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Abstract—In the context of Model-driven Development (MDD)
models can be executed by interpretation or by the translation
of models into existing programming languages, often by code
generation. This work presents Live-UMLRT, a tool that supports
live modeling of UML-RT models when they are executed by
code generation. Live-UMLRT is entirely independent of any
live programming support offered by the target language. This
independence is achieved with the help of a model transformation
which equips the model with support for, e.g., debugging and
state transfer both of which are required for live modeling.
A subsequent code generation then produces a self-reflective
program that allows changes to the model elements at runtime
(through synchronization of design and runtime models). We have
evaluated Live-UMLRT on several use cases. The evaluation shows
that (1) code generation, transformation, and state transfer can be
carried out with reasonable performance, and (2) our approach
can apply model changes to the running execution faster than
the standard approach that depends on the live programming
support of the target language.
A demonstration video: https://youtu.be/6GrR-Y9je7Y

Index Terms—MDD, Live Modeling, Model Execution, Code
Generation

I. INTRODUCTION

Thanks to existing MDD tools many facilities are available
to simplify software development using models specifically
in the domain of Real-time Embedded Systems (RTE). One
of the main facilities is the execution of models, which is
supported either by interpretation (sometimes also referred to
as simulation) or by the translation of models into existing pro-
gramming languages, often by code generation (translational
execution) [1].

Live programming [2] aims to free developers from the
“edit-compile-run” cycle, and allows them to change programs
at runtime and get immediate feedback on the change. Often,
a form of live programming is supported by several existing
programming languages and Integrated Development Envi-
ronments (IDEs) (e.g., [3]), and its benefits and utility are
discussed in several studies (e.g., [4], [5]). Inspired by this line
of work, some efforts [6]–[8] have recently been made towards
live modeling, i.e., the support for changes to the models while
they are being executed. However, this work has focused only
on model interpretation, and no work supports live modeling
when the models are executed by code generation into general
programming languages (GPL).

As suggested by [8], a possible solution for supporting
live modeling in the context of translational execution is

implementing the live modeling features on top of the target
language of the source code being generated. This approach
appears straight-forward, but has several problems including:
(1) Edit latency. The typical sequence of steps for reflecting
changes to a model to its running execution consists of:
(a) incremental code generation, (b) compile & built, and
(c) applying the update to the execution. Even for a small
model, these three steps together typically take more than
half a second. Any delay of more than 500ms in this context
is considered harmful to user experience, and can decrease
developer productivity [9], [10]. Increasing model size is
likely to increase the delay and exacerbate the problem. (2)
Dependency on the target language of the generated code.
Different programming languages provide different levels of
support for live programming. So, the support for live model-
ing may be limited by the capabilities of the target language.

This work presents Live-UMLRT, a tool that supports live
modeling of UML-RT (a language for the modeling of soft
real-time systems [11]) when they are executed by code
generation. Live-UMLRT is entirely independent of any live
programming support offered by the target language. This
independence is achieved with the help of model transforma-
tion [12] and code generation techniques. The implementation
of Live-UMLRT consists of two phases: (1) Generation of a
Self-reflective Program which is realized through: (a) auto-
matic instrumentation and refinement of models using model
transformation techniques to allow for the saving and restoring
of previous execution state, which is necessary to support re-
execution and the transfer of program state, (b) generation of
reflective target code that allows not only introspection of the
program execution at runtime, but also changes to the model
elements (through a synchronization of design and runtime
models), and (c) creation of a debugger plugin that hooks into
the execution of the model, and uses the self-reflective features
of the generated code to provide live modeling services.
(2) Live modeling using the self-reflective program which
is realized via the direct interaction with the self-reflective
program. This decreases the edit latency significantly since
there is no need for code generation, compile & build, and
hot-swapping for each edit. Also, model debugging services
provide an infrastructure for live feedback and safe state
transfer.

Live-UMLRT provides a full set of services for live model-
ing of UML-RT state machines, such as an update mechanism



that prevents inconsistent execution states, adding/removing
states and transitions, and adding/removing action code. We
have evaluated the prototype on several use cases. The ex-
perimental evaluation shows that (1) code generation and
refinement can be carried out with reasonable performance,
and (2) our approach can apply model changes to the running
execution much faster than the standard approach that depends
on the live programming support of the target language (i.e.,
minimize edit latency).

II. BACKGROUND

A. UML-RT

UML for Real-Time (UML-RT) [11], [13] is a modeling
language for designing Real-Time Embedded (RTE) systems
with soft real-time constraints. It has been the basis of a lot
of academic work, industrial projects, and successful tools
(e.g., IBM RSA-RTE, HCL RTist, Eclipse eTrice, and Papyrus-
RT [14]). In UML-RT, a system is designed as a set of
interacting capsules. A capsule is an active object which has
attributes, operations, ports, and a behaviour modelled by
means of a hierarchical state machine [11]. A protocol defines
the different incoming and outgoing messages a capsule can
receive or send through its ports. A port is the sole interface
for the communication between the capsules which guarantees
high encapsulation. Ports of two capsules can be connected
through connectors only if they are typed with the same
protocol.

