N

N

fkcc: the Farkas Calculator
Christophe Alias

» To cite this version:

‘ Christophe Alias. fkcc: the Farkas Calculator. [Research Report] RR-9313, Inria. 2019. hal-02414224

HAL Id: hal-02414224
https://inria.hal.science/hal-02414224
Submitted on 16 Dec 2019

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://inria.hal.science/hal-02414224
https://hal.archives-ouvertes.fr

fkcce the Farkas
Calculator

Christophe Alias

RESEARCH
REPORT

N° 9313

ISRN INRIA/RR--9313--FR+ENG

ISSN 0249-6399

Author version of paper "fkcc: the Farkas Calculator" by
Christophe Alias, accepted at TAPAS'19

fkcc: the Farkas Calculator

Christophe Alias

CNRS, ENS de Lyon, Inria, UCBL, Université de Lyon
Christophe.Alias@ens-lyon.fr
http://foobar.ens-1lyon.fr/fkcc

Abstract. In this paper, we present FKCC, a scripting tool to proto-
type program analyses and transformations exploiting the affine form of
Farkas lemma. Our language is general enough to prototype in a few
lines sophisticated termination and scheduling algorithms. The tool is
freely available and may be tried online via a web interface. We believe
that FKCC is the missing chain to accelerate the development of program
analyses and transformations exploiting the affine form of Farkas lemma.

Keywords: Farkas lemma - Scripting tool - Termination - Scheduling

1 Introduction

Many program analyses and transformations require to handle conjunction of
affine constraints C' and C” with a universal quantification asVr : 2 = C =z |=
C’. For instance, this appears in loop scheduling [6, 7], loop tiling [2], program
termination [1] and generation of invariants [3]. Farkas lemma — affine form —
provides a way to get rid of that universal quantification, at the price of introduc-
ing quadratic terms. In the context of program termination and loop scheduling,
it is even possible to use Farkas lemma to turn universally quantified quadratic
constraints into existentially quantified affine constraints. This requires tricky
algebraic manipulations, not easy to applied by hand, neither to implement.

In this paper, we propose a scripting tool, FKCC, which makes it possible
to manipulate easily Farkas lemma to benefit from those nice properties. More
specifically, we made the following contributions:

— A general formulation for the resolution of equations Vz : S(x) = 0 where S
is summation of affine forms including Farkas terms. So far, this resolution
was applied for specific instances of Farkas summation. This result is the
basic engine of the FKCC scripting language.

— A scripting language to apply and exploit Farkas lemma; among polyhedra,
affine functions and affine forms.

— Our tool, FKCC, implementing these principles, available at http://foobar.ens-
lyon.fr/fkcc. FKCC may be downloaded and tried online via a web interface.
FKCC comes with many examples, making it possible to adopt the tool easily.

This paper is structured as follows. Section 2 presents the affine form of
Farkas lemma, our resolution theorem, and explains how it applies to compute

Guest
FreeText
Author version of paper "fkcc: the Farkas Calculator" by Christophe Alias, accepted at TAPAS'19

2 C. Alias

scheduling functions. Then, Section 3 defines the syntax and outlines informally
the semantics of the FKCC language. Section 4 presents two complete use-cases
of FKcC. Finally, Section 5 concludes this paper and draws future research per-
spectives.

2 Farkas Lemma in Program Analysis and Compilation

This section presents the theoretical background of this paper. We first introduce
the affine form of Farkas lemma. Then, we present our theorem to solve equations
S(x) = 0 where S is a summation of affine forms including Farkas terms. This
formalization will then be exploited to design the FKCC language.

Lemma 1 (Farkas Lemma, affine form). Consider a convex polyhedron P =
{z, Az +b >0} CIR" and an affine form ¢ : R" — R such that ¢(x) > 0
Vo € P.

