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Abstract

The integration of sensors in future intelligent habitats as well as on people with the objective of
helping them in their daily tasks is a concept that has become common.

This concept is based on the deployment of sensor networks in the environment ( oor tiles,
cameras, RFID...) that became active and communicating, in addition to wearable sensors carried
by people (inertial unit, Gyroscope ...).

The work carries out the global task of assistance to the person which breaks down into several
functions, amongst them are: the sure and reliable localization of pedestrians and the tracking
of movements of static and dynamic objects. For the methodological part, it primarily consists
of developing robust fusion algorithms for the localization of one or more persons. However,
recognition generally fails when several people stand or walk together, preventing successful tracking.
This work provides a tracking and association technique which uses the previous state information
to associate between tracks. Secondly, a fault tolerance part, consists of integrating a layer of
diagnosis for detection and identi�cation of sensor faults to ensure a safe and reliable system using
informational based approaches (using KL divergence for example for information measures).

From the standpoint application, a part of this project is dedicated to data acquisition campaigns
on the smart apartment platform of INRIA Nancy - Grand Est. Data fusion algorithms will be
tested and validated with real data.

This Project is carried out within the framework of a collaboration between the Lebanese
University, the laboratory CRIStAL and INRIA Nancy Grand-Est.

Keywords: Sensor Fusion, Informational Filter, Multi-person Tracking, Sensing Floors, Inertial
Sensors ...



Resum�e

L'int�egration de capteurs communicants (sols tactiles, cam�eras, RFID, capteurs domotiques...)
devraient se g�en�eraliser dans les habitats du futur avec pour objectif d'aider les occupants dans
leurs tâches quotidiennes. Certains capteurs pourront �egalement être int�egr�es dans les vêtements
des utilisateurs ou simplement port�es (montre ou ceinture connect�ees, ...), capteurs dans lesquels
on pourra int�egrer des centrales inertielles ou autres gyroscopes.

Le travail propos�e dans ce m�emoire e�ectue une tâche d'assistance �a la personne qui se d�ecompose
en plusieurs fonctions telles que : la localisation sûre et �able de personnes et le suivi des mouvements
d'objets statiques et dynamiques. Pour la partie m�ethodologique, elle consiste tout d'abord �a
d�evelopper des algorithmes de fusion pour la localisation d'une ou plusieurs personnes. Cependant,
le suivi est particuli�erement di�cile et il �echoue g�en�eralement lorsque plusieurs personnes se tiennent
ou marchent �a proximit�e. Ce travail pr�esente une technique de suivi qui utilise les �etats pr�ec�edents
pour associer les observations aux di��erentes pistes posiibles. Dans un second temps nous nous
sommes int�eress�es �a la tol�erance aux fautes. Pour cela nous avons int�egr�e une couche de diagnostic
pour la d�etection et l'identi�cation des d�efauts capteurs. Cela permet de garantir un fonctionnement
sûr et �able. Le cadre th�eorique choisi est celui des �ltres informationnels (en utilisant la divergence
KL, par exemple pour les mesures d'information).

Une partie importante de ce projet a �et�e d�edi�ee �a l'acquisition des donn�ees capteurs sur la
plate-forme Habitat Intelligent de l'INRIA Nancy - Grand Est. Les algorithmes de fusion de
donn�ees ont donc �et�e test�es et valid�es avec des donn�ees r�eelles.

Ce projet est r�ealis�e dans le cadre d'une collaboration entre l' Universit�e libanaise, les laboratoires
CRIStAL et le Loria et l'INRIA Nancy Grand-Est.

Mots-cl �es: Fusion multi-capteurs, Filtre informationnel, Suivi multi-personnes, Capteurs de force,
Capteurs inertiels ...
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Chapter 1

Introduction

1.1 AAL Systems

In recent years, there has been a rapid introduction of new assisted living technologies due to a

rapidly aging society. In fact, it is estimated that in 2060, the elderly are expected to account

for 29.5 % of the total population in the EU-27. Altogether, the population of elderly people will

almost double from 87.5 million in 2010 to 152.6 million in 2060 [1], while in the USA the population

is also expected to become much older. By 2030, more than 20 % of U.S. residents are projected to

be aged 65 and over, compared with 13 % in 2010 and 9.8 percent in 1970. [2]. In addition, people

over 85 years usually require continuous monitoring. Therefore, taking care of elderly people has

become a challenging and very important issue.

Ambient assisted living (AAL) can be de�ned as \the use of information and communication

technologies (ICT) in a person's daily living and working environment to enable them to stay active

longer, remain socially connected and live independently into old age"1.

This �eld of research is growing rapidly. Enormous projects have been launched conducive to the

establishment of novel AAL systems, aiming to grant several functionalities to the target users

through taking advantage of new developments in sensor technology, reducing sizes and costs, and

increasing processing power in computing devices.

The AAL research community borrows from a more mature �eld of research using a variety of

sensors for activity recognition and behavior understanding, sensing directly via wearable sensors

or indirectly through environmental sensors and analyzing the streaming data to infer something

about the physical or cognitive status of the person observed.

Wearable sensors are employed in activity recognition, Inertial measurement units (IMUs) are

the most frequently encountered. Due to the integration in most smartphones, they have been

opportunistically used for activity recognition such as the sitting, walking, and running activities.

1goto www.aal-europe.eu
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It's often necessary to locate an object or a person. The precision of the required localization

varies from coarse (room level) to a more precise location within a room. Coarse location is

provided by sensors that track motion (for single or low occupancy environments) or via radio-based

technology.

More precise indoor localization and tracking can be achieved by using other types of sensors,

e.g. sensing oor sensors, which that can serve to locate the person or multiple persons within an

apartment, therefore we will talk about later it in the next chapters.

1.2 Positioning and tracking approaches

Positioning involves accurate localization of elderly people, including in both indoor and outdoor

locations. There are several well established and widely used navigation systems for outdoor

positioning, such as the Global Positioning System (GPS), the Global Navigation Satellite System

(GLONASS), Galileo Positioning System (GALILEO) and BeiDou Navigation Satellite System

(BDS). All of these are satellite-based systems for which ground-based sensors rely on signals from

at least four satellites to estimate user coordinates. These technologies are currently accurate to

approximately several meters for outdoor scenarios; however, they cannot be used to determine

precise indoor locations because of the signi�cant attenuation of satellite signals in buildings.

The current indoor positioning of satellite-based systems present a highly unacceptable error

margin. Hence, the existing satellite-based positioning technologies can meet the demands of elderly

care only for outdoor scenarios.

For elderly care scenarios, precise indoor positioning should work continuously in real-time. In

recent decades, numerous indoor positioning approaches, such as Bluetooth, WiFi/WLAN, radio

frequency identi�cation (RFID), ultra-wideband (UWB), have been developed; However, these

vary greatly in terms of their resolution, coverage, precision, technology, scalability, robustness,

and security.

Considering the special demands of elderly care, solutions can be selected or developed by using

existing technologies to address the problems. For example, through fusing two or more types of

the existing technologies (see Fig. 1.1) using proper algorithm, the performance of the positioning

system will be improved to a certain extent [4].
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Figure 1.1: Indoor positioning technologies categorized by Mautz [3]

1.3 Previous Work

1.3.1 Existing Work

Several computing techniques and sensor technologies have been proposed in the past two decades

to provide indoor localization systems for personal in-home staying. This �eld is quite challenging

due to some faulty sensor measurements as well as people's random movements. Several projects
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are developed around the world on this topic using multisource data fusion. In addition, there

are many survey papers in the literature that present the latest indoor localization systems. In

this section, we present some of papers working on the indoor localization aspect using di�erent

approaches.

