C. Anagnostopoulos and R. Gramacy, Information-Theoretic Data Discarding for Dynamic Trees on Data Streams, Entropy, vol.15, issue.12, pp.5510-5535, 2013.

B. Ankenman, B. L. Nelson, and J. Staum, Stochastic Kriging for Simulation Metamodeling, Operations Research, vol.58, issue.2, pp.371-382, 2010.

D. Azzimonti, D. Ginsbourger, C. Chevalier, J. Bect, and Y. Richet, Adaptive Design of Experiments for Conservative Estimation of Excursion Sets, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01379642

S. Banerjee, B. P. Carlin, and A. E. Gelfand, Hierarchical Modeling and Analysis for Spatial Data, 2004.

S. Banerjee, A. E. Gelfand, A. O. Finley, and H. Sang, Gaussian Predictive Process Models for Large Spatial Data Sets, Journal of the Royal Statistical Society B, vol.70, issue.4, pp.825-848, 2008.

B. J. Bichon, M. S. Eldred, L. P. Swiler, S. Mahadevan, and J. M. Mcfarland, Efficient Global Reliability Analysis for Nonlinear Implicit Performance Functions, AIAA Journal, vol.46, issue.10, pp.2459-2468, 2008.

M. Binois, R. B. Gramacy, and M. Ludkovski, Practical Heteroscedastic Gaussian Process Modeling for Large Simulation Experiments, Journal of Computational and Graphical Statistics, vol.27, issue.4, pp.808-821, 2018.

M. Binois, J. Huang, R. B. Gramacy, and M. Ludkovski, Replication or Exploration? Sequential Design for Stochastic Simulation Experiments, Technometrics, issue.1, pp.7-23, 2019.

I. Bogunovic, J. Scarlett, A. Krause, and V. Cevher, Truncated Variance Reduction: A Unified Approach to Bayesian Optimization and Level-Set Estimation, Advances in Neural Information Processing Systems, pp.1507-1515, 2016.

A. Boukouvalas and D. Cornford, Learning Heteroscedastic Gaussian Processes for Complex Datasets, 2009.

E. Burnaev and M. Panov, Adaptive Design of Experiments Based on Gaussian Processes, Statistical Learning and Data Sciences, pp.116-125, 2015.

, lhs: Latin Hypercube Samples. R package version 0, Carnell R, vol.16, 2018.

C. Chevalier, D. Ginsbourger, J. Bect, and I. Molchanov, Estimating and Quantifying Uncertainties on Level Sets Using the Vorob'ev Expectation and Deviation with Gaussian Process Models, mODa 10 -Advances in Model-Oriented Design and Analysis, pp.35-43, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00731783

C. Chevalier, D. Ginsbourger, and X. Emery, Corrected Kriging Update Formulae for Batch-Sequential Data Assimilation, Mathematics of Planet Earth, pp.119-122, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00683362

C. Chevalier, V. Picheny, and D. Ginsbourger, KrigInv: An Efficient and User-Friendly Implementation of Batch-Sequential Inversion Strategies Based on Kriging, Computational Statistics & Data Analysis, vol.71, pp.1021-1034, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00713537

C. Chevalier, V. Picheny, D. Ginsbourger, and D. Azzimonti, KrigInv: Kriging-Based Inversion for Deterministic and Noisy Computer Experiments, 2018.

M. Chung, M. Binois, R. B. Gramacy, J. M. Bardsley, D. J. Moquin et al., Parameter and Uncertainty Estimation for Dynamical Systems Using Surrogate Stochastic Processes, SIAM Journal on Scientific Computing, vol.41, issue.4, pp.2212-2238, 2019.

G. M. Dancik and K. S. Dorman, mlegp: Statistical Analysis for Computer Models of Biological Systems using R, Bioinformatics, issue.17, p.24, 2008.