Then: 3X > 0, \g > 0 such that:

d(x) = "AN(Az +b) +)¢ Vax

Hence, Farkas lemma makes it possible to remove the quantification V& € P by
encoding directly the positivity over P into the definition of ¢, thanks to the
Farkas multipliers A and Ag. In the remainder, Farkas terms will be denoted
by: §(Ao, A, A,b)(x) = *A(Ax + b) + Xo. We now propose a theorem to solve
equations S(x) = 0 where S involves Farkas terms. The result is expressed as a
conjunction of affine constraints, which is suited for integer linear programming;:

Theorem 1. Consider a summation S(x) =u-x+v+ >, F(Nig, Ai, Ai, b)) ()
of affine forms, including Farkas terms. Then:

. _ . u+3 TAA=0A
Ve S(x) =0 iff {U—FZi()\i'bi"’)‘o’i):O

Proof. We have:

S(x) = 'z (Z tAi)\i> +Z(>\i~bi+>\oi)+u~w+v

te <U+Z tAiAi> —HH—Z()\i ~bi + o)

S(x) =71 -x+ 79 =0 for any « iff 7 =0 and 7y = 0. Hence the result. O

Application to scheduling Consider the polynomial product kernel depicted in
Figure 3.(a). Farkas lemma and Theorem 1 may be applied to compute a sched-
ule, this is a way to reorganize the computation of the program to fulfill various
criteria (overall latency, locality, parallelism, etc). On this example, a sched-
ule may be expressed as an affine form 6 : (i,j) — t assigning a timestamp

fkcc: the Farkas Calculator 3

t € Z to each iteration (i, 7). This way, a schedule prescribes an execution or-
der <¢ := {((4,7), (¢',4")) | 0(i,4) < 6(i',5")}. Figure 3.(b) illustrates the order
prescribed by the schedule 6(i, j) = i: a sequence of vertical wave fronts, whose
iterations are executed in parallel.

A schedule must be positive everywhere on the set of iteration vectors Dy =
{(i,4) | A (3,5, N) + b} (referred to as iteration domain). In general, the itera-
tions domains are parametrized (typically by the array size N) and the schedule
may depends on N. Hence we have to consider vectors (4, j, N) instead of (4, j):

Applying Farkas lemma, this translates to:
Ao > 0,A >0 suchthat 6(i,j,N)=3FNo, A, 4,b)(4,5,N) (2)

Moreover, a schedule must satisfy the data dependencies (i,j5) — (i/,5'). — is
generally expressed as a Presburger relation [8], in turned abstracted as a rational
convex polyhedron Ay containing the correct vectors (4, 7,4, j') and sometimes
false positives. Here again, Ay = {(i,4,7,5") | C '(i,5,7,5,N) +d > 0} is
parametrized by structure parameter N. This way, the correctness condition
translates to:

0,5, N) > 0(i,j,N) V(i,j,i,j') € Ay (3)

Note that (i, j', N) > 6(i, j, N) is equivalently written as the positivity of an
affine form over a convex polyhedron: 6(i’, 7', N) — 6(i, 5, N) — 1 > 0. Applying
Farkas lemma:

3“0 2 07/1’ >0 such that e(i/aj/7N) _0(17]71\7) —-1= S(M07H707 d)(i,j,i/,j/,N)

Substituting 6 using Equation (2), this translates to S(i, j,i',j’, N) = 0, where
S(i,7,4',j',N) is defined as the summation:

5(A0,A, A’ b)(i/7j/’ N) - S’(A()?A? A7 b)(z’j7 N) - S(M07N7 07 d)(z’j7 il?j/7N) - 1

Since —F (Ao, A, A, b) = F(—Ao, —A, A, b), we may apply theorem 1 to obtain
a system of affine constraints with Ag, A, o, . Linear programming may then
be applied to find out the desired schedule [2,7]. The same principle might be
applied in termination analysis to derive a ranking function [1], this will be
developed in Section 4.

3 Language

This section specifies the input language of FKCC and outlines informally its
semantics. Figure 1 depicts the input syntax of FKcC. Keywords and syntax
sugar are written with verbatim letters, identifiers with italic letter and syntactic
categories with roman letters. Among identifiers, p is a parameter, v is a variable
(typically a loop counter) and id is an FKCC identifier.

