
HAL Id: hal-02407886
https://inria.hal.science/hal-02407886

Submitted on 12 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Towards a Model-Based DevOps for Cyber-Physical
Systems

Benoit Combemale, Manuel Wimmer

To cite this version:
Benoit Combemale, Manuel Wimmer. Towards a Model-Based DevOps for Cyber-Physical Sys-
tems. Software Engineering Aspects of Continuous Development, Springer-Verlag, pp.1-11, 2019.
�hal-02407886�

https://inria.hal.science/hal-02407886
https://hal.archives-ouvertes.fr


Towards a Model-Based DevOps for
Cyber-Physical Systems

Benoit Combemale1 and Manuel Wimmer2

1 Univ. Toulouse & Inria, France
benoit.combemale@irisa.fr

2 Johannes Kepler University Linz & CDL-MINT, Austria
manuel.wimmer@jku.at

Abstract. The emerging field of Cyber-Physical Systems (CPS) calls
for new scenarios of the use of models. In particular, CPS require to
support both the integration of physical and cyber parts in innovative
complex systems or production chains, together with the management
of the data gathered from the environment to drive dynamic reconfig-
uration at runtime or finding improved designs. In such a context, the
engineering of CPS must rely on models to uniformly reason about var-
ious heterogeneous concerns all along the system life cycle. In the last
decades, the use of models has been intensively investigated both at
design time for driving the development of complex systems, and at run-
time as a reasoning layer to support deployment, monitoring and runtime
adaptations. However, the approaches remain mostly independent. With
the advent of DevOps principles, the engineering of CPS would benefit
from supporting a smooth continuum of models from design to runtime,
and vice versa. In this vision paper, we introduce a vision for supporting
model-based DevOps practices, and we infer the corresponding research
roadmap for the modeling community to address this vision by discussing
a CPS demonstrator.

1 Introduction

We are currently facing a dramatically increasing complexity in the develop-
ment and operation of systems with the emergence of Cyber-Physical Systems
(CPS) [9]. This demands for more comprehensive and systematic views on all
aspects of systems (e.g., mechanics, electronics, software, and network) not only
in the engineering process, but in the operation process as well [2]. Moreover,
flexible approaches are needed to adapt the systems’ behavior to ever-changing
requirements and tasks, unexpected conditions, as well as structural transforma-
tions [6].

To engineer interdisciplinary systems such as CPS, modeling is considered as
the universal technique to understand and simplify reality through abstraction,
and thus, models are used throughout interdisciplinary activities within engi-
neering processes which is often referred to Model-Based Systems Engineering
(MBSE) [3]. However, in order to deal with current requirements such as the



2 Benoit Combemale and Manuel Wimmer

flexible adaption of CPS to changing requirements, the operation processes of
CPS as well as their interplay with the engineering processes and vice versa
has to be taken into consideration. This raises the question how model-based
DevOps practices for CPS can be achieved. Such practices are currently highly
needed to reduce the time between identifying the necessity for a change and
putting the appropriate change into production.

This paper discusses a vision for model-based DevOps practices for CPS
(Section 2) as well as the challenges which have to be tackled in order to realize
this vision by the help of a CPS demonstrator (Section 3). Finally, we conclude
with an outlook on several research lines which may build on the discussed
model-based DevOps practices, in the form of a short term research roadmap
(Section 4) and long term perspectives (Section 5).

2 Overall Vision

While current DevOps principles apply to code integration, deployment, delivery
and maintenance in the software industry, we envision the application of the very
same principles at the model level for the development of CPS. In such a vision,
the various domain-specific development models are seamlessly integrated with
operations, either via models at runtime (e.g., model-based MAPE-K loop or
digital twins) or via a combination of software and hardware components within
a given environment.

Initially introduced for the design phases in software development, model-
driven engineering (MDE) approaches cover nowadays the entire life cycle. First
extended to support the elicitation of the requirements and the expected use
cases, models have been then intensively used for automating the development
and analysis of complex systems, and more recently to support dynamic recon-
figurations of dynamically adaptable systems. As illustrated in Fig. 1, various
tool-supported approaches have been explored and developed to cover all these
phases. Most of these approaches are nowadays largely used in industry and help
engineers to increase the quality and productivity of modern developments [11].