Y. Deville, D. Ginsbourger, and O. Roustant, kergp: Gaussian Process Laboratory, 2018.
URL : https://hal.archives-ouvertes.fr/emse-01169696

O. Dubrule, Cross Validation of Kriging in a Unique Neighborhood, Mathematical Geology, vol.15, issue.6, pp.687-699, 1983.

D. Eddelbuettel, Seamless R and C++ Integration with Rcpp, 2013.

D. Eddelbuettel and J. J. Balamuta, Extending R with C++: A Brief Introduction to Rcpp, The American Statistician, vol.72, issue.1, pp.28-36, 2018.

D. Eddelbuettel and R. François, Rcpp: Seamless R and C++ Integration, Journal of Statistical Software, vol.40, issue.8, pp.1-18, 2011.

C. B. Erickson, B. E. Ankenman, and S. M. Sanchez, Comparison of Gaussian Process Modeling Software, European Journal of Operational Research, 2017.

C. T. Franck and R. B. Gramacy, Assessing Bayes Factor Surfaces Using Interactive Visualization and Computer Surrogate Modeling, 2018.

P. I. Frazier, A Tutorial on Bayesian Optimization, 2018.

B. Gauthier and L. Pronzato, Spectral Approximation of the IMSE Criterion for Optimal Designs in Kernel-Based Interpolation Models, SIAM/ASA Journal on Uncertainty Quantification, vol.2, issue.1, pp.805-825, 2014.
URL : https://hal.archives-ouvertes.fr/hal-00913466

D. Ginsbourger, L. Riche, and R. , Towards Gaussian Process-Based Optimization with Finite Time Horizon, mODa 9-Advances in Model-Oriented Design and Analysis, pp.89-96, 2010.
URL : https://hal.archives-ouvertes.fr/emse-00680794

D. Ginsbourger, L. Riche, R. Carraro, and L. , Kriging Is Well-Suited to Parallelize Optimization, Computational Intelligence in Expensive Optimization Problems, pp.131-162, 2010.
URL : https://hal.archives-ouvertes.fr/emse-00436126

T. Gneiting and A. E. Raftery, Strictly Proper Scoring Rules, Prediction, and Estimation, Journal of the American Statistical Association, vol.102, issue.477, pp.359-378, 2007.

P. W. Goldberg, C. K. Williams, and C. M. Bishop, Regression with Input-Dependent Noise: A Gaussian Process Treatment, Advances in Neural Information Processing Systems, vol.10, pp.493-499, 1998.

J. Gonzalez, M. Osborne, and N. Lawrence, GLASSES: Relieving the Myopia of Bayesian Optimisation, Proceedings of the 19th International Conference on Artificial Intelligence and Statistics, pp.790-799, 2016.

A. Gorodetsky and Y. Marzouk, Mercer Kernels and Integrated Variance Experimental Design: Connections between Gaussian Process Regression and Polynomial Approximation, SIAM/ASA Journal on Uncertainty Quantification, vol.4, issue.1, pp.796-828, 2016.

R. Gramacy and H. Lee, Cases for the Nugget in Modeling Computer Experiments, Statistics and Computing, vol.22, issue.3, 2012.

R. Gramacy and N. Polson, Particle Learning of Gaussian Process Models for Sequential Design and Optimization, Journal of Computational and Graphical Statistics, vol.20, issue.1, pp.102-118, 2011.

R. B. Gramacy, tgp: An R Package for Bayesian Nonstationary, Semiparametric Nonlinear Regression and Design by Treed Gaussian Process Models, Journal of Statistical Software, vol.19, issue.9, pp.1-46, 2007.

R. B. Gramacy, laGP: Large-Scale Spatial Modeling via Local Approximate Gaussian Processes in R, Journal of Statistical Software, vol.72, issue.1, pp.1-46, 2016.