4 C. Alias

program ::= (parameters = { p, ..., p };)? instruction; ...; instruction;
instruction ::= object | id := object | lexmin polyhedron | lexmax polyhedron | set id
object ::= polyhedron | affine_form | affine_function
polyhedron ::=
[p,...,p]l >{ [.. v] : inequation and ... and inequation }

| polyhedron # ... * polyhedron

| solve affine_form = 0

| define affine_form with v

| keep v, ..., v in polyhedron

| find id, ..., id s.t. affine_form = 0

affine_form ::= leaf_affine_form | leaf_affine_form [+-] ... [+-] leaf_affine_form

leaf_affine_form ::=
{[w .. v] ->expression }
| positive_on polyhedron
| leaf_affine_form . affine_function
| int
| int * leaf_affine_form

affine_function ::= { [v, ..., v]1 => [expression, ..., expression] }

Fig. 1. fkcc syntax

fkcc: the Farkas Calculator 5

Program, instructions, polyhedra An FKCC program consists of a sequence of in-
structions. There is no other control structure than the sequence. An instruction
may assign an FKCC object (polyhedron, affine form or affine function) to an
FKCC identifier, or may be an FKCC object alone. In the latter, the FKCC object
is streamed out to the standard output. Also, we often need to compute the
lexicographic optimum of a polyhedron, typically to pick an optimal schedule.
FKCC uses parameteric integer linear programming [5] via the Piplib library. The
result is a discussion on the parameter value:

parameters := {N};
lexmin [N] -> {[i,j]: O <= i and i <= N and 0 <= j and j <= N};

would give:
if (N >= 0)
{
[1 -> {[o,0]}
}
else
{
(no solution)
}

Note that structure parameters must be declared with the parameters con-
struct. When no parameters are involved, the parameters construct may be
omitted. To ensure the compatibility with 1scc [10] syntax, the parameters of a
polyhedron may be declared on preceding brackets [N] -> This is purely
optional: FKCC actually does not analyze this part. The instruction set ¢d emits
id := to the standard output. This makes it possible to generate ISCC scripts
for further analysis. Finally, the set intersection of two polyhedra P and Q is
obtained with P*Q.

Affine forms An affine form may be defined as a Farkas term:

iterations := [] -> {[i,j,N]: 0 <= i and i <= N and O <= j and j <= N};
theta := positive_on iterations;

If iterations is {x | Az + b > 0}, then theta is defined as F(Ao, A, 4, b)
where Ay and A are fresh positive variables. In that case, the polyhedron is never
parametrized: the parameters must be handled as variables. In particular, do not
name variables with identifiers declared as parameters with parameters :=, as
they would be treated as parameters whatever the context. Affine forms might
be summed, scaled and composed with affine functions, typically to adjust the
input dimension:

to_target := {[i,j,i’,j’,N1->[i,j,N1};
to_source := {[i,j,i’,j’,N]->[i’,j’,N1};
sum := theta.to_target - 2*theta.to_source + 1 + {[i,j,i’,j’,N] -> 2%i-i’};

6 C. Alias

In a summation of affine forms, affine forms must have the same input di-
mension. Also, a constant (1) is automatically interpreted as an affine form
([i,j,1’,j’,N] -> 1). Affine forms may also be stated explicitely ({[i,j,i’,j’,N]
-> 2xi-i’}). The terms of the summation are simply separated with + and -,
no parenthesis are allowed.

Resolution The main feature of FKCC is the resolution of equations S(z) = 0
where S is a summation of affine forms including Farkas terms. This is obtained
with the instruction solve:

solve sum = 0;

The result is a polyhedron with Farkas multipliers (obtained after applying

Theorem 1):

[1 -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4] :
(2+lambda_0)+(-1*lambda_1) >= 0 and (-2+(-1%lambda_0))+lambda_1 >= 0 and
lambda_2+(-1*lambda_3) >= 0 and (-1*lambda_2)+lambda_3 >= 0 and
(-1*lambda_1)+(-1*lambda_3) >= 0 and lambda_l+lambda_3 >= 0 and
(-1+(-2+lambda_0))+(2*lambda_1) >= 0 and (1+(2*lambda_0))+(-2*lambda_1) >= 0 and
(-2*lambda_2)+(2*lambda_3) >= 0 and (2*lambda_2)+(-2*lambda_3) >= 0 and
1+(-1%lambda_4) >= 0 and -1+lambda_4 >= 0 and lambda_4 >= 0 and
lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0 and
lambda_4 >= 0 and lambda_0 >= 0 and lambda_1 >= 0 and lambda_2 >= 0 and lambda_3 >= 0};

