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Chapter 15

A net neutrality perspective
for content down-streaming
over the internet

Alexandre Reiffers-Masson, Yezekael Hayel, Eitan
Altman and Tania Jimenez

15.1 Introduction

The Network Neutrality issue has been at the center of debate worldwide lately.
Some countries have established laws so that principles of network neutrality
are respected. Among the questions that have been discussed in these debates
there is whether to allow agreements between service and content providers,
i.e. to allow some preferential treatment by an operator to traffic from some
providers (identity-based discrimination).

Network neutrality is an approach of providing network access without unfair
discrimination between applications, nor between content, nor between the

261



262 CHAPTER 15. NETWORK NEUTRALITY

specific source of the traffic. Hahn and Wallsten [127] wrote that net neutrality
“usually means that broadband service providers charge consumers only once
for Internet access, do not favor one content provider over another, and do not
charge content providers for sending information over broadband lines to end
users.” there are two applications or services or providers that require the same
network resources, and one is offered a better quality of service (delays, speed,
etc.) or is cheaper to access, then there is discrimination. Our study in this
paper is related to the latter point but taking into account also the quality
of service for the customers. Historically, the neutrality of the access to the
Internet has characterized the first steps of the development of the Internet and
much of the industrial activity that uses the Internet. Alternative non-neutral
approaches have been recently pushed forward by Internet Service Providers
(ISPs), content providers (CPs) and by equipment providers (EPs). Deviating
from its original neutral character may have far-reaching consequences on the
whole e-economy and on the society in which the Internet has become so central.
This has pushed many countries to take regulation actions to determinate the
future characteristics of the Internet and some of which have been followed by
legislation on the matter. A key step in the policy making has been the launching
of public consultations in various countries (USA, UK, France and others) as
well as at the EU level. All society sectors have been invited to answer these
consultations. The global objectives in these consultations are related to this
net neutrality debate and have the following two major goals:

• Contribute to the network neutrality debate in proposing a new economic
model to compare the expected outcome of non-neutral approaches with
neutral ones in terms of the quality of service offered.

• Study competition aspects related to network neutrality and particularly,
the exclusive contracts between CPs with ISPs.

Nowadays, the users have access to several CPs that provide the same content.
For example, CPs like Netflix R©, Hulu R©, M-GO, etc. provide video content and
CPs like Deezer R©, iTunes R© and Spotify R© provide music content. Also, the CPs
have different pricing policies such as flat-rate or pay-as-you-go, or options like
buy a song or a full Long Play (LP). Our goal in this paper is to analyze the
impact of non-neutral pricing policies introduced through agreements betweens
the ISPs and the CPs on the network economic system. In fact, the decision
about from which CP the users request contents is based on two main features:
price and quality.
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In the Internet, the access price and the content price are set by the ISPs and
CPs, respectively, and access prices are set independently of the content price.
In our framework, CPs competitively set content price to maximize their profit.
Recently, CPs and ISPs introduced a new pricing policy in order to play a more
important role in this techno-economical market. The pricing policy is based
on the exclusive contracts between the ISPs and the CPs. In such contracts,
the subscribers get exclusive preferential access to the content of a CP that is
in agreement with the ISP which provides them last mile connectivity. Such
pricing policies induces a non-neutral Internet, as the end users have different
access charges for the same content from the same CP; i.e., such pricing schemes
lead to identity based discrimination. A particular example of such non-neutral
pricing behavior happened recently in Europe. Orange R© is a French ISP, and
Deezer R© is a French music streaming service provider (a CP). According to
the Financial Times1: “As part of the deal with Deezer R©, Orange R© will make
available a special mobile-only tariff for pay-monthly customers, to avoid the
$9.99 standalone cost of Deezers top package.” Therefore, customers with an
Internet subscription with Orange will have preferential offer for listening music
on the website Deezer R©. This type of non-neutral collusion between a CP and
an ISP arises in streaming services offered over the Internet, which accounts for
half of the global internet traffic (see Figure 2). Another example, in the USA,
is related to Apps/softwares where several CPs (if we see an App as a content)
are also competing over the Internet. In fact, Google R© has an agreement with
Verizon R©, a wireless ISP. This partnership is expressed in the form of three free
user accounts for Google Apps2 to the Verizon R© customers.

Apart from the revenues from selling content, the CPs earn revenue also
through advertisements, and the amount of advertisement revenue depends
on the level of activity or the demand for their contents. The latter case is
related to the quality of the content provided by a CP, which is assumed to be
related to the number of subscribers asking/downloading contents. We consider
this interaction between subscribers as a routing game framework. Therefore,
each Internet user decides the way to split their demand among several content
providers. Evaluating the quality of service (or experience) in communication
networks is not an easy task. Many papers have focused on this objective, and
evaluation of the quality perceived by customers in a network neutrality model is
non-trivial. Our approach considers a routing game framework for modeling the

1Tim Bradshaw, Deezer takes on Spotify with Orange deal, ft.com, September 7, 2011
2Google Apps for Verizon: Google Apps for Business now available for Verizon customers,

01/24/2011 posted by Monte Beck, Vice President of Small Business Marketing, Verizon.
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Figure 15.1: The large share of data flow to internet users from CP streaming
service like Netflix and YouTube [2].

interactions between the subscribers downstream flows. Routing games provide
a natural framework to model interactions among the users and characterize
the quality of service perceived by them at different CPs as a function of the
content price.