In 2005, Nishkam Ravi and Liviu Iftode proposed a method for Indoor Localization Using

Camera Phones where the location of the user is determined by comparing the received images

with images stored in a database [5]. Fuqiang Gu, Milad Ramezani proposed also a method for fast

and Reliable WiFi Fingerprint Collection for Indoor Localization [6]. Qigao Fan and Hai Zhang

proposed an Improved Pedestrian Dead Reckoning Based on a Robust Adaptive Kalman Filter for

Indoor Inertial Location System [7].

1.3.2 Work Continuity

Several works have been previously developed to localise, identify, and track: people, robots, and

objects inside the INRIA smart apartment using the sensing oor prototype developed at Inria

Nancy. This work represents a continuity of the previous developed work.

In 2016, Maxime Rio, Francis Colas, and Mihai Andries proposed a method for a probabilistic

sensor data processing for robot localization on load-sensing oors [8]. It consists to track even

the lighter robots with less than 4 cm of error. However, large-scale deployments necessitate cheap

sensors which do not necessarily o�er the same precision. With more noisy sensors, lighter robots

might be di�cult to track and precisely localize.

For this reason, in 2017, Mohamad Daher proposed a personal Localization System Based on

Informational Formalism using data fusion between a simulated inertial measurement unit and a

load pressure sensing oor [9]. In addition, a fault-tolerant fusion method is proposed using a purely

informational formalism. The simulated inertial unit data are calculated using a camera-based

sensing approach. By means of the mass center coordinates extracted from a simple RGB-D

camera. Such proposition has the disadvantage that the privacy of the users can not be insured,

and the integration of camera-based architecture inside large indoor places is not very easy to

maintain.

1.3.3 Key contributions

This internship provides several contributions, that consist of innovative approaches for fusing

load-sensing oor with multiple inertial measurement units (IMU) to localize one or more people

walking inside the apartment . More precisely, the internship provides:
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� Real Dataset gathering using data from the smart tiles, 6-axis inertial unit integrated inside

a smart watch, and T-sens motion capture unit.

� Developing a robust prediction and observation model to fuse the multiple sensors using an

informational formalism.

� Applying Bio-mechanical transformation using the "Inverted Pendulum model of human gait".

� Developing association and identi�cation techniques to localize and track multiple pedestrians

walking in the same time inside the apartment.

� Proof of concept and work validity using Force Plates for Ground Truth evaluation.
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Chapter 2

Sensors in use

2.1 The INRIA Nancy - Grand Est SmartTiles

The Inria SmartTiles is a sensing oor prototype, conceived as a part of a bigger study of the habitat

of the future (see Fig. 2.1). The oor is integrated into a real size mock-up of smart apartment,

where spatially localised pressure sensing, memory, and computing power, are provided.

2.1.1 Architecture of the Inria SmartTiles prototype

The Inria SmartTiles prototype is a tiled sensing oor. The tiles are rigid, and have a size of 0.6 m

by 0.6 m. Each tile can sense pressure, as well as memorise, compute and transmit data. Besides

being equipped with a set of sensors, each tile also has an on-board processing unit, as well as a

wireless and wired connection, which provides electric power.

Figure 2.1: A 3D model of the "Intelligent Apartment" prototype located at Inria Nancy
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There exists a total of 104 tiles inside the smart appartment numerated as shown in Fig. 2.2.

Figure 2.2: Tiles distribution inside the smart apartment.

2.1.2 Sensors embedded in the tile

Each tile is equipped with:

� 4 pressure sensors located at the corners of the tile.

� 1 accelerometer in the center of the tile.

� 1 magnetometer.

The pressure sensors employed (strain gauge load cells) measure the load forces exerted on the

oor. The embedded accelerometers detect shocks that can be caused by objects or humans falling

on the ground. The magnetometers serve to detect metallic masses located on the tiles, such as

robots. Each tile also has 16 light-emitting diodes that provide visual feedback. The sensors are

queried periodically for measurement data, with a sampling frequency around 50 Hz.

2.1.3 Speci�cation of the load sensor

The Inria SmartTiles employ load sensors of the brand SparkFun SEN-10245, illustrated in (Fig.

2.3). The speci�cation of this sensor is shown in (Fig. 2.4). The load sensors of the tile are
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Figure 2.3: Image of the SparkFun SEN-10245
load sensor

Figure 2.4: The SparkFun SEN-10245 load
sensor speci�cations

subjected to noise. The measurement error of individual sensors is comprised between� 1:25 Kg,

with the combined measurement error typically oscillating between� 2 Kg. This noise level will be

used after to calculate the threshold for tiles activation.

2.2 Inertial Measurement Units

The term inertial sensor is used to denote the combination of a three-axis accelerometer and

a three-axis gyroscope. Devices containing these sensors are commonly referred to as inertial

measurement units (IMUs).

Figure 2.5: Inertial Measurement Unit
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A gyroscope measures the sensor's angular velocity, i.e. the rate of change of the sensor's

orientation.

An accelerometer measures the external speci�c force acting on the sensor. The speci�c force

consists of both the sensor's acceleration and the earth's gravity. Nowadays, many gyroscopes and

accelerometers are based on microelectromechanical system (MEMS) technology.

MEMS components are small, light, inexpensive, have low power consumption and short start-up

times. Their accuracy has signi�cantly increased over the years.

2.2.1 Connected Watch { TicWatch: Wear OS by Google

One of the most popular wearable devices used in indoor localization is the smart-watch. In part,

its popularity comes down to the fact that it can be seen as an extension of a smart-phone, which, at

the same time, its main advantage is to be a regular device, that it looks like a common watch easy

to wear and use. Another advantage is that a smart-watch is always attached to the user, roughly

speaking, one is less likely to forget a smart-watch on top of the beside table that a smart-phone.

Figure 2.6: TicWatch E2

The watch used is the TichWatch E21 (Fig. 2.6). This smart-watch runs Android Wear OS2, it's

a version of Google's Android operating system designed for smart watches. These watches have

built-in sensors that measure motion, orientation, and various environmental conditions, capable

of providing raw data with high precision and accuracy. Embodies a WiFi chip that is accessible

through Android API, GPS, 3-axis accelerometer, 3-axis gyroscope and linear acceleration

measurement with a frequency rate that can reach 100 Hz as maximum. Connectivity

is supported through WiFi and Bluetooth. The resolution of its 1.39" 400 x 400 pixels, battery

duration around 48h, and it costs less than 150 $ at the time of this writing.

1seehttps://www.mobvoi.com for more informations.
2https://wearos.google.com
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Figure 2.8: TEA CAPTIV T-REC

2.2.2 TEA CAPTIV { T-Sens Motion (IMU)

T-Sens Motion (Fig. 2.8) combines accelerometers, gyroscopes, magnetometers using powerful

fusion algorithms. The measurements are extremely robust over time against vibrations, variations

in the magnetic �eld and disturbed environments. The T-sens motion IMUs are wireless sensors

with easy and unobtrusive �xation system. They can measure the orientation where the raw data

is available as rotation quaternion. The Sampling rate is 64 Hz, battery recording time can reach

4h and dimensions of: 60 mm x 35 mm x 19 mm.