A UML-RT State Machine (USM) consists of several states
connected with transitions. States can be of three kinds: basic
states, composite states (containing sub-states), and pseudo-
states (e.g., initial pseudo-state, choice point). A basic or
composite state can have entry and exit actions that are
executed when the state is entered or left, respectively. A
transition connects a source state to a target state. It may
contain a triggering event, a guard, and an effect. A transition
is taken when the triggering event is fired and the guard
evaluates to true. When it is taken, the code representing the
transition action is executed.

B. A Running Example

We use the control system of a simple traffic light as a run-
ning example. The top-level structure of the system is shown
in Figure 1, which consists of three capsules: UserConsole
(UC), Controller (CTR), and StopLightDriver (SLD). The CTR
is connected to UC and SLD using two ports, which are typed
by interfaces ControlP and StopLightP accordingly. The UC
component collects user input, which it passes on to the CTR
component, the component controlling the light. Using the
corresponding messages, the CTR component sends the control
actions, to the SLD component which transfers the messages
through a hardware port to the traffic light. The behaviour of
CTR is shown in part 1 of the Fig. 4, which is intentionally
left incomplete to demonstrate features of Live-UMLRT.

Controller StopLight
DriverUserConsole
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yellow()
blink

ControlP: Protocol
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Fig. 1: Structure model of a simplified traffic light in UML-RT
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Fig. 2: An overview of our conceptual proposed framework.

III. APPROACH

A. An Overview

As discussed in Sec. I, the use of services offered in the
context of live programming to implement live modeling im-
poses several challenges and restrictions. To overcome these,
we propose a conceptual framework for live modeling in
the context of model execution by code generation which is
independent of live programming services. An overview of
the framework is shown in Fig. 2. It consists of two phases:
Generation of a self-reflective program and Live modeling
using the self-reflective program. First, code generation and
model transformation techniques are used to automatically
create a program (self-reflective program) that embeds all
required services for live modeling and debugging along with
an interface for using them. Second, live modeling services
are directly provided via interaction with the self-reflective
program. In the following, we discuss the details of each phase
in the context of UML-RT.

B. Instrumentation of UML-RT Models

Our approach adapts and extends the model instrumentation
approach introduced in MDebugger [15], [16]. We use the vari-
able view and change services from MDebugger and extend
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Fig. 3: State and transitions maps of the USM in part 1 of
Figure 4.

them with a) support for the generation of execution traces
required for state transfer and b) a live update mechanism that
respects the execution semantics of the UML-RT model and
prevents inconsistency.

C. Generation of the Self-reflective Program

The syntax for behavioural specification in UML-RT is
concise and consists mainly of states, transitions, variables,
and actions. In order to embed these elements in the generated
code while still allowing for their modification at runtime, a
runtime model is used. The most important part of the runtime
model is a state map which is created per USM. A state map of
an USM is a map from its states to references to trigger maps
where a trigger map is a map from a trigger to a non-empty
set of transitions. A trigger map of a state records the outgoing
transitions from the state along with their trigger. A null trigger
or a reference is used when a transition has no trigger, or a
state has no outgoing transition. Figure 3 shows how the USM
in part 1 of Figure 4 is translated to a state map and trigger
maps referred to from the state map. At runtime, a state s is
represented as references to its entry and exit actions (e.g., a
function pointer in C++), the parent of s, and the childen of s
(if any), as shown on the left of Figure 3. Similarly, for each
transition references to its source and target states, guard and
action are kept. The interested reader can refer to [17] and
the source code of the implementation which has been made
publicly available.

D. Supporting Live Modeling for UML-RT Using the Self-
reflective Program

The live update services are defined based on the runtime
model which is populated at the beginning of the execution by
the self-reflective program. Any change in the design model is
translated to a debugging command and sent to the debugger
plugin which, in turn, applies it to the runtime model. The
full range of edit operations on UML-RT models including
adding/removing/updating states, transitions, actions, triggers,
and variables (except remove) is provided. Most of the services
are straight-forward to provide simply by adding, modifying,
or removing entries in the runtime model. Interested readers
can refer to [17] for a more detailed description.