We model this complex interacting system within a two-sided market
framework as a multistage game model composed of a congestion game at the
lower level and a noncooperative pricing game at the upper level. It is natural to
expect that exclusive contracts between the CPs and the ISPs can have different
impacts on the equilibrium of the multistage game and therefore on the costs
and profits of the different players. We would like to analyze these aspects of
non-neutrality through a rigorous mathematical framework. We would also like
to analyze the collusion decision for a CP (to collude or to stay independent)
and also take into account the revenue generated by advertisements.

In this paper, we study the impact of a particular feature of the non-
neutrality debate that arises in the relations between service and content
providers, i.e. the possibility that an ISP or CP give preference, in terms of
access price or content price, to certain subscribers. In some industries, laws
against such kind of vertical monopolies are enforced. In some cases, companies
are obliged to split their activity into separate specialized companies; this was
the case of railways companies in Europe which were obliged to separate their
rail infrastructure and the service part of the activity which concerns public
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transportation by trains. In contrast, in the telecom market, the same company
may propose both the networking and content services, or similarly an ISP and
a CP can make a collusion. This paper studies the implication of such economic
relationships between providers on the Internet ecosystem. Specifically, we will
address the question: Is a Pricing agreement/collusion between an ISP and a
CP good for subscribers? We suggest here a novel point of view of a pricing
agreement/collusion: an issue actively discussed in the ongoing net neutrality
debate. Usually in the network neutrality debate the problem of agreement
or disagreement between ISP and CP is a vertical foreclosure (Degradation of
traffic) [74]. This type of problem has been observed in France between Free (a
French ISP) and Google3. In our framework, if a CP and an ISP have a pricing
agreement, then a subscriber of the ISP mentioned above does not have to pay
for the access to this CP’s content.

Our main contribution in this paper is to model and analyze the effect of
new pricing policies proposed by some of the ISPs and the CPs that enter into
exclusive contracts. We first consider ISPs as passive players that connect CPs
to end users in a two-sided market model, and study the behavior of CPs and the
end users in the new pricing regime using a multi-stage game framework. The
subscribers interact through their downstream traffic carrying their content.
Their behavior is influenced by the congestion that occurs at the CP-side in
the access link between CPs and ISPs. The CPs decisions are influenced by the
”price war” as most of them sell the same kind of contents (multimedia contents
as movies, LPs, popular TV shows, etc.), and also to attract more users as this
will increase their advertisements revenues. A non-neutral aspect of the access
to contents results from the exclusive contracts and therefore we are interested
to study the impact of such contracts between CPs and ISPs on the equilibrium
performances of the market.
The main contributions of this work are:

1. In the two-sided market framework, we consider a hierarchical game in
which the higher level is a normal form non-cooperative game between the
CPs (content price), and at the lower level, a non-cooperative (non-atomic)
routing game between the subscribers (user set demand for content).

2. In the hierarchical game, we first study the sub-game perfect equilibria
(SPE) of the routing game between subscribers. Depending on the pricing
policies of the CPs and the perceived congestions levels at each CPs, the
subscribers compete to minimize the overall delay (download time) and the

3“An ad-block shock France vs Google ”, The Economist, January 12, 2013
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total cost for the content. Results have been obtained and are described
in Section 4. We look for existence of a symmetric SPE by studying best-
response functions.

3. Based on the the SPE of users demands, we study a non-cooperative
game between the CPs and determine their content price at equilibrium.
In our multi-stage game framework, the CPs compete through their
content prices and aim to maximize their revenues from content and
advertisements.

4. Assuming that each CP is in collusion with an ISP (inducing a preferential
tariff for his content to some specific subscribers), we study the new
equilibrium of the multi-stage game. The analysis process is based on
backward induction: we first determine the SPE for the subscriber game,
and then the Nash equilibrium for the CPs game.

5. Finally, we study another decision step for the CPs– whether or not to
collude with an ISP. CPs decide first whether to collude with an ISP or
not, and then set the content price. Such a decision by a CP impacts other
CPs’ decisions to collude or not and also their content prices.

15.2 Related works

Several recent papers in the literature deal with game-theoretic models for
network neutrality analysis. The survey article [2] provides summary of various
issues discussed in the network neutrality debate. The authors describe the
models used to analyze various issues in the net neutrality debate and compare
the results. In the following section, we discuss the literature relevant to the
proposed research.

The two-sided model proposed in [94] investigates the effect of network
neutrality regulation in both monopoly and duopoly setting between ISPs.
The authors show that neutrality increases social welfare in the duopoly case.
However, investment decisions and congestion effects are not taken into account
into the model. Our two-sided market model is similar to [193] by considering
fixed number of CPs and ISPs. The authors compare the return on investment
under one-sided or two-sided pricing, and they show that this amount is
comparable. The congestion effect is not considered in this paper. Investment
mechanisms in a two-sided market has been proposed in [200]. The model
consists of two interconnected ISPs represented as profit maximizing firms that



15.2. RELATED WORKS 267

choose quality investment levels and then compete in prices for both CPs and
consumers. The authors consider a large number of CPs and consumers. The
revenue of the CPs come from advertising only. In our framework, we also
consider the revenue generated form content selling, which is important for
multimedia streaming CP. The game-theoretic model proposed is a 6-stage
game in which several competitions occur at each level between CPs, ISPs and
consumers.