MDE approaches appear particularly useful in the context of systems engi-
neering (a.k.a. MBSE), for the development of complex software-intensive sys-
tems, also referred as cyber-physical systems. Such systems involve heteroge-
neous concerns (including hardware and software). Models provide a uniform
level of abstraction to reason over the entire system and support automation for
analysis, development, monitoring and evolution.

While most of the added value in CPS comes from the software services built
on top of the physical architecture (e.g., IoT, smart systems, flexible production
systems, etc.), they face the same evolution than any other software services,
including the restricted time to market to meet the final user expectations. In-
tegrating the various approaches and ensuring a model continuum is thus the
next level for the adoption of model-based approaches, supporting continuous
delivery, monitoring and improvements of the systems.



Towards a Model-Based DevOps for Cyber-Physical Systems 3

Model Edition and 
Consistency

Model Composition

Model
Validation & Verification

Model / System
integration

Design-Space
Exploration

(what-if/for scenarios)

Data Analysis, Model Discovery and 
Execution Trace Analysis 

Model Execution
and Reconfiguration 

Allocation and Deployment 
Model

Ops
(Models at Run-time)

Dev
(Models at Design-time)

Fig. 1. A Model-Based DevOps Approach

Also, CPS are usually deployed in complex, ever changing, environments.
Software services provide the intrinsic required adaptability, that must be vali-
dated with regards to heterogeneous hardware. DevOps principles bring moni-
toring at the first glance, and automate the continuous improvement while guar-
anteeing this is free of regression.

While it appears obvious that DevOps principles would be beneficial to the
development of modern CPS, this requires to promote such principles at the
model level. We review in the rest of this paper the challenges raised by such a
vision, on the basis of a concrete CPS demonstrator introduced in the following
section.

3 A CPS Demonstrator calling for Model-Based DevOps
Practices

In this section, we discuss a CPS demonstrator developed at the Christian
Doppler Laboratory for Model-Integrated Smart Production (CDL-MINT).3 The
CPS demonstrator is based on automating, operating, and maintaining a 6-
axis robot with the notion of digital twins (cf. Fig. 2) providing different view-
points such as logical and physical views as well as runtime data–called dig-
ital shadow [12]. In the following, we explain the main components of this
demonstrator–being software and hardware parts.

3 https://cdl-mint.se.jku.at

https://cdl-mint.se.jku.at


4 Benoit Combemale and Manuel Wimmer

Fig. 2. A CPS Demonstrator Project.

For realizing, operating, and maintaining the gripper robot, we follow a
model-based methodology which is in line with Fig. 1. The gripper is modeled
by using the Systems Modeling Language (SysML). In particular, we employ the
block definition diagram and the state machine diagram.

The block definition diagram is used to define the structure of the gripper
including its properties. For instance, we model the BasePosition (BP), Main-
ArmPosition (MAP), and GripperPosition (GP) (cf. upper part of Fig. 3) to
name just a few properties. These mentioned properties describe the angle posi-
tions of the axis of the gripper. These angle positions are set for different realizing
different actions (e.g., for driving down, moving left/right, or for picking-up).

The intended behavior of the gripper is described by a state machine, i.e.,
by detailing the various states and state transitions (cf. middle part of Fig. 3).
These states are for instance DriveDown and PickUp. The states set the variable
values specifying the respective angle position to realize in these states.

During operation, the gripper acts as a continuous system and thus, moves in
its environment on the basis of a workflow described by the state machine. The
particular movements are recorded by axis sensors and returned as continuous
sensor value streams. In our excerpt of the system, we show three sensor value
streams for the three properties defined in the block definition diagram (cf. lower
part of Fig. 3).

