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Abstract

This letter focuses on the derivation of the hitting probabilities of diffusing particles absorbed by an
agent in a bounded environment. In particular, we analogously consider the impulse response of a molecular
communication channel in a 2-D and 3-D environment. In 2-D, the channel involves a point transmitter
that releases molecules to a circular absorbing receiver that absorbs incoming molecules in an environment
surrounded by a circular reflecting boundary. Considering this setup, the joint distribution of the molecules
on the circular absorbing receiver with respect to time and angle is derived. Using this distribution, the
channel characteristics are examined. Then, we extend this channel model to 3-D using a cylindrical receiver
and investigate the channel properties. We also propose how to obtain an near-exact analytic estimate for
the unbounded 2-D channel from our derived solutions, as no analytic derivation for this channel is present
in the literature. Throughout the letter, we perform particle-based simulations to compare the analytic
results and lay evidence for our findings.

1 Introduction

Molecular communication (MC) has recently gained much attention as a promising method for communica-
tion among nanodevices. A method of such communication is the diffusion of molecules in biological environ-
ments, where the messenger molecules are used to mediate signals between transmitters and receivers. Medical
applications constitute a promising application field for such biocompatible nanodevices. Therefore, examining
the response of molecular communication channels is an important task to determine communication character-
istics and possible communication scenarios. Fortunately, Brownian motion has been explored extensively in the
physics literature in the context of first passage processes [1, 2, 3, 4, 5]. As they describe the hitting probability
in diffusive environments, the first-passage processes found many applications in the molecular communication
literature to describe diffusion channels consisting of transmitters and receivers [6, 7, 8].

Many different types of receivers have been extensively explored in the molecular communication literature
[9, 10, 11, 12]. Among those, two are more commonly utilized: absorbing receivers that consume the incoming
molecules upon contact and observing receivers that track the number of molecules inside a volume without
absorbing them. In the literature, impulse responses for both types of channel models have been investigated
in great detail. In general, these channels can be categorized into two groups according to their environments
as well. While some channels are placed in a free unbounded environment, others are placed in a bounded
(and usually tubular) environment. For the first group, the impulse response for a 1-D channel is derived [13],
while in [14] the 3-D channel’s impulse response is examined for a point transmitter and a spherical absorbing
receiver. Nevertheless, the impulse response in a 2-D unbounded medium for a point transmitter and a circular
absorbing receiver has not been derived, except for some special cases presented in [15, 16]. The channels with
point transmitters, as well as the ones with spherical transmitters, are considered in a 3-D medium in [17] and
[18].

As stated in [19], vessel-like channels, one type of bounded channels, have beneficial effects for long-range
molecular communication by preserving released molecules in a bounded range. Therefore, they have higher
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Figure 1: (a) General Channel Model for a point transmitter situated at r = r0, a cylindrical absorbing receiver
with radius d0 and height h surrounded by a larger cylindrical reflecting walls with radius R and height h. Note
that the diffusion of the molecules is confined inside a finite annular volume depicted in (b) as the z-dependence
is suppressed through symmetry arguments. (c) The receiver can be modified to count only the particles inside
the angle range (−θf , θf ).

power efficiency, which is one of the reasons why many biological systems evolved in this direction. Since the
molecules are not dispersed too much compared to the case of unbounded environments and due to their possible
practical use in health applications, bounded and particularly vessel-like channels gained much attention in the
literature. In [20], the 1-D and 3-D hitting location distributions of messenger molecules on a planar receiver are
examined when there is no flow in the vessel-like environment. In [21], the impulse response of a 3-D vessel-like
channel is obtained for a spherical observing receiver when there is a laminar flow in the environment. In [22],
the flow models for microfluidic channels with different cross-sectional areas are presented, and the impulse
response is derived by solving the 1-D diffusion-advection equation, which is only valid for some specific cases.
Besides the channel impulse response, the capacity of the single-input single-output molecular communication
channels with flow and drift is derived in [23].