The effect of investments on the quality of services (QoS) is studied in [200].
The authors consider a model where the interactions between CPs and also
between consumers come from their choice of ISP, that impacts also their quality
of service (QoS). The latter depends on the congestion at each ISP, at the CP
side, which is a function of the mass of consumers and CPs connected to it. The
investment decision of each ISP determines the QoS in a deterministic manner.
The ISP receives payment from both sides– CPs and consumers. The authors
consider two scenarios: neutral and non-neutral. They show that investments
are higher in the non-neutral regime because it is easier to extract revenue
through appropriate CP pricing. Interestingly, the congestion effect is taken
into account at the CP level. Specifically, the authors compute the value of the
content by dividing the quality level associated to each CP by the mass of CPs
that connect to the same platform in order to incorporate congestion effects:
more CPs in a platform generate more congestion, reducing value. Then, from
this point of view, this paper deals also with a congestion feature that impacts
the subscriber behavior as in our framework. But, the important difference from
our setting is about the interaction model between subscribers which is based
on a routing game.

Models from queuing theory have been used to analyze the effect of
investments in [59]. The congestion effect is taken into account as the average
sojourn time in an M/M/1 queue, and the investment decision of the ISP
affects directly the service rate of this queue. In [10], the authors study the
discrimination effect at the service level. Particularly, the authors look at the
effects of net neutrality regulation on the investment incentives of ISPs and
CPs. The QoS based on a congestion model is also expressed by an M/M/1
queue. Their results are ambiguous, but key effects are exposed. The difficulty
is that the average sojourn time in an M/M/1 queue is not linear and then
closed-form solutions are usually difficult to obtain. Another model, proposed
in [167], is based on a queueing congestion model. The model is related to
content analysis, and the authors show that strategic quality degradation and
non-neutral ISP reduces content variety. Routing game based model is used in
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[17] to study a non-cooperative game between subscribers. Subscribers play a
non atomic selfish routing game and CPs control both flows and prices, while in
our proposal CPs control only prices and subscribers determine the source of the
traffic they wish to download from. Another preliminary work [158] is related
to exploration of the effects of content-specific pricing, including multiple CPs
providing different types of content. But the competition between providers
is not considered. The authors have analyzed various theoretical aspect of
collusions in routing games [25] and in nonneutral networks [24] [?]. In [25],
the authors studied the effect of collusions in routing games and extended the
performance metric price of collusion [139] to evaluate the effect of collusion on
both the colluding and non-colluidng players.

15.3 Multistage game for two-sided market
framework

The general mathematical framework is a multistage game composed of several
non-cooperative games at each level. The task description provides technical
details on the type of solution concept that will be studied and how to get it.
We also describe the role of each player in the multi-stage game coupled with
their actions and utilities.

15.3.1 Model

We consider a general economic model of content distribution over the Internet
as a two-sided market with competition [29]. In fact, the ISPs provides a
platform connecting end-users or subscribers to the Internet Content Providers
(CPs). We assume that several CPs are able to distribute the same global
content over the different ISPs. If we think about music streaming, most of the
same artists are on the different CP like iTunes, Deezer, Spotify, etc. The same
remark applies to movies streaming CPs.

We consider a fixed number M of CPs. The streaming traffic is carried
through the network by high level ISPs which have direct links to all CP. In
practice, when a subscriber requests a specific content from a CP, this streaming
flow needs to traverse several different networks. This complex transit of traffic
between networks is governed by a variety of agreements between different tier
providers. We consider the local monopolistic ISP that provides the last mile
connection service to CPs. This type of model assumption is usually considered
in two-sided market models like [10] and [94].



15.3. MULTISTAGEGAME FOR TWO-SIDEDMARKET FRAMEWORK269

Finally, those ISPs are connected to subscribers (as a mass). We consider in
our system N different ISPs. Each subscriber is connected to a single ISP and
cannot access directly any CP. As each subscriber is connected to a unique ISP,
we make the abuse of identifying a subscriber with its ISP. Then we talk about
”subscriber n” instead of ”subscriber connected to ISP n”. We consider in our
study the download traffic; contents on the Internet transit mostly from servers
to clients (video-on-demand, movie broadcast, etc). The source of each content
flow is a CP and the corresponding destination is a subscriber.

Figure 15.2: Traffic flows in our two-sided market framework. Congestion occurs
at the CP-side level in the last-mile connection service to ISP.