At this point, we need to recover the coefficients of our affine form theta in
terms of A (lambda_0,lambda_1,lambda_2,lambda_3) and A\¢ (lambda_4). Ob-
serve that theta(z) = F(Ao, A, 4,b)(x) = ‘AAx + X - b+ \g. If the coefficients
of theta are written: theta(x) = 7 - x + 79, we simply have: 7 = ‘XA and
70 = A - b+ A\g. This is obtained with define:

define theta with tau;

The result is a conjunction of definition equalities, gathered in a polyhedron:

[1 -> {[lambda_0,lambda_1,lambda_2,lambda_3,lambda_4,tau_0,tau_1,tau_2,tau_3] :
((-1*lambda_0)+lambda_1)+tau_0 >= 0 and (lambda_O+(-1*lambda_1))+(-1*tau_0) >= O and
((-1*lambda_2)+lambda_3)+tau_1 >= 0 and (lambda_2+(-1*lambda_3))+(-1*tau_1) >= 0 and
((-1*lambda_1)+(-1*lambda_3))+tau_2 >= 0 and (lambda_1+lambda_3)+(-1xtau_2) >= 0 and
(-1*lambda_4)+tau_3 >= 0 and lambda_4+(-1xtau_3) >= 0};

The first coefficients tau_k define 7, the last one defines the constant 7. On
our example, theta(i,j,N) = tau O*i + tau_1%j + tau2*N + tau-3. Now
we may gather the results and eliminate the A\ to keep only 7 and 7y:

keep tau_0,tau_1,tau_2,tau_3 in ((solve sum = 0)*(define theta with tau));

The result is a polyhedron with the solutions. Here, there are no solutions:
the result is an empty polyhedron. All these steps may be applied once with the
find command:

find theta s.t. sum = O;

The coefficients are automatically named theta_O, theta_1, etc with the
same convention as define. We point out that define choose fresh names for
coefficients (e.g. tau_4, tau_5 on the second time with ¢ ‘tau’’) whereas find
always choose the same names. Hence find would be prefered when deriving
separately constraints on the same coefficients of theta. find may filter the
coefficients for several affine forms expressed as Farkas terms in a summation:

fkcc: the Farkas Calculator 7

find theta_S,theta_T s.t.
theta_T.to_target - theta_S.to_source - 1
- (positive_on dependences_from_S_to_T) = 0;

This is typically used to compute schedules for programs with multiple as-
signments (here S and T with dependences from iterations of S to iterations
of T'). Finally, note that keep tau 0,tau_l,tau 2,tau3 in P; projects P on
variables tau 0,tau_1,tau_2,tau_3: the result is a polyhedron with integral
points of coordinates (tau_ 0,tau_1,tau_2,tau_3). This way, the order in which
tau_ 0,tau-1,tau_2,tau_3 are specified to keep impacts directly a further lexi-
cographic optimization.

4 Examples

This section shows how FKCC might be used to specify in a few lines termination
analysis and loop scheduling.

4.1 Termination analysis

start

Tstart = {xo >0A Yo > O}

assert zo > 0Ayo >0 =T =
T = To; Y = Yo; h Iloop:%$>0/\y>0/\$§xo/\yﬁyo}i}
while z # y oo yoa Istop =1z <y ANz <o AT >0AT =1y
ifr>y wiay :I:Ioo:lp : v
then z ==z — y; amy pstart(l'u) = (2)
else y ==y —x; D Ploop\T, (17$+y—2)

(z,y) =
@ pstop (@, y) = (0)

(c) Invariants and

(a) Kernel (b) Affine automaton .
ranking

Fig. 2. Termination example

Consider the example depicted on Figure 2. The program computes the ged of
two integers xo and yo (a). It is translated to an affine automaton (b) (also called
integer interpreted automaton), in turn analyzed to check the termination (c):
does the program terminates for any input (xg,yo) satisfying the precondition
xg > 0Ay > 07

This problem is — as most topics in static analysis — undecidable in general.
However, we may conclude when it is possible to derive statically an abstrac-
tion precise enough of the program execution. In [1], we provide a termina-
tion algorithm based on the computation of a ranking. A ranking is an applica-
tion prapel : Z" — (R, <) which maps each reachable state of the automaton

8 C. Alias

(label, x) to a rank belonging to well-founded set. On our example a reachable
state could be (loop, (x : 3,y : 3,20 : 3,y0 : 6)) after firing the initial transition
and the right transition.