The building blocks for the development process as well as for the operation
and maintenance processes of the discussed CPS demonstrator are as follows:



Towards a Model-Based DevOps for Cyber-Physical Systems 5

Fig. 3. Design View and Runtime View of the CPS Demonstrator (Excerpt).

– Logical modeling languages to define the intended logical structure and
behaviour of the system (provided by the SysML language).

– 3D CAD modeling language for representing the geometry and kinemat-
ics of the physical components of the gripper.

– Code generator to produce the necessary control code from the logical
models for the particular controller platform.

– Controller, an extended version of a Raspberry Pi, with connections to the
sensors and actuators of the physical device. For the gripper, every axis has
a dedicated actuator and sensor which are connected to the controller via
GPIO (general-purpose input/output) pins.

– Physical device, i.e., the gripper, with sensors and actuators.

In order to move from a classical model-based engineering to a model-based
DevOps process as outlined in Fig. 1, dedicated extensions to the previously
described setting are required in order to realize an efficient and effective usage
of models. In particular, design models have been employed for development
in many different settings and domains and allowed for automating the code
generation process. In addition, several work also proposed to use runtime models
during the operation of a system. However, the transition from development to
operation and vice versa has been mostly overlooked. In the following, we shortly
summarize the need to take these transitions into account.



6 Benoit Combemale and Manuel Wimmer

– Moving from Dev-to-Ops: While most MDE tooling allow for moving
from the model level to the code level, further activities in the direction of
operations are often not explicitly supported. However, for settings such as
described for the CPS demonstrator, we need further support to test the
controller combined with the system to automatize before moving to the
actual system level as well as to automatically deploy the control code on
particular platforms.

– Moving from Ops-to-Dev: In addition to the use of runtime models to
perform self-configuration and optimization within a particular design, moni-
toring is important to understand the actual operation of a system to explore
new designs. This means, in addition to prescriptive and predictive runtime
models, we also need descriptive runtime models which can be linked back to
the design to reason about possible re-designs, model improvements such as
providing a higher precision or energy minimisation. In summary, we need a
way to link the data streams from the systems to our design models to close
the loop.

In the following section, we detail these two research dimensions by the con-
crete challenges we are facing and outline some directions to take.

4 Research Roadmap

In this section, we present our research roadmap (cf. Fig. 4) by discussing a set
of important challenges which have to be tackled to realize the aforementioned
vision (cf. Fig. 1). We categorize the challenges in two kinds: (i) we present the
challenges to continuously move from model-based development to operations,
and (ii) the challenges to continuously move from operations to model-based
development. We ground the challenges by giving concrete links to the CPS
demonstrator introduced in the previous section.

4.1 From Dev to Ops

C1: Integration of MDE techniques: In the past decade, a plethora of dif-
ferent techniques for validation, verification, evolution, transformation of mod-
els have been proposed. However, how these techniques may be bundled into
a pipeline for continuously integrating, building, testing, and deploying models
into production environments is less explored. The only exception is the work
by García and Cabot [4] who married continuous deployment technologies and
model-driven technologies.

For the CPS demonstrator, model changes have to trigger code generation
scripts, test case generators, deployment scripts for running the code on a vir-
tual representation of the physical gripper, i.e., its digital twin, in the simulation
platform. As soon as this virtual level is certified, the code has to be deployed in
the production environment to test it on the real physical device. For this pro-
cess, we require a pipeline which can connect modeling tools, simulation tools,



Towards a Model-Based DevOps for Cyber-Physical Systems 7Open Challenges

Towards Model-Based DevOps for CPS
Benoit Combemale @ DevOps’19, May, 2019 4

(C1) MDE Tool
Integration

(C2) Model
Integration

(C4) Data to Model
Alignement

(C5) Data Visualization
in Design Models

(C3+C7) DSLs for DevOps Pipeline
Modeling and Enactment

Ground 
Work

(C6) Continuous improvement 
of Design Models

Reaping the 
Benefits

Rigorous
Automation

t

Dev2Ops

Ops2Dev

Fig. 4. Summary of the Research Challenges to Support a Model-Based DevOps for
Cyber-Physical Systems.

code generators, testing tools, as well as continuous deployment tools. In the best
case, these pipeline should allow for incremental techniques to save computation
costs and to guarantee an instant re-deployment.