Requests about contents are generated from each subscriber n (i.e. sub-
scriber connected to ISP n and reached all CP m. At each CP m, any request
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from a subscriber n induces a traffic rate (music or videos streaming traffic,
downloading, etc.) xmn > 0, which is therefore aggregated and sent to the sub-
scriber mass connected to ISP n. We assume that the total traffic flow from ISP
n to its subscriber is φn =

∑M
m=1 x

m
n . This total traffic called also total demand

φn, is an average value of the total amount of traffic downloading to the mass
of subscribers connected to ISP n. The subscriber decision about requesting
content from one CP to the other depends on the quality of service, which is
expressed here in terms of CP-side congestion. Indeed, on the subscriber side,
the ISP can dimension correctly the downstream (from ISP to subscribers) net-
work as the total traffic is fixed. But, at the CP side, the total upstream (from

CP to ISP) traffic is not fixed, it is equal to
∑N
n=1 x

m
n and depends on the

number of requests to this CP. Then, we model the CP-side congestion effect
coming from the interaction of the demand of all the subscribers to this CP as a
non-cooperative routing game. In fact, the congestion level in a link depends on
the total traffic trough this link. For example on Figure ??, we observed that
the link between CP M and ISP M is more congested compared to the access
links of other CPs. In fact, all subscribers connected to ISP N request content
to CP M and not any other CP. The traffic rate that goes trough this link is
important. Whereas the access link between CP 1 and ISP 1 is less congested
as its traffic is composed only from a small proportion of the subscriber 1 total
traffic φ1. Then, the first modeling technique that will be used in this work is
routing game which is related to algorithmic game theory [?] and Wardrop
equilibrium concept [285]. Indeed, we consider a noncooperative routing game
where the decision of subscriber connected to ISP n, is how to split his download
traffic φ from all the CP, i.e. the decision variables for subscriber connected to
ISP n is the vector xn = (x1

n, x
2
n, . . . , x

M
n ).

Subscriber costs: We denote by pm the charge, per unit of traffic, that a
subscriber has to pay in order to download traffic from CP m. Then, for a traffic
quantity xmn , the subscriber n has to pay xmn p

m to the CP m. We consider that
a subscriber prefers to download his content from the less crowded CP, due to
congestion cost effect at the CP link. This congestion cost depends on the total

download traffic generated at each CP m, that is
∑
n

xmn . Let Dm : R+ 7→ R+

be the congestion cost function at CP m (exactly the congestion is suffered on
the access link between CP m and its ISP) which we assume to be convex and
increasing. The congestion cost perceived by a subscriber n who downloads a

traffic rate xmn from CP m is equal to xmn · Dm(
∑
n

xmn ). Then, the total cost
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(content price + congestion cost) for a subscriber connected to ISP n is given
by:

Cn(xn, x−n, p) =
∑
m

xmn

[
Dm(

∑
n

xmn ) + pm

]
, (15.1)

where xn = {x1
n, . . . , x

M
n } is the decision vector for the subscriber connected

to ISP n, x−n is the decision vectors of all the other subscribers connected to
other ISPs and p = {p1, . . . , pM} is the content price vector of all the CP. This
latter price is expressed per unit rate. Each subscriber n will minimize his cost
function under his demand constraint:

min
xn

Cn(xn, x−n, p) such that

N∑
m=1

xmn = φn.

CP Profits: The revenue of CP m is defined by:

Π(x, pm, p−m) = pm
∑
n

xmn ,

where xmn is the traffic flow from CP m to ISP n, pm is the price charged by
CP m, p−m is the price vector of all the other CP. Each CP determines his
content price pm in order to maximize his profit, taking into account the traffic
flow (demand) requested by subscribers. Then, this problem can be solved by
considering a multistage game .

Multistage game: The players in our two-sided framework are the CPs and
the subscribers. The multistage game we study consists of the following stages:

1. Content prices decisions: All CP determine simultaneously their content
price pm.

2. Demand splitting decisions: All subscriber determine simultaneously their
downloading streaming rate xmn from each CP m.

We can see that for the moment the ISP plays the role of a platform between
the CPs and the subscribers, and that they are inactive in the economic market
studied. We plan to introduce active ISP as decision makers in the next step of
this proposal. We solve this multistage game by considering sub game perfect
Nash equilibrium and we use a backward induction technique. We assume
that the CPs update/change their prices at a slower timescale compared to the
decision request of subscribers. Then, the routing game between the subscribers
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is solved by considering the content prices as fixed. That is why we consider the
previous stages ordering. Moreover, the multistage game is closely related to an
Equilibrium Problem with Equilibrium Constraints (EPEC) [252] and can be
written as follows:

∀m ∈ {1, . . . ,M}, max
pm

pm
∑
n

xmn (p), (Leader)

such that

∀n ∈ {1, . . . , N}, xmn (p) ∈ arg min
xn

Cn(xn, x−n, p). (Follower)

Generally speaking, this type of multistage game is not trivial to study but
closed-form solutions can be obtained when the game is symmetric. We
thus assume that the decision variable of each CP m is in an interval, i.e.,
pm ∈ [0, pmax]. The system is totally symmetric, in the sense that the quantity
of traffic φ is the same for all subscribers n, and congestion cost functions do not
depend on m. In all our mathematical analysis we consider a linear congestion
cost function D(x) = ax as in [17]. Based on this symmetry property of the
game, we can use results from [3] and assume the existence of a symmetric
equilibrium for our multistage game. First, this symmetric assumption can be
justified by the fact that in a large network, we can approximate the behavior of
many subscribers with only one subscriber which has the average characteristics
of all the subscribers. Secondly, this assumption allows us to obtain explicit
formulations of the equilibrium of our multistage game with a routing game as
constraint.

15.3.2 Neutral scenario

The neutral scenario denotes the case in which each CP decides independently its
content price. In other words, ISPs do not influence the content price decision
of the CP. Therefore, there is no price discrimination between subscribers in
order for them to access to the content of different CPs. In this case, we have
the following preliminary result.