The ranking is decreasing on the transitions: for any transition (label, x) —
(label’, "), we have: plaber (€') < prabel (). Since ranks belong to a well founded
set, there are — by definition — no infinite decreasing chain of ranks. Hence infinite
chains of transitions from an initial state never happen.

On [1], we provide a general method for computing a ranking of an affine
automaton. Our ranking is affine per label: prapel(€) = Alaper® + braper € INP.
Figure 2.(c) depicts the ranking found on the example. Ranks ordered with the
lexicographic ordering <, the well-founded set is (IN’, <). This means that, by
decreasing order, start comes first (2), then all the iterations of loop (1), and
finally stop (0). The transitions involved to compute those constants are the
transitions from start to loop and the transitions from loop to stop. Then,
transitions from loop to loop (left, denoted 7, and right, denoted 72) are used
to computed the second dimension of pioep. In the remainder, we will focus on
the computation of the second dimension of piep (z +y—2) from transitions 7
and 5. We will write pioop() for pioep(2)[1] to simplify the presentation.

Positivity on reachable states The ranking must be positive on reachable states
of loop. The set of @ such that (loop,x) is reachable from an initial state is
called the accessibility set of loop. In general, we cannot compute it — this is
the undecidable part of the analysis. Rather, we compute an over-approximation
thanks to linear relation analysis [4,9]. This set is called an invariant and will
be denoted by Zioop. Figure 2.(c) depicts the invariants on the program. All
the challenge is to make the invariant close enough to the accessibility set so
a ranking can be computed. In FKCC, the assertion € = Zigop = ploop(®) > 0
translates to:

I_loop := [1 -> {[x,y,x0,y0]: x>0 and y>0 and x <= x0 and y <= y0};
rank := positive_on I_loop;

Decreasing on transitions Now it remains to find a ranking decreasing on tran-
sitions 7 and 7,. We first consider 7. The assertion |= Zigop A > y =
Ploop (il' —Y,Z,Zo, yO) < ploop(x, Y, Zo, yO) translates to:

taul := [1 -> {[x,y,x0,y0]: x>y};
sl := find rank s.t. rank - (rank . {[x,y,x0,y0]->[x-y,y,x0,y0]}) - 1

- positive_on (taul*I_loop) = 0;

Similarly we compute a solution set s2 from 75 and Zj40p. Finally, the ranking
is found with the instruction lexmin (s1*s2);, which outputs the result:

0 ->{[1,1,0,0,-213};

This corresponds to the dimension = + y — 2.

fkcc: the Farkas Calculator 9

for i :=0to N
for j:=0to N
cli-+j] = c[i+j] + ali]*bj];

(a) Product of polynomials (b) Iterations and schedule

Fig. 3. Scheduling example

4.2 Scheduling

Figure 3 depicts an example of program (a) computing the product of two poly-
nomials specified by their array of coefficients a and b, and the iteration domain
with the data dependence across iterations (b) and an example schedule 6 pre-
scribing a parallel execution by vertical waves, as discussed in Section 2.