C2: Integration of heterogeneous artefacts: While current model-based
technologies provide common services for model-based artefacts by following
certain meta-modeling standards or other conventions, other artefact kinds such
as technical drawings, software components or hardware descriptions cannot be
directly integrated with models. However, this would be highly needed in order
to allow for a progressive integration starting in the engineering process and
going until the deployment process.

For the CPS demonstrator, integration between the logical controller model
and the physical models, i.e., the 3D CAD models, is required in order to run
virtual simulations before moving to the production site. Currently, these type
of tools are often realized on different technologies with different languages (even
legacy meta-languages used to define these languages) and simulators.

C3: Languages for Dev-to-Ops pipelines: Previously a lot of research has
been spent on languages for megamodeling, i.e., how different models are con-
nected, and for model transformation chains, i.e., how models are pushed through
a network of transformations. However, more specific languages may be needed
to describe the pipelines from Dev-to-Ops. Such languages would allow to explic-
itly model the process instead of scripting these processes in different technolo-
gies. We proposed one approach going in this direction in the past by extending
Gradle with explicit megamodeling and transformation chain DSL [10].

For the CPS demonstrator, we first require open APIs on all levels: software
modeling tool, 3D CADmodeling tool, programming IDEs, simulation platforms,
etc. In addition to open tools, a particular language to describe the complex



8 Benoit Combemale and Manuel Wimmer

process of moving from the modeling activities to the finally deployed system
with necessary interaction points, e.g., a human has to validate the graphical
simulation of the virtual gripper models, is required.

4.2 From Ops to Dev

C4: Tracing Operational Data to Design Models: The first challenge in
this category is to map back the runtime data (e.g., measures about performance,
energy consumption, masses, costs, etc.) into the documentation provided on
top of development design models. Existing modeling languages often lack a
viewpoint for operations or provide do not provide dedicated guidelines how
such information may be represented, e.g., see UML, SysML, and many DSLs.
Dedicated extensions to these languages are required to link to operational data
or to store summaries of operational data in models.

For the CPS demonstrator, we have to record and represent the realized po-
sitions of the gripper to reason about tolerance ranges on the model level and to
validate the precision of the final system. In SysML such information is currently
not representable. However, there are some dedicated efforts for SysML in the
standardization process of SysML v2 4 to provide state histories for components.

C5: Embedded Visualization of Operational Data in Design Models:
Operational data is naturally becoming huge in size for complex systems. Even if
operational data is already traced to design models, current modeling languages
and modeling editors most often fail short in visualization aspects. Additional
requirements for visualization of design models occur such as how to visualize the
underlying quality of the data such as uncertainties. Integrating sophisticated
visualization techniques from the information visualization community [1] seems
beneficial in order to provide an understanding of operational data embedded in
design models at a glance.

For the CPS demonstrator, dedicated diagrams have to be supported to vi-
sualize the runtime data (we refer again to the bottom of Fig. 3). Just showing
large runtime data in property windows in current modeling editors is not help-
ful for modelers to reason on runtime events and values. New diagram types are
needed for our current modeling languages and tools to visualize time series in-
formation (for instance as different kind of charts 5) or time series visualization
tools have to be integrated in the engineering tools.

C6: Utilizing Operational Data for Continuous Checks and Improve-
ments of Design Models: Runtime models have gained considerable attention
in model-driven engineering, mostly in the context of self-* systems. Exploiting
runtime models for continuously checking, profiling, enriching and improving

4 http://www.omgsysml.org/SysML-2.htm
5 For an example, see: https://sparxsystems.com/enterprise_architect_
user_guide/14.0/model_publishing/define_a_time_series_chart.
html

http://www.omgsysml.org/SysML-2.htm
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_publishing/define_a_time_series_chart.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_publishing/define_a_time_series_chart.html
https://sparxsystems.com/enterprise_architect_user_guide/14.0/model_publishing/define_a_time_series_chart.html


Towards a Model-Based DevOps for Cyber-Physical Systems 9

design models (possibly through additional predictive models) would allow to
reason about the next versions of a system’s design [7]. Runtime models are
indeed already very helpful here, but currently not all runtime models are in
line with the design models. For instance, assume the transform of the runtime
models back into traces which can be replayed by simulators for animation,
exploration, etc., on the design models.