Theorem 31. For all CP m, there exists a unique symmetric equilibrium
(xmn , p

m) = (x, p) of our multistage game, given by ∀(n,m) ∈ {1, . . . , N} ×
{1, . . . ,M}:

xmn =
φ

M
and p = (N − 1)φa.
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We observe that due to the competition between the subscribers and also
between the CPs, the total downstream rate of each subscriber is equally splitte
between all the CPs. Also, based on this result, we are able to determine the
cost of each subscriber and the revenue of each CP at the equilibrium situation
of our multistage game. In fact, this proposition gives the equilibrium prices
and the value of the total traffic generated by each CP at equilibrium. Note
that we have uniqueness of this total traffic at equilibrium:

∀m,
N∑
n=1

xmn =
Nφ

M
.

The cost for a subscriber connected to CP n at the equilibrium is given by:

Cn(x, p) = φ2a(N − 1 +
N

M
).

The revenue for any CP m is:

Πm(x, p) =
(N − 1)N

M
φ2a.

15.3.3 Non-neutral scenario

We consider in this second scenario that each ISP n makes an agreement with
a CP. Then, we assume that the number of ISP is equal to the number of CP,
i.e. M = N . In order to simplify the notations, n is the index of the CP which
has an agreement with ISP n. These agreements or collusions, imply that the
content price pn is equal to 0 for the traffic generated from the CP n to the ISP
n. Then, the total cost for the subscriber connected to ISP n becomes:

Cvn(xn, x−n, p) =
∑
m 6=n

xmn

[
D(
∑
n

xmn ) + pm

]
+ xnnD(

∑
n

xnn),

where p is the vector (size N − 1) of the content prices for all CP except n.
The revenue of the CP m is now:

Πm(pm, p−m) = pm
∑
n 6=m

xmn (p).

Then, we have now a similar multistage game in which the cost function of
the subscribers is slightly modified. The sub game perfect equilibrium solution
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of the routing game between the subscribers is no more symmetric and we de-
fine the following variables. Let ynn be the quantity of traffic requested by a
subscriber connected to an ISP n from the CP n associated to its ISP, and ymn
the download traffic requested by a subscriber connected to an ISP n from CP
m, with m 6= n.

Theorem 32. For all CP m, there exists for all (i, n,m) ∈ {1, . . . , I} ×
{1, . . . , N}2 a symmetric equilibrium (ymn , y

n
n , p

m) = (z, y, q), which is given
by:

q = aφ
(N + 1)

3N − 1
, z =

φ

N
(
2N − 2

3N − 1
) and

y =
φ

N
(1 +

(N − 1)(N + 1)

3N − 1
).

We observe that a subscriber does not download all its content from the CP
which has an agreement with its ISP. In fact, part of its downstream traffic
will be from other CPs. We are now able to express the cost for the subscriber
connected to ISP n, at the equilibrium, is given by:

Cvn(y, z, q) = φ2a+ 2aφ2(
N − 1

3N − 1
)2(

N + 1

N
).

The reward for CP m at the equilibrium is:

Πv
m(q, y, z) = 2aφ2(

N − 1

3N − 1
)2(

N + 1

N
).

The first remark is that in our context of interaction between subscribers, their
optimal decision implies that each subscriber downloads part of his demand
from other CPs than the the privileged one, even if they have to pay for.
Another remark is that the download traffic from the privileged CP, y, has

a bounded limit of φ
3 when the number of provider N tends to infinite. In the

neutral context, all the download rates converge to 0. Thus, it means that by
making agreement or collusion with an ISP, each CP has a minimum quantity
guarantee of traffic to send. It is an important result for dimensioning CP
network infrastructure and also when considering the advertising incomes. This
part will be considered in the future works section.
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15.3.4 Comparison between neutral and non-neutral

The previous mathematical results help us to study the effects of the agreement
between CPs and ISPs. We are able to determine which scenario (the neutral
or non-neutral one) induces lower costs for subscribers. The next theorem
proves that even if the neutral scenario implies symmetry and free will for the
subscribers about the CP, as they pay the same price for accessing the content,
the non-neutral scenario is even better for the subscribers.

Theorem 33. Let us assume that M = N . At equilibrium, the agreement
between service and content providers is costless for the subscribers, i.e., for all
subscribers connected to ISP n we have:

Cvn(y, z, q) < Cn(x, p). (15.2)

This result seems counterintuitive, in fact, agreements between companies
are usually not allowed by government of several countries in order to protect
consumers. However, according to our theorem, in our setting, such agreements
between CPs and ISPs are not harmful for the subscribers and are even better
in terms of costs.

15.3.5 A competition over agreement between CPs

In the past section we have imposed economic agreements between ISP and
CP. The scenario was the following, CPs set prices that subscribers have to
pay, but not the economic topology of the network (in other words if there are
pricing agreements or not between CPs and ISPs). We propose now to let each
CP decides by himself to make an agreement (strategy A) with an ISP or not
(strategy NA). We prove that the strategy vector (NA, . . . , NA) is a pure Nash
equilibrium. In order to prove this result, we first assume that all the subscribers
except one, called n′, play NA. We will prove that n′ has no interest in not
playing NA. However to do so, we need to compute the utility of this CP n′

if he plays A. The next proposition gives his utility when he plays A and the
others play NA.