R. B. Gramacy, monomvn: Estimation for Multivariate Normal and Student-t Data with Monotone Missingness, 2017.

R. B. Gramacy and D. W. Apley, Local Gaussian Process Approximation for Large Computer Experiments, Journal of Computational and Graphical Statistics, vol.24, issue.2, pp.561-578, 2015.

R. B. Gramacy and H. Lee, Adaptive Design and Analysis of Supercomputer Experiment, Technometrics, vol.51, issue.2, pp.130-145, 2009.

R. B. Gramacy, H. Lee, S. Bernardo, J. O. Bayarri, . Berger et al., Optimization under Unknown Constraints, Bayesian Statistics 9, pp.229-256, 2011.

R. B. Gramacy and E. Pantaleo, Shrinkage Regression for Multivariate Inference with Missing Data, and an Application to Portfolio Balancing, Bayesian Anal, vol.5, issue.2, pp.237-262, 2010.

R. B. Gramacy and M. Taddy, Categorical Inputs, Sensitivity Analysis, Optimization and Importance Tempering with tgp Version 2, an R Package for Treed Gaussian Process Models, Journal of Statistical Software, vol.33, issue.6, pp.1-48, 2010.

L. Hong and B. Nelson, Discrete Optimization via Simulation Using COMPASS, Operations Research, vol.54, issue.1, pp.115-129, 2006.

R. Hu and M. Ludkovski, Sequential Design for Ranking Response Surfaces, SIAM/ASA Journal on Uncertainty Quantification, vol.5, issue.1, pp.212-239, 2017.

X. Huan and Y. M. Marzouk, Sequential Bayesian Optimal Experimental Design via Approximate Dynamic Programming, 2016.

R. Ihaka, P. Murrell, K. Hornik, J. C. Fisher, R. Stauffer et al., colorspace: A Toolbox for Manipulating and Assessing Colors and Palettes, 2019.

E. Jacquier, N. Polson, and P. E. Rossi, Bayesian Analysis of Stochastic Volatility Models with Fat-Tails and Correlated Errors, J. of Econometrics, vol.122, pp.185-212, 2004.

D. Jones, M. Schonlau, and W. Welch, Efficient Global Optimization of Expensive Black-Box Functions, Journal of Global Optimization, vol.13, issue.4, pp.455-492, 1998.

K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard, Most Likely Heteroscedastic Gaussian Process Regression, Proceedings of the International Conference on Machine Learning, pp.393-400, 2007.

R. Lam, K. Willcox, and D. H. Wolpert, Bayesian Optimization with a Finite Budget: An Approximate Dynamic Programming Approach, Advances In Neural Information Processing Systems, pp.883-891, 2016.

M. Lazaro-gredilla and M. Titsias, Variational Heteroscedastic Gaussian Process Regression, Proceedings of the International Conference on Machine Learning, pp.841-848, 2011.

E. R. Leatherman, T. J. Santner, and A. M. Dean, Computer Experiment Designs for Accurate Prediction, Statistics and Computing, pp.1-13, 2017.

X. Lyu, M. Binois, and M. Ludkovski, Evaluating Gaussian Process Metamodels and Sequential Designs for Noisy Level Set Estimation, 2018.

B. Macdonald, P. Ranjan, and H. Chipman, GPfit: An R Package for Fitting a Gaussian Process Model to Deterministic Simulator Outputs, Journal of Statistical Software, vol.64, issue.12, pp.1-23, 2015.

J. Mockus, V. Tiesis, and A. Zilinskas, The Application of Bayesian Methods for Seeking the Extremum, Towards Global Optimization, vol.2, issue.2, pp.117-129, 1978.

S. H. Ng and J. Yin, Bayesian Kriging Analysis and Design for Stochastic Systems, ACM Transations on Modeling and Computer Simulation (TOMACS), vol.22, issue.3, 2012.

J. Opsomer, D. Ruppert, W. Wand, U. Holst, and O. Hossler, Kriging with Nonparameteric Variance Function Estimation, Biometrics, vol.55, pp.704-710, 1999.

