extracted from DCE-MRI parametric 
maps (Ktrans and AUC). 
	
Texture features AUC - Sampling   Ktrans - Sampling   Ktrans - Truncating 

F-value p-value   F-value p-value   F-value p-value 
First-order Feature         

 Average 18.54 0.0050**  5.12 0.5290  14.60 0.0022** 
 Energy 25.55 0.0003***  2.13 0.9072  15.00 0.0018** 
 Entropy 7.15 0.3069  16.46 0.0115*  19.19 0.0002*** 
 Inter-quartile range 8.607 0.1969  5.61 0.4688  15.05 0.0018** 
 Kurtosis 50.89 <0.0001***  6.35 0.0958  15.49 0.0168* 
 Skewness 41.57 <0.0001***  10.88 0.0921  8.80 0.0321* 
 Standard deviation 26.12 0.0002***  1.77 0.9395  14.50 0.0023** 
GLCM         

 Cluster prominence 17.07 0.0090**  11.46 0.0751  16.20 0.0010** 
 Cluster shade 5.07 0.5354  12.15 0.0587  12.55 0.0057** 
 Cluster tendency 10.30 0.1127  9.96 0.1262  23.85 <0.0001*** 
 Contrast 9.27 0.1589  13.7 0.0331*  17.85 0.0005*** 
 Correlation 2.78 0.8358  5.59 0.4709  4.25 0.2357 
 Inverse difference moment 6.58 0.3617  13.70 0.0331*  17.85 0.0005*** 
 Joint average 1.94 0.9253  13.96 0.0301*  18.75 0.0003*** 
 Joint energy 6.45 0.3750  13.83 0.0316*  18.40 0.0004*** 
 Joint entropy 6.87 0.3327  16.64 0.0233*  19.55 0.0002*** 
GLRLM         

 GL non-uniformity 0.96 0.9869  5.83 0.4427  1.05 0.7892 
 GL variance 20.74 0.0020**  17.7 0.0070*  29.30 <0.0001*** 
 High GL run emphasis 5.74 0.4525  19.16 0.0039**  29.30 <0.0001*** 
 Low GL run emphasis 3.27 0.7746  19.16 0.0039**  29.30 <0.0001*** 
 Long run emphasis 11.00 0.0884  17.05 0.0091**  31.50 <0.0001*** 
 Run entropy 0.32 0.8632§  1.40 0.2556§  0.9251 0.4056§ 
 Run length non-uniformity 7.32 0.2918  11.46 0.0753  14.85 0.0019** 
 Run variance 10.47 0.1062  11.36 0.0778  5.95 0.1141 
 Short run emphasis 13.23 0.0395*  1.56 0.2133  22.95 <0.0001*** 
GLSZM         

 GL non-uniformity 9.69 0.1384  15.31 0.0180*  10.94 0.012 
 GL variance 25.72 0.0003***  11.89 0.0645  10.18 0.0171 
 Large area emphasis 19.29 0.0037**  21.41 0.0015**  15.30 0.0016** 
 Small area emphasis 9.16 0.1649  4.91 0.5555  4.40 0.2214 
 Size zone non-uniformity 16.11 0.0132*  16.87 0.0098*  5.87 0.118 
 Zone entropy 3.08 0.2190§  4.746 0.5768  1.01 0.3797§ 
  Zone variance 20.26 0.0025**   23.46 0.0007***   15.30 0.0016** 
	
NOTE. Data are F-values and p-values for the repeated measures (rm-) ANOVA ( : §) or non 
parametric equivalent rm-Friedman test. 
Abbreviations: GL : grey-level; GLCM : grey-level occurrence matrix; GLRLM: grey-level 
run length matrix; GLSZM: grey level size zone matrix 
*: p≤0.05; **: p<0.005, ***: p<0.001 
 



	 25	

TABLE 4. Summary of the post-hoc tests: number of texture features that were 
significantly different when comparing 2 distinct temporal resolution (: sampling) for 
AUC (a) and Ktrans (b), or 2 distinct scan durations (: truncating) for Ktrans (c). 
 