IV. LIVE-UMLRT FEATURES

In the following, we discuss the features of Live-UMLRT
from the user point of view. When it is possible, the use of
features is explained using the running example.
Setup and run: The Live-UMLRT is integrated into Papyrus-
RT as an Eclipse plugin and can be downloaded and installed
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Fig. 4: User interface of Live-UMLRT

from the Live-UMLRT repository [18]. After installation, it can
be used to edit UML-RT models at runtime simply by defining
a run configuration (i.e., Eclipse run configuration) inside
Papyrus-RT. When a model is executed using the defined
configuration, first the model instrumentation, code genera-
tion, and build are executed automatically in the background
without distracting end user, and a connection with debugger
plugin is established. Upon a successful connection with the
debugger plugin, a UI is loaded as shown in Figure 4. The UI is
split in two parts, a USM view and a DBG console. In the USM
view, the user can view and edit the USM of the capsules. In
the DBG console the user can interactively issue commands to
investigate and change the model at runtime. Basic debugging
commands (e.g., view and change variables) are available and
have been ported from MDebugger, our previous work on
model-level debugging of UML-RT models [15], [16]. Next,
we discuss the steps for live modeling along with several
features of Live-UMLRT.
Starting live update session and applying changes: To start
live modeling, a live update session must be started that moves
the execution to a state in which the model execution can be
changed consistently. A live update session can be started via
two methods: 1) Interrupt the execution by pressing the ‘b’
key in the DBG console. This will stop the execution (similar
to a debugging breakpoint) and allow users to apply changes
into the model execution. This scenario is similar to the way
that popular IDsE such as Eclipse support live programming
work. 2) Live-UMLRT starts a live update session when the
execution is stuck because of a missing specification in the
model. The detection mechanism is ported from our previous
work on partial model execution [19].
Applying changes to the model execution: During the live
update session the user has two ways to update the model
execution: (1) Changing the design model: the user can
use USM view to update the model and save. During the save
Live-UMLRT serializes the last change as update commands
and sends them to the debugger plugin. As discussed, the
debugger plugin applies changes by updating the runtime
model. (2) Changing the runtime model: the user can issue



Listing 1: Supported Edit Operations
Add state: add state <name>
Delete/Update state: delete/update state <name>
Add transition: add transition (<name>)? <from>-><to

> (when <signal> on <port>)?
Delete transition: delete transition (<name>)? <from

>-><to>
Update transition: update transition (<name>)? <from

>-><to> (when <signal> on <port>)?
Add action: record (action code)* save
Delete action: delete action (state|transition) (

entry|exit)?
Add/Update variable: <name>=<expressions>
Replay execution: replay <state name>

the supported commands via the DBG console that validates
and forwards the commands to the debugger plugin. With the
current implementation, the changes from the runtime model
are not propagated back to the design model. Thus, the changes
affect the execution until the end of the live update session.
Implementation of this part is left to future work.
Supported edit operations: Listing 1 shows the most impor-
tant features supported by Live-UMLRT. In addition to the UI
of Live-UMLRT, the features can be used via a TCP connection
with the debugger plugin. In the following, we briefly discuss
these features. (1) The add/delete/update commands are used
to add/delete/update states and transitions. (2) A variable can
be defined simply by setting an initial value to that. (3) To
define a new action code, a record command should be used
after which the UML-RT action code interpreter is activated.
It accepts and interprets the action code line by line. Upon
successful interpretation, the code can be saved to the runtime
model as well as the design model. (4) Command replay allows
the user to re-execute the previous execution steps to see the
effect of the new changes. E.g., let us assume that the user
completes the USM shown in part 1 by adding a transition
from state yellow to state red when the execution is stuck
in state yellow and unable to handle the received messages.
Without a replay mechanism, there is no way to see the effect
of the new change and the execution will be stuck in state
yellow forever. However, by issuing replay yellow, Live-
UMLRT steers the execution to state yellow again and injects
the last messages that received in state yellow. By that, the
execution can advance by processing the injected messages,
and the user can see the effect of the new changes. A detailed
description of the replay method can be found in [17].

V. EXPERIMENTAL EVALUATION

This section details experiments we conducted to assess
the performance and overhead of Live-UMLRT. For the experi-
ments, several use cases are used. As shown in Table I, models
have different complexities that range from eight states to more
than 620 states. Models are described in [15].
Experiment 1 (Performance of creation of a self-reflective
program). As discussed earlier, our approach for the cre-
ation of the self-reflective program consists of three steps:
instrumentation of models, code generation, and compile/built.
Creation of the self-reflective program is a core part of our

TABLE I: Model Complexity of Use-cases, Median of Code
Generation and Instrumenting Time

Model Model Complexity Code Gen. (ms) Inst. (ms)

C S T Def. Ours
Parcel Router 8 14 25 1140 1098 1277
Rover 6 16 21 1109 1187 1662
FailOver 7 31 43 1197 1274 2003
Debuggable
FailOver

8 350 620 43623 46692 6200

C: Component, S: State, T: Transition, Def.: Default
Inst.: Instrumentation Time, Code Gen.: Code Generation Time

TABLE II: Performance of Edit Operation using Our Approach
and Live Program

Operation One Edit (ms) 10 Edits, 3 Comps. (ms)
Ours Prog. Ratio Ours Prog. Ratio