Figure 2.7: T-sens Motion IMU

The Key importance of T-sens sensor is the easy ability of synchronization between multiple

T-sens sensors. T-Rec (Fig. 2.7) allows acquisition and synchronization of measurements from 1

to 16 wireless sensors.
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Chapter 3

Sensor Fusion

3.1 De�nition and Motivation

Sensor Fusion is the combining of sensory data or data derived from sensory data such that the

resulting information is in some sense better and has less uncertainty than would be possible when

these sources were used individually [10].

Figure 3.1: Block diagram of sensor fusion

Systems that employ sensor fusion methods expect a number of bene�ts over single sensor

systems. A physical sensor measurement generally su�ers from the following problems:
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� Sensor Deprivation: The breakdown of a sensor element causes a loss of perception on the

desired object.

� Limited spatial coverage: Usually an individual sensor only covers a restricted region.

� Limited temporal coverage: Some sensors need a particular set-up time to perform and

to transmit a measurement, thus limiting the maximum frequency of measurements.

� Imprecision: Measurements from individual sensors are limited to the precision of the

employed sensing element.

� Uncertainty: Uncertainty, in contrast to imprecision, depends on the object being observed

rather than the observing device. Uncertainty arises when features are missing (e. g.,

occlusions), when the sensor cannot measure all relevant attributes of the percept, or when

the observation is ambiguous [11]. A single sensor system is unable to reduce uncertainty in

its perception because of its limited view of the object [12].

One solution to the listed problems is to use sensor fusion system which, is robust behavior

against sensor deprivation can be achieved by using sensors with overlapping views of the desired

object. This works with a set of sensors of the same type as well as with a suite of heterogeneous

sensors (Fig. 3.1).

3.2 Kalman Filter

Kalman �ltering is an algorithm that uses a series of measurements observed over time, containing

statistical noise and other inaccuracies, and produces estimates of unknown variables that tend to

be more accurate than those based on a single measurement alone, by estimating a joint probability

distribution over the variables for each timeframe.

The Kalman �lter remains an important tool to fuse measurements from several sensors to

estimate in real-time the state of a robotic system.

Kalman �lters are ideal for systems which are continuously changing. They have the advantage

that they are light on memory (they don't need to keep any history other than the previous state),

and they are very fast, making them well suited for real time problems and embedded systems [13].

A stochastic time-variant linear system is described by the di�erence equation and the observation

model:

xk = xk� 1 + Ak� 1uk� 1 + wk� 1

zk = Hkxk + vk
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Where the control input uk is a known nonrandom vector. The initial state x0 is a random vector

with known mean � 0 = E[x0] and covariance P0 = E[(x0 � � 0)(x0 � � 0)T ]. In the following

we assume that the random vectorwk captures uncertainties in the model andvk denotes the

measurement noise.

3.2.1 Kalman �lter algorithm for a simplistic localization scenario

Suppose a robot moves along the horizontal axis with positionp and velocity v. The state x is

represented by:

x =

2

4p

v

3

5

We do not know what is the actual position and velocity, there is a whole range of possible

combinations that might be true, but some of them are more likely than others. The Kalman

�lter assumes that variables are random and Gaussian distributed. Each one has a mean value� ,

which is the center of the random distribution, and a variance� 2 which represents the uncertainty.

Next, we need a way to look at the current state (at time k-1) and predict the next state at

time k. The prediction function works on the state variables and gives us a new distribution, We

can represent this prediction step with a matrix Fk .
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We might have several sensors which, give information about the state of our system. The

sensors operate on a state and produce a set of measurements.

The units and scale of the reading might not be the same as the units and scale of the state

we're keeping track of. We have to model the sensors with a matrix,Hk .

3.2.2 Equations Generalization

Dimension and description of variables:

X k n � 1 State vector

Fk n � n State Matrix

Bk n � l Input Matrix

uk l � 1 Input Vector

wk n � 1 Process noise vector

Qk m � n Process noise Matrix

Zk m � 1 Observation vector

Hk m � n Observation Matrix

vk m � 1 Measurement noise vector

vk m � 1 Measurement noise vector

Rk m � m Measurement noise covariance matrix
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Figure 3.4: Kalman Filter Block Diagram

The sequential algorithm of KF (Fig. 3.4) is composed of two steps:Prediction step given

by the total probability theorem and Correction step calculated by the Bayes Rule.

Prediction Step:

The estimation of the state X k=k� 1 and the covariance matrix Pk=k� 1 of the system is realized

as follows:

X k=k� 1 = Fk� 1X k� 1=k� 1 + Bk� 1uk� 1 (3.1)

Pk=k� 1 = Fk� 1Pk� 1=k� 1Fk� 1
T + Qk� 1 (3.2)

Correction Step:

X k=k = X k=k� 1 + Wk (Zk � HkX k=k� 1) (3.3)

Pk=k = Pk=k� 1 � WkSkWk
T = ( I � WkHk )Pk=k� 1 (3.4)

Wk = Pk=k� 1Hk
T Sk� 1 (3.5)

Sk = HkPk=k� 1Hk
T + Rk (3.6)

3.2.3 KF Limitations

The KF is a linear �lter that can be applied to a gaussian linear system. Unfortunately, linear

systems do not exist in real life. Eventually we run across a system that does not behave linearly

even over a small range of operation, and the standard KF no longer gives good results. In this

case, we need to study a variant of kalman �lter called Extended Kalman Filter.
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3.3 Extended Kalman Filter

The extended Kalman �lter (EKF) is the nonlinear version of the Kalman �lter which linearizes

about an estimate of the current mean and covariance [14]. The state transition and observation

models don't need to be linear functions of the state but may instead be di�erentiable functions.

Consider the system de�ned by the following non-linear equations:

X k+1 = f (X k ; uk ) + wk (3.7)

Zk = h(X k ) + vk (3.8)

Prediction Step:

In order to apply the Kalman �lter, a linearization around the estimated trajectory is necessary in

order to obtain a linear model of the error.

X k=k = f (X k� 1=k� 1; uk� 1) (3.9)

Pk=k� 1 = Fk� 1Pk� 1=k� 1Fk� 1
T + Qk� 1 (3.10)

where Fk represent the Jacobian Matrix of f (.): Fk� 1 =
@f
@X

�
�
�
�
X = X k � 1=k � 1

Correction Step:

In order to apply the Kalman �lter, a linearization around the estimated trajectory is necessary in

order to obtain a linear model of the error.