 

a. AUC - Sampling 
         

             
  dt2 dt4 dt6 dt8 dt10 dt12 dt20 

     
dt2 - 0 0 2 4 1 10 

     
dt4 0 - 0 2 2 0 9 

     
dt6 0 0 - 0 0 0 2 

     
dt8 2 2 0 - 0 0 0 

     
dt10 4 2 0 0 - 0 0 

     
dt12 1 0 0 0 0 - 0 

     
dt20 10 9 2 0 0 0 - 

     
             
b. Ktrans - Sampling 

     
c. Ktrans - Truncating 

             
  dt2 dt4 dt6 dt8 dt10 dt12 dt20 

 
  T3'00 T4'00 T5'00 

dt2 - 0 0 0 0 0 10 
 

T3'00 - 0 17 

dt4 0 - 0 0 0 0 2 
 

T4'00 0 - 23 

dt6 0 0 - 0 0 0 6 
 

T5'00 17 23 - 

dt8 0 0 0 - 0 0 0 
     

dt10 0 0 0 0 - 0 0 
     

dt12 0 0 0 0 0 - 0 
     

dt20 10 2 6 0 0 0 - 
     

 
NOTE. Abbreviations: dtx corresponds to a sampling of ‘x’ seconds; Ty corresponds to a 
scan duration of ‘y’ minutes.
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TABLE 5. Degree of dispersion of the texture features from Ktrans and AUC maps according to temporal resolution (: sampling) and scan duration (: 
truncating). 

 Very poorly variable Poorly variable Mildly variable Highly variable Extremely variable 
  CV < 0.10 0.10 ≤ CV < 0.20 0.20 ≤ CV < 0.50 0.50 ≤ CV ≤ 1 CV ≥ 1.00 

AUC - Sampling 

GLCM_Inverse Difference Moment FOS_Average FOS_Energy GLCM_Cluster prominence  
GLCM_Joint average FOS_Inter-quartile range FOS_Entropy   
GLCM_Joint energy FOS_Standard deviation FOS_Kurtosis   

GLRLM_GL non-uniformity GLRLM_Low GL run emphasis FOS_Skewness   
GLRLM_High GL run emphasis GLRLM_Long run emphasis GLCM_Cluster shade   

GLRLM_Run length non-uniformity GLSZM_Small area emphasis GLCM_Cluster tendency   
GLRLM_Run entropy GLSZM_Zone entropy GLCM_Correlation   
GLRLM_Run variance  GLCM_Contrast   

GLRLM_Short run emphasis  GLCM_Joint entropy   
  GLRLM_GL variance   
  GLSZM_GL non-uniformity   
  GLSZM_GL variance   
  GLSZM_Large area emphasis   
  GLSZM_Zone variance   
    GLSZM_Size zone non-uniformity     

Ktrans - Sampling 

GLCM_Inverse Difference Moment GLRLM_Run variance FOS_Entropy FOS_Inter-quartile range FOS_Energy 
GLCM_Joint average GLRLM_Short run emphasis GLCM_Correlation FOS_Kurtosis  
GLCM_Joint energy GLSZM_Small area emphasis GLRLM_GL variance FOS_Average  

GLRLM_GL non-uniformity GLSZM_Zone entropy GLRLM_Long run emphasis FOS_Skewness  
GLRLM_High GL run emphasis  GLRLM_Run length non-uniformity FOS_Standard deviation  
GLRLM_Low GL run emphasis  GLSZM_GL non-uniformity GLCM_Cluster prominence  

GLRLM_Run entropy  GLSZM_GL variance GLCM_Cluster shade  
  GLSZM_Large area emphasis GLCM_Cluster tendency  
  GLSZM_Zone variance GLCM_Contrast  
  GLSZM_Size zone non-uniformity GLCM_Joint entropy  