V. Picheny, D. Ginsbourger, O. Roustant, R. T. Haftka, and N. H. Kim, Adaptive Designs of Experiments for Accurate Approximation of a Target Region, Journal of Mechanical Design, vol.132, issue.7, p.71008, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00319385

V. Picheny, T. Wagner, and D. Ginsbourger, A Benchmark of Kriging-Based Infill Criteria for Noisy Optimization, pp.1-20, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00658212

M. Plumlee and R. Tuo, Building Accurate Emulators for Stochastic Simulations via Quantile Kriging, Technometrics, vol.56, issue.4, pp.466-473, 2014.

M. Pratola, H. Chipman, E. George, and R. Mcculloch, Heteroscedastic BART Using Multiplicative Regression Trees, 2017.

M. T. Pratola, O. Harari, D. Bingham, and G. E. Flowers, Design and Analysis of Experiments on Nonconvex Regions, Technometrics, pp.1-12, 2017.

P. Ranjan, D. Bingham, and G. Michailidis, Sequential Experiment Design for Contour Estimation from Complex Computer Codes, Technometrics, vol.50, issue.4, pp.527-541, 2008.

C. E. Rasmussen and C. Williams, Gaussian Processes for Machine Learning, 2006.

. R-core-team, R: A Language and Environment for Statistical Computing. R Foundation for Statistical Computing, 2019.

O. Roustant, D. Ginsbourger, and Y. Deville, DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization, Journal of Statistical Software, vol.51, issue.1, pp.1-55, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00495766

J. Sacks, W. J. Welch, T. J. Mitchell, and H. P. Wynn, Design and Analysis of Computer Experiments, Statistical Science, vol.4, issue.4, pp.409-423, 1989.

S. Seo, M. Wallat, T. Graepel, and K. Obermayer, Gaussian Process Regression: Active Data Selection and Test Point Rejection, Proceedings of the International Joint Conference on Neural Networks, vol.III, pp.241-246, 2000.

A. Shah, A. Wilson, and Z. Ghahramani, Student-t Processes as Alternatives to Gaussian Processes, Proceedings of the Seventeenth International Conference on Artificial Intelligence and Statistics, vol.33, pp.877-885, 2014.

B. Shahriari, K. Swersky, Z. Wang, R. P. Adams, and N. De-freitas, Taking the Human out of the Loop: A Review of Bayesian Optimization, Proceedings of the IEEE, vol.104, issue.1, pp.148-175, 2016.

E. Snelson and Z. Ghahramani, Sparse Gaussian Processes Using Pseudo-Inputs, Advances in Neural Information Processing Systems, pp.1257-1264, 2005.

J. Snoek, H. Larochelle, and R. P. Adams, Bayesian Optimization of Machine Learning Algorithms, Neural Information Processing Systems (NIPS), 2012.

E. Vazquez, J. Villemonteix, M. Sidorkiewicz, and E. Walter, Global Optimization Based on Noisy Evaluations: An Empirical Study of Two Statistical Approaches, Journal of Physics: Conference Series, vol.135, p.12100, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00278188

W. N. Venables and B. D. Ripley, Modern Applied Statistics with S. Fourth edition, 2002.

Z. Wang, J. Q. Shi, and Y. Lee, Extended T-Process Regression Models, Journal of Statistical Planning and Inference, vol.189, pp.38-60, 2017.

G. Xie and X. Chen, A Heteroscedastic T-Process Simulation Metamodeling Approach and its Application in Inventory Control and Optimization, Simulation Conference (WSC, pp.3242-3253, 2017.

J. Xie, P. Frazier, and S. Chick, Assemble to Order Simulator, 2012.

A. Zeileis, K. Hornik, and P. Murrell, Escaping RGBland: Selecting Colors for Statistical Graphics, Computational Statistics & Data Analysis, vol.53, issue.9, pp.3259-3270, 2009.