X k=k = X k=k� 1 + Wk (Zk � h(X k=k� 1)) (3.11)

Pk=k = Pk=k� 1 � Wk [HkPk=k� 1Hk
T + Rk ]Wk

T (3.12)

Wk = Pk=k� 1Hk
T [HkPk=k � 1Hk

T + Rk ]
� 1

(3.13)

where Hk represents the Jacobian Matrix of h (.): Hk =
@h
@X

�
�
�
�
X = X k � 1=k � 1

3.4 Informational Form (IF) of Kalman Filter

The informational �lter uses the informational form of the state vector and the matrix of covariances

named respectively informational vector (y) and matrix informational ( Y ). It's the same of Kalman

Filter from a mathematical approach. It's composed also from two steps, theprediction step

coming from model prediction and thecorrection step coming from measurement observation.
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Prediction Step:

Yk=k� 1 = [ Fk� 1Yk� 1=k� 1Fk� 1
T + Qk� 1]

� 1
(3.14)

yk=k� 1 = Yk=k� 1[Fk� 1X k� 1=k� 1 + Bk� 1uk� 1] (3.15)

= Yk=k� 1[Fk� 1Yk� 1=k� 1
� 1yk� 1=k� 1 + Bk� 1uk� 1] (3.16)

Correction Step:

I � WkHk = Pk=kPk=k� 1 (3.17)

IF update:

Yk=k = Yk=k� 1 + Hk
T R� 1Hk (3.18)

I k = Hk
T R� 1

k Hk (3.19)

3.4.1 Informational Filter (IF) advantages

Table 3.1: KF Versus IF

KF IF
P ! 1 if there is total uncertainty P ! 0 if there is total uncertainty

(Better not working with 1 matrices) (0 is better for calculations)
Do an observation step for each new observation Linear combination of all the observations

and calculate all the matrices using simple summation
(The observations are correlated with (The observations are not correlated

the previous states) with the previous states)
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Chapter 4

DataSet Gathering

One of the most time consuming task of this internship is the acquisition of real data coming from

the tiles and IMU sensors. Many experiments were carried out inside the INRIA apartment, for

one and two people walking together at the same time, in the form of a loop and crossing in the

same tile, for a walk in a straight line and for a person moving his body in the area of a single tile.

Every person was wearing a connected watch and the T-sens IMU.

The experiments have been recorded using the kinect cameras (see Fig. 4.1) as a proof of concept,

but the data from kinects are not included in the fusion algorithm.

Figure 4.1: Experiment of two persons walking in the apartment

18



Figure 4.2: Snapshot from tiles Data

4.1 Smart-Tiles raw Data

The various nodes employed in the ambient intelligence tasks inside the smart apartment use Robot

Operating System (ROS) for intercommunication. The format of the data sent by each tile is as

follows:

Table 4.1: Data Format for each Tile

Sensor Type Sensor IP msg ID Timestamp W1 W2 W3 W4
Gauge 192.168.1.24 7090 1561995527 1639 1973 1690 2092

The �nal form of Data for all the tiles inside the apartment is given by: timestamp 4x104

values (see Fig. 4.2).

4.1.1 Load sensors Data Processing

The Data coming from the Rosbag File in (Fig. 4.2) is splitted, and indexed and ordered by the

Timestamp value and Tile ID.

The (Fig. 4.3) is the distribution of Load Sensors value during the time of the experiment. As

we can see the 4 Load sensors are not well calibrated at the beginning (W4 is always lower from

the other load sensors even if we have a change in the values). A normalization step must be

done before. All the sensors are maintained to zero mean value in order to calculate correctly the

position of the person on each tile (Fig. 4.4).

4.1.2 Tiles Selection

During walking on oors, all the data given from the load sensors are registered at each time, so a

selection method has to be applied to select the tile or the group of tiles on which a person or group
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Figure 4.3: Load Distribution Before Normalization Figure 4.4: Load Distribution after Normalization

of persons are standing or walking on. The idea here is to apply a right thresholding technique

to compare each time the value of the total weight on a tile (� Wi ) with the calculated threshold.

If the total applied weight is bigger from the threshold, so the tile is selected and enters in the

observation vector later.

The Threshold can be deduced according to the noise value on the Tiles. An experiment is done

before on the Tiles to calculate the noise distribution using various weights. The results show that

the noise are linearly dependent with the weight applied on the tile (see Fig. 4.5) and that the

(� Wi ) is gaussian distributed (see Fig. 4.6).

Figure 4.5: Weight distribution tracing Figure 4.6: Barycentre Position using a di�erent color
for each tile
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Figure 4.7: Dead-reckoning, where the accelerometer measurements (external speci�c force) and
the gyroscope measurements (angular velocity) are integrated to position and orientation.

4.2 IMU Data from the Connected Watch

Inertial sensors are frequently used for navigation purposes wherethe position and the orientation

of a device are of interest. Integration of the gyroscope measurements provides information about

the orientation of the sensor. After subtraction of the earth's gravity, double integration of the

accelerometer measurements provides information about the sensor's position.

To be able to subtract the earth's gravity, the orientation of the sensor needs to be known. Hence,

estimation of the sensor's position and orientation are inherently linked when it comes to inertial

sensors. The process of integrating the measurements from inertial sensors to obtain position and

orientation information, often called dead-reckoning (Fig. 4.7). If the initial pose would be known,

and if perfect models for the inertial sensor measurements would exist, the process illustrated in

(Fig. 4.7) would lead to perfect pose estimates. In practice, the inertial measurements are noisy

and biased. Because of this, the integration steps from angular velocity to rotation and from

acceleration to position introduce integration drift. The drift is illustrated in (Fig. 4.8) and (Fig.

4.9) [17]. Because of this, inertial sensors need to be supplemented with other sensors and other

models to obtain accurate position and orientation estimates.

Figure 4.8: Integrated orientation for the position in
x- (blue), y- (green) and z- direction (red)

Figure 4.9: Integrated position for rotation around
the x(blue), the y(green) and the z(red) -axis
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4.2.1 Android API

An Android application has been developed to access the Sensor Manager built into the watch.

The application writes, in the internal storage of the watch, the value of the linear acceleration and

angular velocity on event change, with a maximum frequency of 100 Hz.

4.2.2 Time Synchronization

We can't use \currentTimeMillis" function or equivalent directly in the \onSensorChange" function

because when we get there, the measure may have been accomplished long before. A proposed

solution is to record the associated timestamp (event.timestamp), for each measure, which gives us

the most reliable time. But the origin here is the origin of the watch's start time with a possible

drift depending on the quality of the clock of the watch. To estimate the di�erence between this

time and the true time, we have to calculate:

tnow = System.currentTimeMillis () to = SystemClock.elapsedRealtimeNanos()

tnow � to (returned to the same units) will give us an estimate of the absolute start time;

So the absolute time istabs = tnow � to+ event.timestamp.

4.3 T-Sens Motion (IMU) Data

The T-sens IMU sensor is calibrated using the Captiv Software, and the data are recorded and

saved as .csv �le extension.

Figure 4.10: T-sens Data
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Figure 4.11: Wearable Sensors Position

A snapshot of the data is given in (Fig. 4.10), As we see The T-sens sensors return a quaternion

vector [qx; qy; qz; qw] every 0.015625 sec. The quaternion values are transformed to Rotation

Matrix, giving us the 3 euler angles Roll, Pitch, and Yaw.

