M. Chrobak, G. J. Woeginger, K. Makino, and H. Xu, Caching is hard-even in the fault model, Algorithmica, vol.63, pp.781-794, 2012.

E. Ba?tug, M. Bennis, E. Zeydan, M. A. Kader, I. A. Karatepe et al., Big data meets telcos: A proactive caching perspective, Journal of Communications and Networks, vol.17, pp.549-557, 2015.

Y. Zeng and X. Guo, Long short term memory based hardware prefetcher: A case study, Proceedings of the International Symposium on Memory Systems, MEMSYS '17, pp.305-311, 2017.

M. Hashemi, K. Swersky, J. A. Smith, G. Ayers, H. Litz et al., Learning memory access patterns, Proc. of the International Conference on Machine Learning (ICML), 2018.

K. C. Tsai, L. L. Wang, and Z. Han, Caching for mobile social networks with deep learning: Twitter analysis for 2016 u.s. election, IEEE Transactions on Network Science and Engineering, pp.1-1, 2018.

A. Narayanan, S. Verma, E. Ramadan, P. Babaie, and Z. Zhang, Deepcache: A deep learning based framework for content caching, Proceedings of the 2018 Workshop on Network Meets AI & ML, NetAI'18, pp.48-53, 2018.

N. Zhang, K. Zheng, and M. Tao, Using grouped linear prediction and accelerated reinforcement learning for online content caching, 2018 IEEE International Conference on Communications Workshops (ICC Workshops), pp.1-6, 2018.

H. Pang, J. Liu, X. Fan, and L. Sun, Toward smart and cooperative edge caching for 5g networks: A deep learning based approach, Proc. of IEEE/ACM International Symposium on Quality of Service (IWQoS), 2018.

C. Zhong, M. C. Gursoy, and S. Velipasalar, A deep reinforcement learning-based framework for content caching, Proc. of the 52nd Annual Conference on Information Sciences and Systems (CISS), 2018.

E. Rezaei, H. E. Manoochehri, and B. H. Khalaj, Multi-agent learning for cooperative large-scale caching networks, 2018.

P. Henderson, R. Islam, P. Bachman, J. Pineau, D. Precup et al., Deep reinforcement learning that matters, 2017.

S. Li, J. Xu, M. Van-der-schaar, and W. Li, Popularity-driven content caching, Proc. of the 35th Annual IEEE International Conference on Computer Communications (INFOCOM), 2016.

M. M. Lau and K. H. Lim, Investigation of activation functions in deep belief network, Proc. of the 2nd International Conference on Control and Robotics Engineering, 2017.

R. M. French, Catastrophic forgetting in connectionist networks, Trends in Cognitive Sciences, vol.3, issue.4, pp.128-135, 1999.

J. Kirkpatricka and R. Pascanua, Overcoming catastrophic forgetting in neural networks, 2017.

G. Neglia, D. Carra, M. Feng, V. Janardhan, P. Michiardi et al., Access-time-aware cache algorithms, ACM Trans. Model. Perform. Eval. Comput. Syst, vol.2, pp.1-21, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01402425

N. Megiddo and D. S. Modha, Outperforming lru with an adaptive replacement cache algorithm, Computer, vol.37, issue.4, pp.58-65, 2004.

D. Lee, J. Choi, J. H. Kim, S. H. Noh, S. L. Min et al., Lrfu: A spectrum of policies that subsumes the least recently used and least frequently used policies, IEEE Trans. Comput, vol.50, pp.1352-1361, 2001.