Proposition 27. The utility of the CP n′ when he makes an agreement and all
the other CP do not, is given by:

Π′n(p
n′
, p−n′ , xm′ , xm) =

aφ(N+1)(2N2+N−1)
(4N3−5N2+2N−1)

+
aφ(N−1)(2N2+N−1)

(N+1)(4N3−5N2+2N−1) ×
(

(4N2+5N+1)
4N2−N+1 − 2 (2N3+N2−N)

4N3−5N2+2N−1

)
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With the help of the previous proposition, we have the next theorem:

Theorem 34. If φ > 1 the utility of the player m is lower when he plays NA
than when he plays A, i.e.

Π′m(p
m′
, p
m
, xm′ , pm′) < Πm(p, x).

This first result implies that (NA, . . . , NA) is a nash equilibrium.

This last theorem reduces the importance of the agreement. Indeed, we
recall that according to theorem 33, agreements are beneficial for subscribers.
However, the last theorem 35 proves that CPs are not interested in making such
agreements in a selfish situation. Therefore, policy makers may want to force
agreements by, for example, designing new rules and then reduce the cost for
the subscribers.

15.4 A competition over agreement between
CPs

In the past section we have imposed economic agreements between ISP and
CP. The scenario was the following, CPs set prices that subscribers have to
pay, but not the economic topology of the network (in other words if there are
pricing agreements or not between CPs and ISPs). We propose now to let each
CP decides by himself to make an agreement (strategy A) with an ISP or not
(strategy NA). We prove that the strategy vector (NA, . . . , NA) is a pure Nash
equilibrium. In order to prove this result, we first assume that all the subscribers
except one, called n′, play NA. We will prove that n′ has no interest in not
playing NA. However to do so, we need to compute the utility of this CP n′

if he plays A. The next proposition gives his utility when he plays A and the
others play NA.

Proposition 28. The utility of the CP n′ when he makes an agreement and all
the other CP do not, is given by:

Π′n(p
n′
, p−n′ , xm′ , xm) =

aφ(N+1)(2N2+N−1)
(4N3−5N2+2N−1)

+
aφ(N−1)(2N2+N−1)

(N+1)(4N3−5N2+2N−1) ×
(

(4N2+5N+1)
4N2−N+1 − 2 (2N3+N2−N)

4N3−5N2+2N−1

)
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With the help of the previous proposition, we have the next theorem:

Theorem 35. If φ > 1 the utility of the player m is lower when he plays NA
than when he plays A.

Π′m(p
m′
, p
m
, xm′ , pm′) < Πm(p, x)

This first result implies that (NA, . . . , NA) is a nash equilibrium.

The previous theorem minimize the importance of aggrement. Indeed, we
recall that according to theorem 3, aggrements is more interting for subscribers
that a neutral situation. However, theorem 4 prove that aggrements it is not a
good scenario for the CP and so finally it emeges that the neutral situation will
emerge.

15.5 Conclusions and perspectives

From the research that has been carried out in this chapter, it is possible to
conclude that agreement between CPs and IPSs is not an harmful situation
for the subscribers. To reach this conclusion, we propose a theoretical model
that captures two scenarios (depending on the parameters), a neutral and a
non-neutral one. We were able to find mathematical closed form expression
of the Nash equilibrium in each scenario and we prove mathematically that
an agreement between an ISP and a CP induces a lower cost for subscribers
than a neutral situation when such agreements are not possible. The second
outcome of our chapter is that CPs will not make agreements selfishly, and so
incentives from the government is necessary in order to improve the welfare of
the subscribers. We prove that the situation where each CP does not make an
agreement is a pure Nash Equilibrium. The findings of the chapter suggest that
our approach and results could be useful for government and policy makers for
the design of new regulation rules in the telecom market. More research into
the generalization of our model is still necessary before obtaining a definitive
answer to whether or not agreements between CPs and IPSs are beneficial for the
subscribers. A first generalization could be to consider more general topology
and asymmetric scenarios.

APPENDIX

Proof of theorem 31
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First let

Ln(xn,x−n,p, λn) =

∑
m

xmn

[
Dm(

∑
n

xmn ) + pm

]
− λn(

∑
m

xmn − φ)

the Lagrangian function associated to the cost function Cn(·). We look for a
symmetric equilibrium between the CPs, i.e. for the noncooperative pricing
game at the upper layer. Then we assume that CPs m′ ∈ {1, . . . ,M} − {m}
play q and one CP, say m, plays pm. We want to find some q where the best
reply of CP m against q is q. First, we have to determine the equilibrium flows
between the subscribers, depending on those prices,i.e. x(pm, q) for all pm and
q. We look for x(pm, q), a solution of the following system:


∂Ln
∂xmn

(xn,x,−n, p
m, q, λn) = 0∑

m
xmn = φ, ∀(n,m)

.

This game has a strong symmetric property as all subscribers are inter-
changeable. Then, we can restrict ourselves to two strategies x and y where x
is a request for CP m′ and y is for CP m. This induces a great simplification
in the analysis of our complex hierarchical game. Thanks to [3], the previous
system is equivalent to the following one:



x
∂D

∂x
(Nx) +D(Nx) + q − λ = 0

y
∂D

∂y
(Ny) +D(Ny) + pm − λ = 0

(M − 1)x+ y = φ.