4.4 Sensors Location

The watch and T-sens sensors are mounted on the belt (from the front and back side of the waist)

as shown in (Fig. 4.11). So we can suppose that the IMU sensor is measuring the position of

the center of gravity (center of mass). But for the fact that the Tiles give information about the

position of the center of pressure, we must transform the position of the center of mass calculated

from the IMU to the position of the projection of the center of pressure in the oor plan, and after

that we can do the fusion between the 2 sensors.
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Chapter 5

Proposed Models

5.1 Bio-mechanical Transformation

As we mentionned before (in section 4.4) a transformation have to be applied to transform the

centre of mass(CoM) value to the projection of the centre of pressure(CoP). By de�nition, The

�eld of pressure forces (normal to the sole) is equivalent to a single resultant force, exerted at the

point where the resultant moment is zero , this point is termed CoP [21]. The CoP can be

calculated based on the kinematics of the COM.We assume an inverted pendulum model

with all mass at the COM location with a reaction force applied at the actual, global center of

pressure of supporting foot (or feet when double support period) [16].

the (x,y) coordinate of which the CoP are

described as:

xCOP = xCOM �
•xCOM

•zCOM + g
zCOM (5.1)

yCOP = yCOM �
•yCOM

•zCOM + g
zCOM (5.2)
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5.2 Work Strategy

In this work, the data coming from the Accelerometer and Gyroscope of the watch will feed the

prediction model, and the data coming from the tiles and the T-sens imu will be considered in the

correction state to correct our predicted position (Fig. 5.1).

Figure 5.1: Work strategy

5.3 Prediction model - The velocity model

The velocity motion model assumes that we can control a robot through two velocities, rotational

and translational velocities. This approach can be applied in the same manner for pedestrians if

we consider that the linear and angular velocities are given (or calculated) from the IMU. We will

denote the linear velocity at instant k by vk , and the angular velocity by wk [18]. Hence, we have:

uk =

2

4 vk

wk

3

5

As mentioned before, the linear velocity can be calculated as the �rst integral of the linear

acceleration coming from the accelerometer:

vkx = vkx 0 + akx � t (5.3)

vky = vky0 + aky � t (5.4)

vk =
q

vkx
2 + vky

2 (5.5)
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The angular velocity wk is obtained directly from the Gyroscope measurement. The velocity model

equations, when the change in angular rate is considered as part of the motion , can be

summarized by: (The mathematical derivation is given in Appendix A)

x f = x0 +
v
w

(sin(� 0 + w� t) � sin(� 0)) (5.6)

yf = y0 +
v
w

(cos(� 0) � cos(� 0 + w� t)) (5.7)

� f = � 0 + w� t (5.8)

The state vector xk of the person is considered to be the position (x; y) and the orientation ( � ).

X k =
h
xk yk � k

i T

The propagation model is given as follows:X k+ =k = X kk + Akuk + wk

where X k+1 =k is the estimate of X at instant k + 1 given observations up to instant k, Ak is the

input matrix, uk is the input vector de�ned before, and wk is the process state noise modeled as

Gaussian white noise with zero mean and covarianceQk .

X k+1 =k =

2

6
6
6
4

xk

yk

� k

3

7
7
7
5

+

2

6
6
6
6
4

vk

wk
(sin(� k + wk � t) � sin(� k ))

vk

wk
(cos(� k ) � cos(� k + wk � t))

wk � t

3

7
7
7
7
5

+ wk = f (X k ; uk ) + wk

Since the model is nonlinear, the EIF is applied. Therefore, the Jacobian matricesFk =
@f
@X

�
�
�
�
X = X k=k

and Bk =
@f
@u

�
�
�
�
uk

are computed.

Fk =

2

6
6
6
6
4

1 0
vk

wk
(cos(� k + wk � t) � cos(� k ))

0 1
vk

wk
(sin(� k + wk � t) � sin(� k ))

0 0 � t

3

7
7
7
7
5

(5.9)

Bk =

2

6
6
6
6
6
4

sin(� k + wk � t) � sin(� k )
wk

vk

wk
2 (sin(� k ) � sin(� k + wk � t)) +

vk

wk
� t cos(� k + wk � t)

cos(� k ) � cos(� k + wk � t)
wk

vk

wk
2 (cos(� k + wk � t) � cos(� k )) +

vk

wk
� t sin(� k + wk � t)

0 � t

3

7
7
7
7
7
5

(5.10)
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The covariance matrix corresponding to this evolution model is the following:

Pk+1 =k = FkPk=kFk
T + Bk (Qu)k (Bk )T + Qk

Therefore, the informational matrix denoted Yk+1 =k and the information vector denoted yk+1 =k can

be calculated as the following:

Yk+1 =k = P � 1
k+1 =k (5.11)

yk+1 =k = Yk+1 =kX k+1 =k (5.12)

5.4 Observation Model { Correction step

The fusion of the load pressure sensors and T-sens observations with the data coming from IMU

model is carried out using IF:

Yk=k = Yk=k� 1 +
NX

i =1

I i (k) (5.13)

yk=k = yk=k� 1 +
NX

i =1

i i (k) (5.14)

I i (k) = H i;k
T Ri

� 1(k)H i;k (5.15)

i i (k) = H i;k
T Ri

� 1(k)[(Z i;k � Ẑ i;k ) + H i;k X k=k� 1] (5.16)

where I i (k) and i i (k) are the informational contributions associated with the measurement of the

ith sensor,H i;k is the ith line of the matrix Hk , N is the number of sensors( the number of pressure

sensors under the tile + the t-sens sensor). The noise associated with the sensors is assumed to be

uncorrelated. And each noise is assumed to be gaussian white noise of zero mean and a covariance

matrix Ri . Z matrix is composed of the pressure sensors received and the yaw angle from the t-sens

sensor, Ẑ is the estimated value of the pressure sensors and the heading angle coming from the

prediction model.

Z =
h
W Y aw

i T
=

h
W1 W2 W3 W4 Y aw

i T

Ẑ =
h
Ŵ �

i T
=

h
Ŵ1 Ŵ2 Ŵ3 Ŵ4 �

i T

5.4.1 W estimated Matrix

Ŵ is given by the following matrix 5.17 (The mathematical derivation is given in Appendex B),

where: (xL ; yL ) are the local position of the center of pressure considering inside a speci�c tile

Master of Research Report { 2019 Page 27



having identi�er ( id = i ): xL = x � L [(i � 1)%n] = x � k1 yL = y � L [(i=n)] = y � k2

where: (x; y) are the global coordinates of the person coming from the prediction state. L is the

tile length , and n is the total number of tiles in a row.

Ŵ =

2

6
6
6
6
6
4

Ŵ1

Ŵ2

Ŵ3

Ŵ4

3

7
7
7
7
7
5

=
1

L 2

2

6
6
6
6
6
4

W � (L � xL )(L � yL )

W � (xL )(L � yL )

W � (xL )(yL )

W � (L � xL )(yL )

3

7
7
7
7
7
5

=
1

L 2

2

6
6
6
6
6
4

W � (L � x + k1)(L � y + k2)

W � (x � k1)(L � y + k2)

W � (x � k1)(y � k2)

W � (L � x + k1)(y � k2)

3

7
7
7
7
7
5

(5.17)

5.4.2 W measured calculation

When it comes to calculate the measurement vector, the �rst approach is directly using the value

of the 4 load sensors of the tile the person is standing on. But in most cases, the person is standing

on multiple tiles at the same time. By tracking the location of the centre of pressure of the person,

we can calculate the resultant force distributed on the 4 load sensors of the tile that the (x; y)

coordinates of the CoP belong to.

The (x; y) coordinates of the CoP are estimated using the Barycentre equation:

0

@xCoP

yCoP

1

A =

P
Wi

0

@x i

yi

1

A

P
Wi

(5.18)

where (x i ; yi ) are the absolute coordinates of each sensor. After knowing the CoP coordinates and

identifying the tile i on which it's located, the resultant Virtual Net Force becomes the

same problem of the Ŵ calculation and can be solved using the (5.17) matrix equation.