Ktrans - Truncating 

GLCM_Inverse Difference Moment GLRLM_Long run emphasis FOS_Entropy FOS_Average   
GLCM_Joint average GLRLM_Run length non-uniformity FOS_Kurtosis FOS_Energy  
GLCM_Joint energy GLRLM_Run variance FOS_Skewness FOS_Inter-quartile range  

GLRLM_GL non-uniformitY GLSZM_Small area emphasis GLCM_Cluster prominence FOS_Standard deviation  
GLRLM_High GL run emphasis  GLCM_Cluster shade GLSZM_Zone entropy  
GLRLM_Low GL run emphasis  GLCM_Cluster tendency   

GLRLM_Run entropy  GLCM_Correlation   
GLRLM_Short run emphasis  GLCM_Contrast   

  GLCM_Joint entropy   
  GLRLM_GL variance   
  GLSZM_GL non-uniformity   
  GLSZM_GL variance   
  GLSZM_Large area emphasis   
  GLSZM_Zone variance   
    GLSZM_Size zone non-uniformity     

 
NOTE. Abbreviations: CV: coefficient of variation; FOS: First order statistics; GL: grey level; GLCM: grey level co-occurrence matrix; GLRLM: grey level run length 
matrix; GLSZM: grey level size zone matrix
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TABLE 6. Area under the ROC curves of models for response prediction to 
chemotherapy based on texture features extracted from AUC and Ktrans maps with 
varying temporal resolution (sampling) and scan duration (truncating) 
 

Temporal 
parameters 

Univariate analysis Model 

Significant features p-value AUROC (CI95%) p-value 
u Sampling     
 dt2 Ktrans_GLRLM_Run entropy 0.021 0.85 (0.68-1.00) 0.021 
  AUC_GLRLM_Run entropy 0.050   
      
 dt4 AUC_GLRLM_Run entropy 0.050 0.84 (0.62-1.00) 0.026 
  Ktrans_FOS_Inter-quartile range 0.026   
  Ktrans_FOS_Standard deviation 0.013   
  Ktrans_GLRLM_Long run emphasis 0.021   
  Ktrans_GLRLM_Run entropy 0.032   
      
 dt6 AUC_GLRLM_Run entropy 0.050 0.77 (0.54-1.00) 0.074       
 dt8 AUC_GLCM_Correlation 0.032 0.83 (0.61-1.00) 0.032       
 dt10 Ktrans_GLRLM_Long run emphasis 0.032 0.83 (0.63-1.00) 0.032       
 dt12 AUC_GLCM_Correlation 0.040 0.83 (0.58-1.00) 0.032 
  AUC_GLRLM_Run entropy 0.032   
  Ktrans_GLSZM_Small area emphasis 0.050   
      
 dt20 AUC_GLRLM_Run entropy 0.049 0.81 (0.58-1.00) 0.121 
            

u Truncating 
 T3'00 AUC_GLRLM_Run entropy 0.050 0.88 (0.71-1.00) 0.021 
  Ktrans_GLSZM_Small area emphasis 0.021   
      
 T4'00 AUC_GLRLM_Run entropy 0.050 0.90 (0.74-1.00) 0.018 
  Ktrans_GLSZM_Small area emphasis 0.016   
      
 T5'00 AUC_GLRLM_Run entropy 0.050 0.77 (0.54-1.00) 0.074 
            

NOTE. Abbreviations: AUROC: area under the receiver operating characteristics curve; 
CI95%: 95% confidence interval; GL: grey level; GLCM: grey level co-occurrence matrix; 
GLRLM: grey level run length matrix; GLSZM: grey level size zone matrix; ‘dtx’ 
corresponds to a sampling of ‘x’ seconds; ‘Ty’ corresponds to a scan duration of ‘y’ minutes. 
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FIGURE LEGENDS 