We denote by x and y a solution of this system. We consider the linear cost
function D(x) = ax and thus we have to solve the following linear system:
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

ax+ a(Nx) + q − λ = 0

ay + a(Ny) + pm − λ = 0

(M − 1)x+ y = φ.

If x < 0 (or y < 0) then x = 0 (or y = 0). And if x > φ (or y > φ) then
x = φ (or y = φ).

Let’s now consider the CP m and how it’s going to optimize its revenue,
which is the function Rm(pm, q) = pmyN . Its best reply against all other CPs

that play q is given by pm solution of
∂Rm

∂pm
(pm, q) = 0. We have to find a

certain p which is a solution of
∂Rm

∂pm
(p, p) = 0. We denote this equilibrium by

p. Considering the linear cost function, we obtain:

p = (N − 1)φa.

If p > pmax then p = pmax. We have a particular interest in the case where

pmax > (N −1)φa. Then the equilibrium flow from CP n to ISP m is xmn =
φ

M
.

Proof of theorem 32
In order to compute an equilibrium for the game with agreements, we can use
the method described previously.
We consider the following Lagrangian function:

Lvn(xn,x−n,p, λn) =

∑
m 6=n

xmn

[
Dm(

∑
n

xmn ) + pm

]
+ xnn[D(n

n
)xnn]− λn(

∑
m

xmn − φ).

As previously, we assume that CPs m′ ∈ {1, . . . , N} − {m} play q and the
CP m plays pm. Now again there are several symmetries: we can see that there
are two types of subscribers. Each subscriber of each type are interchangeable.
Type 1 is subscribers with an agreement with CP m. Type 2 is subscribers
without an agreement with CP m. The variables of Type 1 subscribers are:
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• x is the flow from CP m′,

• y is the flow from CP m.

The variables of Type 2 subscribers are:

• u is the flow from CP m,

• v is the flow from the CP with has an agreement,

• w is the flow from all the other CP except CP m and CP with the
agreement.

Due to symmetry, the system is equivalent to the following one with 5 variables
(x, y, u, v, w):



x
∂D

∂x
(x+ v + (N − 2)w) +D(x+ v + (N − 2)w) + q − λ1 = 0

v
∂D

∂v
(x+ v + (N − 2)w) +D(x+ v + (N − 2)w)− λ2 = 0

w
∂D

∂w
(x+ v + (N − 2)w) +D(x+ v + (N − 2)w) + q − λ2 = 0

y
∂D

∂y
(y + (N − 1)u) +D(y + (N − 1)u)− λ1 = 0

u
∂D

∂u
(y + (N − 1)u) +D(y + (N − 1)u) + pm − λ2 = 0

(M − 1)x+ y = φ.

(M − 2)w + u+ v = φ

Considering the linear cost function D(x) = ax. We have to solve the linear
system that are given below:
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

ax+ a(x+ v + (N − 2)w) + q − λ1 = 0

av + a(x+ v + (N − 2)w)− λ2 = 0

aw + a(x+ v + (N − 2)w) + q − λ2 = 0

ay + a(y + (N − 1)u)− λ1 = 0

au+ a(y + (N − 1)u) + pm − λ2 = 0

(M − 1)x+ y = φ.

(M − 2)w + u+ v = φ

We denote x, y, u, v, w the solution of the previous system. The revenue
of CP m is Rmv (pm, q) = pm × (N − 1)u. To compute the equilibrium price we

need to find p which solves
∂Rmv
∂pm

(p, p) = 0. If q > pmax then q = pmax. We

have a particular interest in the case where pmax > aφ (N+1)
3N−1 . Equilibrium price

is given by:

q = aφ
(N + 1)

3N − 1
.

Then the equilibrium flow from CP n to ISP m, n 6= m is z = φ
N ( 2N−2

3N−1 ), and
the equilibrium flow from CP n to ISP n is

y =
φ

N
(1 +

(N − 1)(N + 1)

3N − 1
).

Proof of Theorem 33

We compare the expressions of the subscriber cost in each case. When
an agreement exists between service and content providers, the cost for any
subscriber connected to CP n is given by:

Cvn(y, z, q) = φ2a+ 2aφ2(
N − 1

3N − 1
)2(

N + 1

N
).
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We have to compare this expression with the following one, which is the cost
for any subscriber also connected to CP n but in the case where no agreements
are possible between service and content providers, that is:

Cn(x, p) = φ2a(N − 1 + 1).

comparing these expressions, we get:

Cvn(y, z, q) < Cn(x, p).

Proof of proposition 28

We have the same methodology as in the other proofs. We assume that CPs
m′′ ∈ {1, . . . , N} − {m′,m} plays q, CP m, plays pm, and CP m′ plays r. CP
m′ is the only one with an agreement with the ISP m′.