5.4.3 Observation Matrix

Because the observation model is nonlinear, its linearization around the predicted pose yields the

Jacobian: Hk =
@h
@X

�
�
�
�
X = X k=k � 1

=
h

@W1
@Xk

@W2
@Xk

@W3
@Xk

@W4
@Xk

@Y aw
@Xk

i

Hk =
1

L 2

2

6
6
6
6
6
6
6
6
4

� W (L � y + k2) � W (L � x + k1) 0

W (L � y + k2) � W (x � k1) 0

W (y � k2) W (x � k1) 0

� W (y � k2) W (L � x + k1) 0

0 0 1

3

7
7
7
7
7
7
7
7
5
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Chapter 6

Multi-person localization

Tracking multiple persons in dynamic, uncontrolled environments such as indoor places, has important

applications and especially for elderly people. In a cluttered environment, the received measurements

may not all arise from the real targets. Some of them may be from clutter or false alarm. As a

result, there will always exist ambiguities in the association between the previous known targets

and measurements. Assigning wrong measurements to tracks often results in lost tracks and track

breaks [19].

For these reasons, techniques dealing with data association have received much attention in

multiple target tracking (MTT) research. There are many data association techniques used in

MTT systems ranging from the simpler nearest-neighbor approaches to the very complex multiple

hypothesis tracker (MHT). The simpler techniques are commonly used in MTT systems, but their

performance degrades in clutter. The more complex MHT provides improved performance, but it

is di�cult to implement, and in clutter environments a large number of hypotheses may have to be

maintained, which requires extensive computational resources. Because of these di�culties, some

other algorithms having smaller computational requirements were developed.

The next sections present the overall adopted procedure for multi-person tracking.

6.1 Overall Procedure

Data association is the process of associating uncertain measurements to known tracks (Fig. 6.1).

This procedure is summarized in the following steps:

� Prediction: to propagate the state probability distribution function (pdf) forward in time,

taking process noise into account (translate, deform, and spread the pdf).
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� Gating: to determine possible matching observations.

� Data association: to determine best match.

� state update using kalman �ltering.

Figure 6.1: Problematic of the multi-person association.

6.2 Gating

Gating is a coarse test for eliminating unlikely observation-to-track pairing. A gate is formed around

the predicted position. All measurements that satisfy the gating relationship fall within the gate

and are considered for track update. The manner in which the observations are actually chosen

to update the track depends on the data association method but most data association methods

utilize gating in order to reduce later computation.

Figure 6.2: Gating illustration

The use of Kalman �ltering (or the IF), with the associated covariance matrix, is assumed. At

scan (k � 1) , the �lter evaluates the prediction x i (k=k � 1) of the state vector of the ith track. The

measurement at scan k is:y j (k ) = Hx i (k ) + v(k )

The vector di�erence between measured and predicted states is:y ij (k ) = y j (k ) � Hx i (k=k � 1) .

It is de�ned as a residual vector with residual covariance matrix S = HPH T + R , where P is the

state prediction covariance matrix. De�ning d ij
2 to be the norm of the residual (or innovation)

vector:

d ij
2 = y ij

T Sy ij
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De�ne a threshold constant for gate G in a way that correlation is allowed if the following relationship

is satis�ed : d ij
2 = y ij

T Sy ij < G

6.3 Data Association

In a dense target environment additional, logic is required when an observation falls within the

gates of multiple target tracks or when multiple observations fall within the gate of a target track.

The optimal assignment minimizes a total distance function which is the sum of the distances for

all the individual assignments.

Data association takes the output of the gating algorithm and makes �nal measurement-to-track

associations. When a single measurement is gated to a single track, an assignment can be immediately

made. However, for closely spaced targets, it is more likely that conict situations will arise.

We assume the existence of a set ofn tracks at the time a new observation or set of

observations is received . These observations may be used for updating the existing tracks or

for initiating new tracks. Suppose that m measurements are received at time index k . In

a cluttered environment, m does not necessarily equal n and it may be di�cult to distinguish

whether a measurement originated from a target or from clutter. A validated measurement is one

which is either inside or on the boundary of the validation gate of a target.

On the base of the validation test the cost matrix C for assignment problem solution is de�ned:

C ij =

2

6
6
6
6
6
6
4

c11 c12 c13 : : : c 1m

c21 c22 c23 : : : c 2m
...

...
...

...
...

cn 1 cn 2 cn 3 : : : c nm

3

7
7
7
7
7
7
5

(6.1)

The elements of the cost matrix cij = d ij
2 . The assignment cost matrix can be solved using

di�erent approaches, In this work we used the GNN approach that minimizes the summed total

distance. In the next section, we will discuss the di�erence between NNSF and GNN algorithm.

6.4 Nearest Neighbor Standard Filter (NNSF)

The NNSF is de�ned as the measurement corresponding to the smallest normalized distance squared

(NDS) among the validated measurements. The algorithm of NNSF can be summarized in the

following steps:
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� Build the assignment matrix C.

� Iterate:

{ Find the minimum cost assignment in C.

{ Remove the row and column of that assignment.

� Check if assignment is in the validation regions.

{ Unassociated tracks can be used for track deletion.

{ Unassociated measurements can be used for track

creation.

But choosing the minimum cost (nearest musearment-to-track) everytime, obviously can not

solve the global assignment problem. With some probability the selected measurement is not the

correct one. This can lead to overcon�dent covariances, �lter divergence and track loss.

6.5 Global Nearest Neighbor GNN

The GNN algorithm is based on likelihood theory, and the goal is to minimize an overall distance

that considers all observation-to-track pairings that satisfy the gating test. The GNN �nd each

time k the best association between the group of all tracks-measurements by solving the problem

as a linear association problem usingMunkers algorithm or K-best assignement algorithm :

min
X

dij
2:x ij x ij 2 f 0; 1g (6.2)

X

i

x ij = 1
X

j

x ij = 1 (6.3)

Figure 6.3: GNN Vs. NNSF
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6.6 Informational Formalism for multi-tracking

In this section, we assume that we haven persons (tracks) walking together inside the apartment.

The IF �lter here is a generalization of the �lter used in case of one person, where:

Prediction state:

X =
h
x1 y1 � 1 : : : xn yn � n

i T
(n � 1) (6.4)

F =

2

6
6
6
6
6
6
4

F1 0 : : : 0

0 F2 : : : 0

0 0
. . . 0

0 0 : : : Fn

3

7
7
7
7
7
7
5

(3n � 3n) B =

2

6
6
6
6
6
6
4

B1 0 : : : 0

0 B2 : : : 0

0 0
. . . 0

0 0 : : : Bn

3

7
7
7
7
7
7
5

(3n � 2n) (6.5)

where F1; F2; : : : ; Fn and B1; B2; : : : ; Bn are the F (3 � 3) and B (3 � 2) matrices for each personi

de�ned in equations (5.9) and (5.10).

In the same manner we can de�ne the covariance matrixP by the fact that there is no shared

knowledge between the persons during walking [20].

