F. Niu, B. Recht, C. Re, and S. J. Wright, Hogwild!: A lock-free approach to parallelizing stochastic gradient descent, Proc. of the 24th Intl Conference on Neural Information Processing Systems, ser. NIPS'11, pp.693-701, 2011.

A. Kadav and E. Kruus, ASAP: asynchronous approximate data-parallel computation, CoRR, 2016.

J. E. Gonzalez, P. Bailis, M. I. Jordan, M. J. Franklin, J. M. Hellerstein et al., Asynchronous complex analytics in a distributed dataflow architecture, CoRR, 2015.

J. C. Duchi, A. Agarwal, and M. J. Wainwright, Dual averaging for distributed optimization: Convergence analysis and network scaling, IEEE Trans. on Automatic Control, vol.57, issue.3, pp.592-606, 2012.

A. Nedi?, A. Olshevsky, and M. G. Rabbat, Network topology and communication-computation tradeoffs in decentralized optimization, Proc. of the IEEE, vol.106, pp.953-976, 2018.

K. I. Tsianos, The role of the network in distributed optimization algorithms, 2013.

K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, Optimal algorithms for smooth and strongly convex distributed optimization in networks, Proc. of the 34th ICML, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01478317

G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical Learning: With Applications in R, 2014.

S. Bubeck, Convex optimization: Algorithms and complexity, Foundations and Trends in Machine Learning, vol.8, 2015.

M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed et al., Scaling distributed machine learning with the parameter server, Proc. of the 11th USENIX OSDI Conf, 2014.

G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica, Effective straggler mitigation: Attack of the clones, Proc. of the 10th USENIX Conf. NSDI, 2013.

C. Karakus, Y. Sun, S. Diggavi, and W. Yin, Straggler mitigation in distributed optimization through data encoding, Proc. of NIPS, pp.5434-5442, 2017.

S. Li, M. Mousavi-kalan, A. S. Avestimehr, and M. Soltanolkotabi, Near-Optimal Straggler Mitigation for Distributed Gradient Methods, Proc. of the 7th Intl. Workshop ParLearning, 2018.

A. Nedic and A. E. Ozdaglar, Distributed subgradient methods for multi-agent optimization, IEEE Trans. Automat. Contr, vol.54, issue.1, pp.48-61, 2009.

Y. Dallery, Z. Liu, and D. Towsley, Equivalence, reversibility, symmetry and concavity properties in fork-join queuing networks with blocking, J. ACM, vol.41, issue.5, pp.903-942, 1994.

Y. Zeng, A. Chaintreau, D. Towsley, and C. H. Xia, Throughput scalability analysis of fork-join queueing networks, Operations Research, 2018.

B. D. Mckay, The expected eigenvalue distribution of a large regular graph, Linear Algebra and its Applications, vol.40, pp.203-216, 1981.

, UCI Machine Learning Repository

F. Graf, H. Kriegel, M. Schubert, S. Pölsterl, and A. Cavallaro, 2D Image Registration in CT Images Using Radial Image Descriptors, Proc. of MICCAI, pp.607-614, 2011.

P. Baldi, P. Sadowski, and D. O. Whiteson, Searching for exotic particles in high-energy physics with deep learning, Nature communications, vol.5, p.4308, 2014.

B. D. Mckay and N. C. Wormald, Uniform generation of random regular graphs of moderate degree, J. Algorithms, vol.11, issue.1, pp.52-67, 1990.

T. Doan, C. Beck, and R. Srikant, Impact of communication delays on the convergence rate of distributed optimization algorithms, Proc. of ACM SIGMETRICS, 2018.