Positivity Similarly to the ranking, the positivity condition (1) translates to:

iterations := [] -> { [i,j,N]: 0 <= i and i <= N and 0 <= j and j <= N};

dependence := [] -> { [i,j,i’,j’,N]: O <= i and i <= N and 0 <= j and
j<=Nand 0 <= i’ and i’ <= N and 0 <= j’ and
j’ <= N and i+j = i’+j’ and i<i’};

theta(i,j,N) >= 0 for any iteration (i,j,N)
theta := positive_on iteratioms;

Correctness We enhance the correctness condition (2) by making it possible
to select the dependence to satisfy. For each dependence class d, we use a 0-1
variable ¢4. Here we have a single dependence class from S to S, so have only
one 0-1 variable e:

0(i',5',N) > 0(i,j,N) + e VY(i,j,7,j') € Ax

On the ranking example, we would have four classes (i = start — loop, 71,72, e =
loop — stop). This makes it possible to choose which dependence class is satisfied
(eq = 1) or just respected (e4 = 0). This is the way multidimensional schedules
are built [7]: on the termination example we would havee; =€, = 1,6, =€, =0
for the first dimension, then e, = €., = 1 for the second dimension. Here it is
kind of artificial, since we have a single dependence. However, the presentation
generalizes easily to several dependence classes. This translates as:

10 C. Alias

parameters := {inv_eps,eps};

to_target := {[i,j,i’,j’,N]->[1i’,7°,N]};
to_source := {[i,j,i’,j’,N]->[i,j,N]};

s -> t ==> theta(s) <= theta(t) + eps, 0 <= eps <=1
theta_correct := solve (theta . to_target) - (theta . to_source)
+ {[1,j,i’,j’,N] -> -1%eps}
- (positive_on dependence) = 0;
theta_def := define theta with theta;
eps_correct := [] -> {[i]: O <= eps and eps <= 1 and inv_eps = 1l-eps};

Here is the trick: parameters are forbidden to define Farkas terms; however
parameters are perfectly allowed in summation. In that case, the resolution in-
terprets parameters as constants. Hence the trick to set € as a parameter and
to put it in the summation by declaring an explicit affine form {[i,j,1i’,j’,N]
-> -1xeps}. We then keep the definition of theta coefficients in terms of Farkas
multipliers (theta_def) and the domain of € (eps_correct).

Optimality We seek a schedule 6 with a minimal latency ¢(6) (number of steps).
When 6 is an affine form, £(6) may be bounded by an affine form L(N) of the
structure parameters [6]: £(6) < L(N). This means that:

Which is, again, completely Farkas compliant. It remains to express L(N), which
have to be positive provided Dy is not empty i.e. N > 0. This translates to:

L(N) >= 0 on the parameter domain
latency := positive_on ([] -> {[N]: N >= 0});

theta(i,j,N) <= L)

theta_bounded := solve (latency . {[i,j,N] -> [N]}) - theta
- (positive_on iterations) = 0;

bound_def := define latency with latency;

Finally, it remains to gather the constraints (positivity, correctness, optimal-
ity) to obtain the result:

lexmin (keep inv_eps,latency_0,latency_1,theta_0,theta_1,theta_2,theta_3,eps
in theta_correct*theta_def*eps_correct*theta_bounded*bound_def) ;

By priority order, we want to (i) maximize the dependence satisfied (min-
imize inv_eps), then (ii) to minimize the latency (L(N) = latency 0*N + la-
tency_1). This amounts to find the lexicographic minimum with variables ordered
as (inv_eps,latency_0,latency_1). Note that eps and inv_eps are parame-
ters. Adding them to the variable list of keep has the effect to turn them to
counters eps_counter and inv_eps_counter. We obtain the following result,
pretty printed using the -pretty option:

fkcc: the Farkas Calculator 11

theta_ 0 =
theta_1 =
theta_2
theta_3
latency_
latency_1
eps_counter 1

inv_eps_counter = 0

S nonono
o= 1 O
=

1
0

Hence 0(i,j,N) = N — j, L(N) = N and the dependence was satisfied
(eps_counter = 1).

5 Conclusion

In this paper, we have presented FKCC, a scripting tool to prototype program
analyses and transformations using the affine form of Farkas lemma. The script
language of FKCC is powerful enough to write in a few lines tricky scheduling al-
gorithms and termination analysis. The object representation (polyhedra, affine
functions) is compatible with 1scc, a widespread polyhedral tool featuring ma-
nipulation of affine relations. FKCC provides features to generate 1SCC code, and
conversely, the output of 1SCC might be injected in FKCC. This will allow to take
profit of both worlds.