P =

2

6
6
6
6
6
6
4

P1 0 : : : 0

0 P2 : : : 0

0 0
. . . 0

0 0 : : : Pn

3

7
7
7
7
7
7
5

(3n � 3n) (6.6)

The Informational matrix and vector, Y and y, are de�ned using the same equations in (5.11).

Correction Step: In order to correct our prediction, we have to assign for each person the

best observation between all the available observations using the association algorithm de�ned in

section (6.3).

Z =
h
Z1 Z2 : : : Zn

i T
(5n � 1) (6.7)

where Z i is the measurement (from the tiles and t-sens) associated for each person.

Distance calculation: In order to calculate the distance in the cost matrix, we have to

determine the error distance between each measurement by reference to each track. The measurement

lies in the observation space, so theoretically we have to transform the state information from the

euclidien space (the pose of the person) to the observation space using the observation matrix. But

when dealing with the data coming from the tiles, this is not always the case. If we see the equation

of the Ŵ we can notice that it's proportionnal with the ( x; y) distance, so whenever we move away

from the correct tile, the error measurement value will become greater (see (Fig. 6.4) supposing
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that the correct ( x; y) on the correct tile are in the middle having the values of (3.5,0.9)).

Ŵ =
1

L 2

2

6
6
6
6
6
4

W � (L � x + k1)(L � y + k2)

W � (x � k1)(L � y + k2)

W � (x � k1)(y � k2)

W � (L � x + k1)(y � k2)

3

7
7
7
7
7
5

(6.8)

Figure 6.4: Error Function with reference to X and Y

But the problem is that the error function remains true unless the person is standing on 2 tiles

at the same time. what happens here is that the weight of the person distributes on both tiles,

then the e�ect of W factor in the equation (6.8) is no longer correct, and the euclidean distance is

not proportional with the error value anymore.

The proposed solution here is to switch to the euclidean space and calculate the euclidean error

function. After associating each track-measurement in this space, we can pursue normally using

the informational contributions proposed before in equations (5.13).

When each person is walking on multiple tiles, we can assign multiple measurements for each

track using the K-best linear assignment, and after that we can calculate the Net force using the

formulas proposed before. But if two people are so close or even on the same tile (mathematically,

two persons falling within the same gate), we can suppose that each person is present on only one

tile (the best likely measurement). Because, if one tile from a total of 3 tiles is shared between two

people we don't know which person of them is the person standing on both of the tiles.
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Chapter 7

Results and Discussion

Throughout this Chapter we will discuss the data coming from the observations(tiles and T-sens),

from the IMU of the watch, and the results of fusion between all of them. Then we will break down

the previously done experiment into details to evaluate the model using the Force Plates.

7.1 Data Processing from tiles

In order to get the best accuracy of the model, we need to process and clean the data coming from

the tiles before. For that reason many experiments have taken place.

Walking in straight line: According to the Biomechanical analysis of the human gait, we

can approximate walking dynamics using the inverted pendulum formulas (section 5.1).

In the (Fig. 7.1) we can see that the result of CoP trajectory verify our assumptions.

Figure 7.1: Walking in straight line and returning back.
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But as we see, the CoP is passing a large distance each step (the length of the tileL = 0 :6m), this

problem is the result of not cleaning the data correctly before applying the formulas. Cleaning and

calibrating the values coming from the load sensors will get us a smooth and continuous trajectory

for the CoP.

Figure 7.2: Walking in straight line and returning back after cleaning the data.

For the main experiment: the person was supposed to move in a loop shape inside the

apartment wearing the sensors, in the (Fig. 7.3) we see the proposed trajectory.

Figure 7.3: Proposed trajectory. Figure 7.4: Tiles observations.

The result of the data coming from the tiles is showed in (Fig. 7.4).

7.2 Fusion of the data

When we have to fuse the data from all the sensors, noting that each one of them has its own

speci�c frequency which di�ers from from the others', we come down to two approaches:
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� To drop a part from the IMU data to be on the same frequency of the observation data.

� To update the prediction variables many times before the new observation arrives.

Figure 7.5: Fusion result - Approach 1.

The two approaches are tested, and the results will be discussed below:

For the �rst approach showed in (Fig. 7.5), we see that the data from the tiles and the

result of fusion are close, but we witness a discontinuity in the results when we move from one tile

to another. this discontinuity can appear also in the error function between theẐ and Z. The (Fig.

7.6) shows the di�erence between one of the load sensors (W3 and Ŵ3).

Figure 7.6: Comparison betweenW3 and Ŵ3.

The reason behind the discontinuity is that when we move from one tile to another, the value of

W1 and W3 will decrease simultaneously, and the value ofW2 and W4 will increase simultaneously
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as well, this will lead us to the discontinuity in the error function. If we keep predicting our new

state with this error value the result will be reected in a discontinuity in the calculated position.

For the second approach , the problem of simultaneous change in the value of load sensors still

exists but what's di�erent here is that when we update the prediction only on the new observation,

the problem will be solved in the following observation because the error function will converge in

a rapid manner. what we're proposing is to average the value of acceleration and angular velocity

coming from the IMU during the time of waiting for the next observation to arrive (Fig, 7.7).

Figure 7.7: Fusion results using approach 2.

Figure 7.8: � evolution.
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7.2.1 Multi-person tracking fusion results

For the multi-person tracking, The experiment consisted of two persons walking at the same time,

and a crossing occurs between the two persons on the same tile (Tile 15). The results show that

the algorithm proposed was able to continue tracking the persons even after the crossing.

Figure 7.9: Theoretical trajectory for person one and two.

The result of the fusion and association is shown in the (Fig. 7.10):

Figure 7.10: Result for multi-person fusion
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7.3 Ground Truth - accuracy evaluation

To evaluate the work, an experiment was done using Force plates to compare the real Data with

the data collected after the fusion. The Force Plates can measure the position of the centre of

pressure in a highly accurate way.

In the experiment, 4 force plates are used, on which the user was walking forward and returning

back to the initial position.

The Force Plates are synchronized with a Qualisys System, and they give the value of Forces

and Moments applied on each one of them with a frequency of 100 Hz.

7.3.1 CoP computation

Let us consider a point of the sole (generally the normal projection of the ankle) and the unit

normal vector directed outwards from the support surface. [21].

Figure 7.11: Contact forces and moments acting on the sole.

Knowing the expression of the pressure forces on the pointO, in other words knowing Rp; M O
p,

the problem consists of determining the positionC of the CoP. By de�nition, C is the point where

the moment of the pressure forces vanishes. Therefore,

M O
p = OC � Rp (7.1)

OC =
n � M O

p

Rp (7.2)

Master of Research Report { 2019 Page 40



It is straightforward to establish that OC can be formulated as the function:

OC =
n � M O

c

Rc � n
(7.3)

7.3.2 Ground truth results

After calculating the CoP from the Forces Plates, Tiles, and fusion o� all the sensors, the results

are shown in the (Fig. 7.12).

Figure 7.12: CoP plot from the tiles, the force plates, and the fusion result.

To make sure our resultant are true, we calculated the Root Mean Square Error (RMSE):

RMSE =

s P N
i =1 (P redictedi � Actual i )

2

N
(7.4)

RMSE value using only the data coming from the tiles = 0.066079126816207 [m]

RMSE value after the fusion of all sensors = 0.054104138942056894 [m]

The RMSE values are very close to zero, and the result after the fusion is better than the result

from only the data coming from tiles.
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Conclusion

Having a system that localizes and tracks people in their home with a high accuracy using only the

tiles and wearable sensors can be very useful, especially for elderly people.