FIGURE 1: Reconstruction of data acquisition. (a) Retrospective downsampling 

and truncating were performed to obtain post-processed data with a temporal 

resolution of 2s (: dt2), 4s (: dt4), 6s (: dt6s)… and 20s (: dt20), and with a scan 

duration of 4min (: T4’00 – with a temporal resolution of 6s) and 3min (: T3’00 - with 

a temporal resolution of 6s). Of note, the baseline was not re-sampled. (b) The same 

voxels in the same artery were used to determine the artery input function (AIF) that 

was used in the extended Tofts model. However, AIFs were also truncated and 

downsampled leading to variations in time to reach the peak (from 36s to 54s) and in 

maximum signal intensity of the peak (from 319 to 396.8) in this example of high-

grade synovial sarcoma of the popliteal region. (c) Next, parametric maps of Ktrans (: 

influx volume transfer constant) and (d) AUC (: area under the time intensity curves 

at 90s after arrival of the contrast agent bolus in the acquisition volume) were 

generated as functions of ‘dt’ and ‘T’. 

 

FIGURE 2: Linear correlations between texture features from DCE-MRI 

parametric maps and temporal resolution. Only significant correlations for AUC 

(a) and Ktrans (b) after corrections to allow multiple comparisons are shown with their 

p-value. Sampling is given in seconds. Texture features have arbitrary units. 

Abbreviations: GL: grey level; GLSLZM: grey level size zone matrix. 

 

FIGURE 3: Illustrated case of the influence of temporal parameters on DCE-

MRI parametric maps and texture features of sarcoma. A 63 years old male with 

a high-grade, deep and superficial, myxofibrosarcoma of the left thigh underwent his 

baseline MRI examination including conventional sequences (a) and DCE-MRI 

acquisition. (b) The whole tumor volume was manually segmented, slice-by-slice, on 

the last phase of the DCE-MRI acquisition, i.e. 300s after Gadolinium chelates 

intravenous injection. (c) The AUC (: area under the time intensity curve at 90s after 

arrival of the contrast agent bolus in the acquisition volume, units: mmol/L/s, on the 

right) and Ktrans (influx volume transfer constant, units: /s, on the left) parametric 

maps were reconstructed with the different scan durations and temporal resolutions. 

After the whole tumor volume segmentation, frequency histograms were 

reconstructed for (d) AUC depending on the different temporal resolution, (e) Ktrans 

depending on the different temporal resolution, and (f) Ktrans according to the 
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different scan duration. Abbreviation: STIR T2-WI: short time inversion recovery T2-

weighted imaging, T2-WI: T2 weighted imaging; FS CE-T1-WI: fat saturation 

contrast enhanced T1 weighted imaging; DCE-MRI t=300s: last phase of the dynamic 

contrast enhanced MRI, on which was segmented the tumor volume, ‘dtx’ 

corresponds to a sampling of ‘x’ seconds; ‘Ty’ corresponds to a scan duration of ‘y’ 

minutes. 

 

FIGURE 4 Coefficient of variation of the texture features extracted from DCE-

MRI depending on temporal parameters. Influence of the temporal resolution of 

DCE-MRI acquisition (: sampling) on the dispersion of each texture feature from (a) 

AUC (: area under the time intensity curve) and (b) Ktrans (: influx volume transfer 

constant) maps. (c) Influence of the scan duration (: truncating) on the dispersion of 

each texture feature extracted from Ktrans map.  Results are given with standard 

deviation. GL: grey level. 

 

SUPPLEMENTARY DATA 

Supplementary Data 1. Definition of the texture features  

Supplementary Data 2. Assessment of linear correlations of all the texture features 

with a significant influence of temporal parameters according to repeated measures 

ANOVA (or non-parametric equivalent). 

Supplementary Data 3. Coefficient of variations with standard deviation of all the 

texture features. 

Supplementary Data 4. Univariate analysis of the associations between texture 

features and responses to chemotherapy for each model (depending on temporal 

resolution and scan duration).  

Supplementary Data 5. Comparisons of the AUROC of the different models, 

depending on scan duration and temporal resolution
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FIGURE 1 
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FIGURE 2.  
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FIGURE 3.  
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FIGURE 4.  
 

 