For the CPS demonstrator, we need the possibility to play in the runtime
traces from the physical system, e.g., to reproduce errors which occurred during
operation, in the virtual representation (both, physical and logical view)). This
may require dedicated transformations of runtime logs of the system to the de-
sign model level. These data transformations may be systematically engineered
as coupled transformations with respect to the design time model transforma-
tions employed to reach the code level.

C7: Languages for Ops-to-Dev pipelines: Dedicated languages are needed
to support the modeling of Ops-to-Dev pipelines. For instance, such languages
are required to provide provenance for the extracted runtime models and linked
design models, for the specification of indicators, e.g., metrics, KPIs, of interest,
as well as the required data exchange between different monitoring, analysis, and
design tools.

For the CPS demonstrator, we need dedicated languages to describe prop-
erties such as state realizations, request/response times, precision of certain ac-
tions, etc. This further requires to have a hybrid query language which is on the
one hand powerful on very large data, e.g., time series recorded on the system
level and on the other hand is able to produce at the same time model structures
to populate runtime models and to compute derived properties which may be
attached to the design models, e.g., for a given command for the gripper to move
to a particular position, the average realized position may be annotated to the
action in the state machine.

4.3 Synopsis

To sum up, the road ahead summarized in Fig. 4 we see as follows. In particular,
in stage 1, the challenges C1, C2, C4, and C5 can be considered as ground work
which is required to lift MDE to the next level for both phases, design and op-
eration. As soon as these challenges are tackled, a rigorous automation support
is required to build and enact DevOps pipeline efficiently. Thus, challenges C3
and C7 have to be tackled in stage 2. Finally, as soon as the foundations are
achieved and an appropriate level of automation support is reached, the bene-
fits of realizing a continuous engineering process by continuously improving the
design models based on runtime data (cf. challenge C6) may be realized in the
final stage.



10 Benoit Combemale and Manuel Wimmer

5 Looking Ahead

Looking ahead the vision presented in this paper, we present in this section
different perspectives that would leverage the implementation of the proposed
research roadmap.

Business concerns, as presented in the BizDevOps approach [5], require to
reason over the global system. Such an approach would benefit from the ap-
plication of the DevOps principles at the model level as models are closer to
the application domain and provide a comprehensive representation of the sys-
tem, including its environment and possible extra functional properties related
to business concerns. For this, an additional integration dimension opens up. In
particular, there is the need for aligning enterprise models and design models
which is provided by reference enterprise architecture frameworks. Finally, for
reporting back the performance of the system on the business level, runtime
monitoring of requirements as well as enterprise models seems beneficial.6

The smooth combination of the Dev-to-Ops and Ops-to-Dev continuums
would provide advanced feature to support live modeling [8]. Live modeling envi-
ronments would provide continuous and immediate feedback to modelers about
the impact of their changes on the execution behavior of a model eliminating
any delay between modelers’ actions and feedback on their effects. Therewith,
they should offer flexibly to explore the design space easing the development
of complex software-intensive systems, facilitating learning, and improve quality
and efficiency in the development process. In addition to applying operations at
the level of the digital twin or the system itself, this would enable the simulation
of the operations themselves to explore what if scenarios.

Finally, promoting DevOps principles at the model level enables to push
backward its use early in the development process. Hence, DevOps principles
would not only apply to the integration, deployment and delivery of the global
system, but can also apply at a finer grain for the different concerns addressed
during the development process, and across the various abstraction levels. These
two dimensions (separation of concerns and levels of abstraction) complement the
Dev-Ops dimension, and would possibly lead to powerful development process
where automation and continuous feedback is not only available at the level of
the global system, but also at the level of the different concerns and across the
various levels of abstraction.