This internship presents a technique for the detecting and tracking of one or multiple persons

inside the INRIA smart apartment.

The proposed tracking algorithm shows the ability of Bayesian Filters (Kalman �lter and Informational

�lter) to compensate the noisy measurements, using the sensor fusion techniques.

A data association technique was developed, taking the prediction state coming from the �lter

as input to gate the most likely measurements, and associate between the track and measurements

using the global nearest neighbour linear assignment, and �nally update our beliefs using the

correction state of kalman �lters.

The obtained results are very promising. And a Proof of concept was done to evaluate the

tracking process.

However, certain limitations can be pointed out and can be used as a basis for future works.

First of all, the gating threshold was chosen heuristically. However, choosing the threshold is

a critical step in making the right decision in the association technique. Hence, developing an

adaptive threshold for gating procedure will be very useful for the stability of tracking.

In some cases, the sensors give faulty measurements that can lead to track loss. A proposed

solution is to integrate a layer of diagnosis for detection and identi�cation of sensor faults to ensure a

safe and reliable system of functioning using informational based approaches (using KL divergence

for example for information measures), and an adaptive threshold will improve the localization

integrity of the overall system.
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Appendix A

Mathematical Derivation for Velocity

Model

We will now derive the algorithms for motion-model-velocity. Let ut =
�
v w

� T
denote the control

at time t. If both velocities are kept at a �xed value for the entire time interval ( t � 1; t], the robot

moves on a circle with radius:

r = j
v
w

j (A.1)

This follows from the general relationship between the translational and rotational velocitiesv and

w for an arbitrary object moving on a circular trajectory with radius r :

v = w � r (A.2)

Figure A.1: Motion carried out by a robot moving with constant velocities v and w.
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Equation A.1 encompasses the case where the robot does not turn at all (i.e.,w = 0), in which

case the robot moves on a straight line. A straight line corresponds to a circle with in�nite radius,

hence we note thatr may be in�nite.

Let x t � 1 =
�
x y �

� T
be the initial pose of the robot, and suppose we keep the velocity

constant at
�
v w

� T
for some time � t. As one easily shows, the center of the circle is at:

xc = x �
v
w

sin(� ) (A.3)

yc = y +
v
w

cos(� ) (A.4)

The variables
�
xc yc

� T
denote this coordinate. After � t time of motion, our ideal robot will

be at
�
x0 y0 � 0

� T
with:

0

B
B
B
@

x0

y0

� 0

1

C
C
C
A

=

0

B
B
B
@

xc + v
w sin(� + w� t)

yc � v
w cos(� + w� t)

� + w� t

1

C
C
C
A

(A.5)

0

B
B
B
@

x0

y0

� 0

1

C
C
C
A

=

0

B
B
B
@

x

y

�

1

C
C
C
A

+

0

B
B
B
@

� v
w sin(� ) + v

w sin(� + w� t)
v
w cos(� ) � v

w cos(� + w� t)

w� t

1

C
C
C
A

(A.6)

The derivation of this expression follows from simple trigonometry: After � t units of time, the

robot has progressedv � � t along the circle, which caused it's heading direction to turn byw � � t.

At the same time, its x and y coordinate is given by the intersection of the circle about
�
xc yc

� T
,

and the ray starting at
�
xc yc

� T
at the angle perpendicular to w � � t. Of course, real robots

cannot jump from one velocity to another, and keep velocity constant in each time interval. To

compute the kinematics with non-constant velocities, it is therefore common practice to use small

values for � t, and to approximate the actual velocity by a constant within each time interval. The

(approximate) �nal pose is then obtained by concatenating the corresponding cyclic trajectories

using the mathematical equations just stated.
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Appendix B

Load Pressure Ŵ Calculation

For a person having a weightW and a position coordinates
�
xL yL

�
in a tile plan of dimension L

(see Fig. ), the estimated load pressures amount of theith load pressure sensor can be calculated

using the Newton's laws assuming the following criteria:

Figure B.1: A person having a weight ofW and a position coordinates (x l ,yl ) in a tile plan of
dimension L .

� The only points of contact between the tiles surface and the ground are the sensors,

� The ground and the sensors are considered in�nitely rigid. Thus, the surface is not supposed

to be deformed,

� The weight W = mg is normal; wherem is the mass, andg is the gravitational �eld strength
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(about 9:81m=s2 on Earth); and the vertical forces "Ŵi " applied are perpendicular to its

plane,

� The system is considered stable vertically and horizontally (using of pinned or �xed supports),

then it becomes isostatic.

For a two-dimensional body and based on Newton's laws of motion, the equilibrium equations

available are:

�
P ~F = 0: The vectorial sum of the forces acting on the body equals zero.
P ~F = 0 ! W � W1 � W2 � W3 � W4 = 0

W = W1 � W2 � W3 � W4

�
P ~M A = 0: The sum of the moments (about an arbitrary point) of all forces equals zero.
P ~M A = 0 ! � W1 � 0 + ( W1 + W4) � yL � W4 � L = 0

! W4 =
W (L � xL )yL

L 2

! W1 =
W (L � xL )

L
� W4

! W1 =
W (L � xL )(L � yL )

L 2
P ~M B = 0 ! � W2 � 0 + ( W2 + W3) � yL � W3 � L = 0

! W3 =
WxL yL

L 2

! W2 =
WxL

L
� W3

! W2 =
WxL (L � yL )

L 2

As the tile is square shaped and the only points of contact between the tiles surface and the

ground are the load sensors (A, B, C, and D), thus the weightW can be divided into two

parts such that: (W1 + W4) on [AD] and (W2 + W3) on [BC].

Here:

W1 + W4 =
W (L � xL )

L
(B.1)

W2 + W3 =
W (xL )

L
(B.2)
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Thus:

2

6
6
6
6
6
4

W1

W2

W3

W4

3

7
7
7
7
7
5

=

2

6
6
6
6
6
4

W � (L � xL )( L � yL )
L 2

W � (xL )( L � yL )
L 2

W � (xL )( yL )
L 2

W � (L � xL )( yL )
L 2

3

7
7
7
7
7
5

(B.3)

Since the platform has a rectangular form with (nxm) tiles, we can calculate the position

(x; y) using the following equation:

xL = x � L [(i � 1)%n] = x � k1 (B.4)

yL = y � L [(i )divn ] = y � k2 (B.5)

where % operation (modulo) is the remainder of the Euclidean division, div operation is the

Euclidean division, i is the identi�er for the tile, xL and yL are the local position coordinates

(the origin is at the bottom left of a current tile having the identi�er equal to i ), and x and

y are the position coordinates of a person in the global frame where the origin (0; 0) is at the

bottom left corner of the cartography of the platform.

Therefore:

2

6
6
6
6
6
4

W1

W2

W3

W4

3

7
7
7
7
7
5

=

2

6
6
6
6
6
4

W � (L � x+ k1 )( L � y+ k2 )
L 2

W � (x� k1 )( L � y+ k2 )
L 2

W � (x� k1 )( y� k2 )
L 2

W � (L � x+ k1 )( y� k2 )
L 2

3

7
7
7
7
7
5

(B.6)
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