We believe that scripting tools are mandatory to evaluate rapidly research
ideas. So far, Farkas lemma-based approaches were locked by two facts: (i) ap-
plying by hand Farkas Lemma is nearly impossible and (ii) implementing an
analysis with Farkas lemma is usually tricky, time consuming and highly bug
prone. With FKCC, computer scientists are now freed from these constraints.

References

1. Alias, C., Darte, A., Feautrier, P., Gonnord, L.: Multi-dimensional rankings, pro-
gram termination, and complexity bounds of flowchart programs. In: International
Static Analysis Symposium (SAS’10) (2010)

2. Bondhugula, U., Hartono, A., Ramanujam, J., Sadayappan, P.: A practi-
cal automatic polyhedral parallelizer and locality optimizer. In: Proceedings
of the ACM SIGPLAN 2008 Conference on Programming Language Design
and Implementation, Tucson, AZ, USA, June 7-13, 2008. pp. 101-113 (2008).
https://doi.org/10.1145/1375581.1375595

3. Colén, M., Sankaranarayanan, S., Sipma, H.: Linear invariant generation using non-
linear constraint solving. In: Springer-Verlag (ed.) CAV. pp. 420-432. No. 2725 in
LNCS (2003)

4. Cousot, P., Halbwachs, N.: Automatic discovery of linear restraints among variables
of a program. In: 5th ACM Symposium on Principles of Programming Languages
(POPL’78). pp. 84-96. Tucson (Jan 1978)

5. Feautrier, P.: Parametric integer programming. RAIRO Recherche Opérationnelle
22(3), 243-268 (1988)

12

10.

C. Alias

Feautrier, P.: Some efficient solutions to the affine scheduling problem. Part I. one-
dimensional time. International Journal of Parallel Programming 21(5), 313-348
(Oct 1992). https://doi.org/10.1007/BF01407835

Feautrier, P.: Some efficient solutions to the affine scheduling problem, part II:
Multi-dimensional time. International Journal of Parallel Programming 21(6), 389—
420 (Dec 1992)

Feautrier, P., Lengauer, C.: Polyhedron model. In: Encyclopedia of Parallel Com-
puting, pp. 1581-1592 (2011)

Gonnord, L.: Accélération abstraite pour ’amélioration de la précision en Analyse
des Relations Linéaires. Ph.D. thesis, Université Joseph Fourier - Grenoble (2007)
Verdoolaege, S.: Counting affine calculator and applications. In: IMPACT (2011)

V4

: in]nrmatics,mathemutics

fkcc: the Farkas Calculator

Christophe Aliag
Project-Team Cash

Research Report n° 9313 — December 2019 — [12] pages

Abstract: In this report, we present FKCC, a scripting tool to prototype program analyses and
transformations exploiting the affine form of Farkas lemma. Our language is general enough to
prototype in a few lines sophisticated termination and scheduling algorithms. The tool is freely
available and may be tried online via a web interface. We believe that FKCC is the missing chain
to accelerate the development of program analyses and transformations exploiting the affine form
of Farkas lemma.

Key-words: Farkas lemma, Scripting tool, Termination, Scheduling

* Inria/ENS-Lyon/UCBL/CNRS

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

fkcc: the Farkas Calculator

Résumé : Ce rapport présente FKCC, un interprete pour prototyper rapidement des analyses et
des transformations de programmes exploitant la forme affine du lemme de Farkas. Le langage
de FKCC est suffisament général pour pouvoir prototyper en quelques lignes des algorithmes
d’ordonnancement sophistiqués. FKCC est librement disponible et peut étre testé en ligne via
une interface a web. FKCC complete 'outillage polyédrique pour accélérer le développement de
nouveaux algorithmes de compilation et d’analyse de programme exploitant la forme affine du
lemme de Farkas.

Mots-clés : Lemme de Farkas, langage de prototypage, terminaison, ordonnancement

V4

: in[arma!ics,mutheman’cs

RESEARCH CENTRE
GRENOBLE - RHONE-ALPES

Inovallée
655 avenue de I'Europe Montbonnot
38334 Saint Ismier Cedex

Publisher

Inria

Domaine de Voluceau - Rocquencourt
BP 105 - 78153 Le Chesnay Cedex
inria.fr

ISSN 0249-6399