Acknowledgments

This work has been partially supported and funded by the Austrian Federal
Ministry for Digital and Economic Affairs, the National Foundation for Research,
Technology and Development, by the FWF under the grant numbers P28519-
N31 and P30525-N31, and the Inria / Safran collaboration GLOSE.

6 As an example from industry see: https://www.softwareag.com/info/
innovation/enterprise_digital_twin/default.html

https://www.softwareag.com/info/innovation/enterprise_digital_twin/default.html
https://www.softwareag.com/info/innovation/enterprise_digital_twin/default.html


Towards a Model-Based DevOps for Cyber-Physical Systems 11

References

1. Aigner, W., Miksch, S., Schumann, H., Tominski, C.: Visualization of Time-
Oriented Data. Human-Computer Interaction Series, Springer (2011)

2. Broy, M., Schmidt, A.: Challenges in engineering cyber-physical systems. Computer
47(2), 70–72 (2014)

3. Estefan, J.: Survey of model-based systems engineering (mbse) methodologies. In-
cose MBSE Focus Group pp. 1–47 (2007)

4. García, J., Cabot, J.: Stepwise adoption of continuous delivery in model-driven
engineering. In: Proceedings of DEVOPS (2018)

5. Gruhn, V., Schäfer, C.: BizDevOps: because DevOps is not the end of the story. In:
Proceedings of the International Conference on Intelligent Software Methodologies,
Tools, and Techniques. pp. 388–398. Springer (2015)

6. Lee, E.A.: Cyber Physical Systems: Design Challenges. In: Proceedings of the 11th
IEEE International Symposium on Object-Oriented Real-Time Distributed Com-
puting (ISORC). pp. 363–369 (2008)

7. Mazak, A., Wimmer, M.: Towards liquid models: An evolutionary modeling ap-
proach. In: Proceedings of the 18th IEEE Conference on Business Informatics
(CBI). pp. 104–112 (2016). https://doi.org/10.1109/CBI.2016.20, https://doi.
org/10.1109/CBI.2016.20

8. Tendeloo, Y.V., Mierlo, S.V., Vangheluwe, H.: A multi-paradigm modelling
approach to live modelling. Software and Systems Modeling 18(5), 2821–
2842 (2019). https://doi.org/10.1007/s10270-018-0700-7, https://doi.org/
10.1007/s10270-018-0700-7

9. Vangheluwe, H., Amaral, V., Giese, H., Broenink, J., Schätz, B., Norta, A., Car-
reira, P., Lukovic, I., Mayerhofer, T., Wimmer, M., Vallecillo, A.: MPM4CPS:
Multi-Paradigm Modelling for Cyber-Physical Systems. In: Proceedings of the
Project Showcase @ STAF 2015. pp. 1–10 (2016)

10. Weghofer, S.: Moola - a Groovy-based model operation orchestration language.
Master’s thesis, TU Wien (2017)

11. Whittle, J., Hutchinson, J., Rouncefield, M.: The state of practice in model-driven
engineering. Software, IEEE 31(3), 79–85 (2014)

12. Wolny, S., Mazak, A., Wimmer, M., Konlechner, R., Kappel, G.: Model-driven
time-series analytics. Enterprise Modelling and Information Systems Architectures
13(Special), 252–261 (2018). https://doi.org/10.18417/emisa.si.hcm.19, https:
//doi.org/10.18417/emisa.si.hcm.19

https://doi.org/10.1109/CBI.2016.20
https://doi.org/10.1109/CBI.2016.20
https://doi.org/10.1109/CBI.2016.20
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.1007/s10270-018-0700-7
https://doi.org/10.18417/emisa.si.hcm.19
https://doi.org/10.18417/emisa.si.hcm.19
https://doi.org/10.18417/emisa.si.hcm.19

	Towards a Model-Based DevOps for Cyber-Physical Systems