Add State 1.3 608 467 10.6 1192 112
Rem./update State 1.5 608 405 11.5 1192 103
Add Trans. 1.5 608 405 12.9 1192 92
Rem./update Trans. 1.8 608 377 16.1 1192 74
Add Var 1.3 608 467 9.9 1192 120
Add Action 2.1 608 289 18.1 1192 66
Rem./update Action 1.5 608 405 12.3 1192 96
Average 1.6 608 405 13 1192 92
Ours: Our approach, Prog.: Live Programming
Trans.: Transition, Ratio.: Prog./Ours, Rem.: Remove

approach. Thus we performed an experiment to measure the
performance of the instrumentation of the model and code
generation steps to evaluate the applicability of our approach.
To do that, we ran our code generation, the model instrumen-
tation, and the default code generation (i.e., the existing code
generation of Papyrus-RT) 20 times against the use cases listed
in Table I and in each case recorded the time required. Results:
The Code generation Time and Instrumentation Time columns of
Table I show the median of time required for instrumentation
and code generation by our approach and the default code
generation. For the largest model (Debuggable Failover), the
median time of the instrumentation and code generation are
less than 47 and 7 seconds, respectively. Code generation with
the default code generator took 44 second which is slightly
faster (3 seconds) than our approach. It is, therefore, safe to
conclude that the code generation and instrumentation times
of our approach is reasonable. Note that code generation and
instrumentation are required only once for program generation
and the required time appears negligible w.r.t. the benefits
provided by the self-reflective program.
Experiment 2 (Performance of edit operation (Edit delay)).
As discussed earlier, our approach provides live modeling
via interaction with the self-reflective program and does not
require code generation, compile/built, or hot-swapping for
each edit. To show the efficiency of our approach, we measure
the performance of edit operations using our approach and
compare it with the approach relying on live programming. To
do that, first, we executed the code generated by our approach,
for the Debuggable Failover model and tried each of the edit
operations 20 times using a random element and recorded the
required times for each operation on a single element. Then we
tried each edit operation on ten elements distributed over three
different components and recorded the time needed for each



operation on these ten elements. Second, we repeated the same
experiments on the code generated by an implementation of
live modeling that relies on live programming. Also, since our
approach interprets the actions as soon as they are modified
during the live modeling, we executed action code with 100
lines of code in interpretation and compiled mode and recorded
the CPU time in each case.
Results: Table II shows the median of the time required for
edit operations using our approach and the approach relying
on live programming. For a single operation on a single
element and ten elements in three components, on average
our approach is 400% and 92%, respectively, faster than when
live programming services are used. As discussed, the main
reason for this difference is the need for regeneration and
recompilation after each change. Also, our experiment of the
execution of actions in interpreted and compiled mode shows
that, not surprisingly, the interpretation of actions is 70%
slower than the execution of their compiled versions. Note that
an action is only interpreted when it is edited during the live
modeling. Also, our interpreter is a prototype, not built with
performance optimization in mind, whereas C++ compilers are
highly sophisticated and optimized.
In conclusion, our approach significantly improves the per-
formance of edit operations (any change is applied in less
than 2ms) which is considered acceptable in the context of
live updates (e.g., according to [9], [10], users start noticing
latency at 100ms and become distracted at 500ms). However,
the execution of actions after the first edit deteriorated by 70%.
Experiment 3 (Memory and performance overhead of
the generated code). Our approach generates the code that
explicitly embeds the AST of the model. For that, we change
the code generation which may affect the performance and
memory usage of the created program. Thus, to show the per-
formance and memory overhead of our approach, we executed
the generated code of the Failover model in the context of
our approach. During the execution we configured the system
to process 10,000 client requests and recorded the CPU time
and memory usage for processing the requests. Second, we
repeated the same experiment using the code generated from
the Failover model by the default code generation.
Results: The code generated from the Failover model using
our approach took 514ms of CPU time to process 10,000
requests. This is only 1% slower than the time required by the
code generated with the default code generator (504ms). Thus
it is safe to conclude that the change in the generated code to
support live modelling causes negligible performance overhead
w.r.t. to the provided services. Also, the peak memory usage
of code generated from the Failover model using our approach
is 2083 KB to process 10,000 requests. This is 25% more than
the memory usage by the code generated with the default code
generator (1664 KB). We can argue this memory overhead is
acceptable for many applications.

VI. CONCLUSION

In this paper, we have illustrated and validated Live-
UMLRT, a tool that supports live modeling of UML-RT

without relying on live programming services offered by the
target language of the generated code. Our evaluation shows
that Live-UMLRT (1) reduces the edit latency significantly,
(2) is applicable with reasonable performance, (3) introduces
negligible performance overhead and, (4) has an acceptable
memory overhead for many application domains.
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