In order to compute the equilibrium between the subscribers, for all
(pm, q, r), we have to define all the strategy of all subscribers . Let x the
request of a subscriber of ISP n for CP m, y the request of a subscriber of
ISP n for CP m′′ and z the request of a subscriber of ISP n for CP m′ for
all n ∈ {1, . . . , N} − {m′}. And let x′ the request of a subscribers of ISP
n′ = m′ for CP m, y′ the request for CP m′′ and z′ the request for CP m′ with
n ∈ {1, . . . , N} − {m′}. We have now to solve:
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

x
∂D

∂x
((N − 1)x+ x′) +D((N − 1)x+ x′) + q − λ1 = 0

x′
∂D

∂x′
((N − 1)x+ x′) +D((N − 1)x+ x′) + q − λ2 = 0

y
∂D

∂y
((N − 1)y + y′) +D((N − 1)y + y′) + pm − λ1 = 0

y′
∂D

∂y′
((N − 1)y + y′) +D((N − 1)y + y′) + pm − λ2 = 0

z
∂D

∂z
((N − 1)z + z′) +D((N − 1)z + z′) + r − λ1 = 0

z′
∂D

∂z′
((N − 1)z + z′) +D((N − 1)z + z′) + r − λ2 = 0

(N − 2)x+ y + z = φ

(N − 2)x′ + y′ + z′ = φ

We denote by x, y, z, x′, y′, z′ a solution of this system. We consider the
linear cost function D(x) = ax and thus we have to solve the following linear
system:
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

ax+ a((N − 1)x+ x′) + q − λ1 = 0

ax′ + a((N − 1)x+ x′) + q − λ2 = 0

ay + a((N − 1)y + y′) + pm − λ1 = 0

ay′ + a((N − 1) + y′) + pm − λ2 = 0

az + a((N − 1)z + z′) + r − λ1 = 0

az′ + a((N − 1)z + z′) + r − λ2 = 0

(N − 2)x+ y + z = φ

(N − 2)x′ + y′ + z′ = φ

The solution of this system is:

x =
φa(N + 1) + p− 2 q + 2 r

Na(N + 1)

y =
φa(N + 1)− (N − 1)p+ (N − 2)q + 2 r

Na(N + 1)

z =
φa(N + 1) + p+ (N − 2) q − 2(N − 1) r

Na(N + 1)

x′ =
φa(N + 1) + p− 2 q − (N − 1)r

Na(N + 1)

y′ =
φa(N + 1)− (N − 1)p+ (N − 2) q − (N − 1)r

Na(N + 1)

z′ =
φa(N + 1) + p+ (N − 2)q + (N − 1)2r

Na(N + 1)

And after some computation, in order to compute the price competition
between CP we finally obtain the next utility function at equilibrium of CP m′:
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Π′m(p
m′
, p
m
, xm′ , pm′) =

aφ(N + 1)
(
2N2 +N − 1

)
(4N3 − 5N2 + 2N − 1)

+

aφ(N − 1)
(
2N2 +N − 1

)( (4N2+5N+1)
4N2−N+1 − 2 (2N3+N2−N)

4N3−5N2+2N−1

)
(N + 1)(4N3 − 5N2 + 2N − 1)

Proof of theorem 35

First we have to simplify the expression of Π′m:

Π′m(p
m′
, p
m
, xm′ , pm′) =

aφ(N + 1)
(
2N2 +N − 1

)
(4N3 − 5N2 + 2N − 1)

+

aφ(N − 1)
(
2N2 +N − 1

)( (4N2+5N+1)
4N2−N+1 − 2 (2N3+N2−N)

4N3−5N2+2N−1

)
(N + 1)(4N3 − 5N2 + 2N − 1)

⇔ Π′m(p
m′
, p
m
, xm′ , pm′) =

aφ(N + 1)(N + 1)(N − 1
2 )

(4N3 − 5N2 + 2N − 1)

+

aφ(N − 1)(N + 1)(N − 1
2 )

(
(4N2+5N+1)

4N2−N+1 − 2 (2N3+N2−N)
4N3−5N2+2N−1

)
(N + 1)(4N3 − 5N2 + 2N − 1)

⇔ Π′m(p
m′
, p
m
, xm′ , pm′) =

aφ(N + 1)2(N − 1
2 )

(4N3 − 5N2 + 2N − 1)

+

aφ(N − 1)(N − 1
2 )

(
(4N2+5N+1)

4N2−N+1 − 2 (2N3+N2−N)
4N3−5N2+2N−1

)
(4N3 − 5N2 + 2N − 1)

⇔ Π′m(p
m′
, p
m
, xm′ , pm′) =

[
aφ(N − 1

2 )

(4N3 − 5N2 + 2N − 1)

]

×

[
(N + 1)2 + (N − 1)

((
4N2 + 5N + 1

)
4N2 −N + 1

−
2
(
2N3 +N2 −N

)
4N3 − 5N2 + 2N − 1

)]
.

Now we can compare Pi′m and Pim. We can see that if we have P (N) < (N−1)
with:

P (N) =
Π′m(p

m′
, p
m
, xm′ , pm′)

aφ
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×

[
(N + 1)2 + (N − 1)

((
4N2 + 5N + 1

)
4N2 −N + 1

−
2
(
2N3 +N2 −N

)
4N3 − 5N2 + 2N − 1

)]

which means that:

Π′m(p
m′
, p
m
, xm′ , pm′) < Πm(p, x).

After some algebras, we obtain that P (N) < (N − 1) which proves the
proposition. Then, the decision vector where each CP does not make an
agreement is a Nash equilibrium.
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