S. Kim, C. Laschi, and B. Trimmer, Soft robotics: a bioinspired evolution in robotics, Trends in Biotechnology, vol.31, issue.5, pp.287-294, 2013.

D. Rus and M. T. Tolley, Design, fabrication and control of soft robots, Nature, vol.521, pp.467-475, 2015.

S. E. Navarro, O. Goury, G. Zheng, T. Morales-bieze, and C. Duriez, Modeling Novel Soft Mechanosensors based on Air-Flow Measurements, IEEE Robotics and Automation Letters, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02239080

D. Trivedi, C. D. Rahn, W. M. Kier, and I. D. Walker, Soft robotics: Biological inspiration, state of the art, and future research, Appl. Bionics Biomechanics, vol.5, issue.3, pp.99-117, 2008.

G. S. Chirikjian and J. W. Burdick, A modal approach to hyper-redundant manipulator kinematics, IEEE Transactions on Robotics and Automation, vol.10, issue.3, pp.343-354, 1994.

F. Boyer, M. Porez, and W. Khalil, Macro-continuous computed torque algorithm for a three-dimensional eel-like robot, IEEE Transactions on Robotics, vol.22, issue.4, pp.763-775, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00630750

C. D. Santina, R. K. Katzschmann, A. Biechi, and D. Rus, Dynamic control of soft robots interacting with the environment, 2018 IEEE International Conference on Soft Robotics (RoboSoft), pp.46-53, 2018.

J. B. Siddharth-sanan and C. G. Atkeson, Robots with inflatable links, The 2009 IEEE/RSJ International Conference on Inte lligent Robots and Systems, 2009.

B. A. Jones, R. L. Gray, and K. Turlapati, Three dimensional statics for continuum robotics, pp.2659-2664, 2009.

F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, A 3d steady-state model of a tendon-driven continuum soft manipulator inspired by the octopus arm, Bioinspiration & biomimetics, vol.7, issue.2, p.25006, 2012.

G. Zheng, O. Goury, M. Thieffry, A. Kruszewski, and C. Duriez, Controllability pre-verification of silicon soft robots based on finite-element method, in: Robotics and Automation (ICRA), IEEE, 2019.

Z. Zhang, J. Dequidt, and C. Duriez, Vision-Based Sensing of External Forces Acting on Soft Robots Using Finite Element Method, IEEE Robotics and Automation Letters, vol.3, issue.3, pp.1529-1536, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01720645

M. Thieffry, A. Kruszewski, O. Goury, T. Guerra, and C. Duriez, Dynamic control of soft robots, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01558844

M. Giorelli, F. Renda, M. Calisti, A. Arienti, G. Ferri et al., Neural network and jacobian method for solving the inverse statics of a cable-driven soft arm with nonconstant curvature, IEEE Transactions on Robotics, vol.31, issue.4, pp.823-834, 2015.

G. Runge, M. Wiese, and A. Raatz, Fem-based training of artificial neural networks for modular soft robots, 2017 IEEE International Conference on Robotics and Biomimetics (ROBIO), pp.385-392, 2017.

M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and M. D. Killpack, Learning nonlinear dynamic models of soft robots for model predictive control with neural networks, in, IEEE International Conference on Soft Robotics (RoboSoft), pp.39-45, 2018.

B. Siciliano and O. Khatib, Springer Handbook of Robotics, 2007.

P. A. Ioannou and J. Sun, Robust Adaptive Control, 1995.
URL : https://hal.archives-ouvertes.fr/hal-01394197

K. Hornik, M. Stinchcombe, and H. White, Multilayer feedforward networks are universal approximators, Neural Networks, vol.2, issue.5, pp.359-366, 1989.

G. Cybenko, Approximation by superpositions of a sigmoidal function, Mathematics of Control, Signals, and Systems (MCSS), vol.2, issue.4, pp.303-314, 1989.

E. J. Hartman, J. D. Keeler, and J. M. Kowalski, Layered neural networks with gaussian hidden units as universal approximations, Neural Computation, vol.2, issue.2, pp.210-215, 1990.

J. Park and I. W. Sandberg, Universal approximation using radial-basis-function networks, Neural Computation, vol.3, issue.2, pp.246-257, 1991.

A. Isidori, Nonlinear control systems

V. I. Utkin, Sliding mode control design principles and applications to electric drives, IEEE transactions on industrial electronics, vol.40, issue.1, pp.23-36, 1993.

K. Guo, Y. Pan, and H. Yu, Composite learning robot control with friction compensation: A neural network-based approach, IEEE Transactions on Industrial Electronics, vol.66, issue.10, pp.7841-7851, 2019.

M. Chen, Y. Lu, and G. Yang, Population-based extremal optimization with adaptive lévy mutation for constrained optimization, International Conference on Computational and Information Science, pp.144-155, 2006.