In addition to vessel-like channels, diffusion processes that are bounded by membranes are also encountered
commonly in nature. One such example is the transmission of messengers inside a spherical cell bounded by
the cell membrane to an organelle, which can be modeled by a diffusion channel consisting of an absorbing
spherical receiver and a reflecting/absorbing spherical boundary [24, 25]. In general, the spherical model is not
always accurate to describe the diffusion processes inside the cell. In some cases, a cylindrical cell model can
be more accurate, as there are many cylindrical structures in living organisms, like oval cells in the liver or
simple columnar epithelium. Hence, the impulse response of a bounded cylindrical environment can be useful
to describe diffusion processes inside such environments more accurately.

In this letter, we first derive the SO(2) symmetric1 impulse response of a 2-D annular channel that consists
of an absorbing circular receiver, a reflecting circular boundary and a point transmitter. Then, we find the
channel characteristics of such a system and discuss many effects that arise due to the existence of the circular
boundary. Afterwards, we derive the generalized angle-dependent impulse response for the annular channel,
where the receiver only counts certain particles, which are absorbed inside the angle range [−θf , θf ]. Next,
we use the impulse response of the 2-D annular channel to find an analytic estimate with an arbitrarily small
error for a circular receiver located in a 2-D unbounded channel, an exact analytic result which does not exist
in the literature. As the impulse response of the 2-D bounded channel can be simulated via particle-based
simulations, we perform further analysis to illustrate the accuracy of the analytic estimate. Later, we consider
the 3-D concentric cylindrical diffusion channel that involves a point transmitter, a cylindrical absorbing receiver,
and a cylindrical reflecting boundary. We show that the 3-D cylindrical channel can be described by the impulse
response of the 2-D annular channel under certain assumptions. Finally, we conclude with further remarks on
our findings and future work.

2 System Models

The system models for various channels considered in this letter are depicted in Fig.1. In this letter, we
will simplify a 3-D coaxial cylindrical channel to a 2-D annular channel by certain assumptions and carry out
the derivations for the impulse response of the 2-D channel. In the 3-D channel, shown in Fig. 1(a), a coaxial

1SO(2) symmetry in a 2-D coordinate system corresponds to the angular symmetry around the origin.
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cylindrical absorbing receiver is placed at the center of the microfluidic channel whose boundary is reflecting
and a point transmitter transmits messages by releasing molecules to the diffusion channel. Assuming that
there is no flow in the environment, the propagation of the released molecules is modeled by Brownian Motion
as

∆x ∼ N (0, 2D∆t) , (1a)

∆y ∼ N (0, 2D∆t) , (1b)

∆z ∼ N (0, 2D∆t) , (1c)

where D is diffusion coefficient, ∆x, ∆y and ∆z are incremental step sizes in the three dimensions, ∆t is time
step, and N (µ, σ2) is the normal distribution with mean µ and variance σ2. The cylindrical receiver absorbs the
molecules that come to the vicinity of its receptors and makes a decision by counting these absorbed molecules.
If the heights of the boundary hb and the receiver h are equal, this system can be reduced to a 2-D bounded
environment that has a concentric absorbing receiver and reflecting boundary as shown in Fig. 1(b). In practice,
the length of the receiver can be smaller than the length of the channel as in the case of oval cells. Therefore, we
shall evaluate the required condition for the height of the receiver h and height of the position of the transmitter
h0 for justifying the reduction this system to 2-D. The distribution of the released molecules along the z-axis
can be modeled using (1) as N (h0, 2Dt). Therefore, if the arrival probability of any molecule at either of the
ends of the receiver is almost 0, then our approximation is still valid. Nonetheless, we stress that this is a
simplifying assumption, as the diffusion along the z-axis is not independent of the absorption of molecules by
the receiver. In fact, this assumption will lead to an over-estimate of the error bound, as we shall illustrate in
Section 4.3. For now, we assume that we can reduce the microfluidic channel to 2-D with a coaxial cylindrical
receiver if the following condition

P (z < 0) + P (z > h) < ε (2)

is satisfied. Then, using the distribution of z, we can write this condition explicitly as

Q

(
h0√
2Dt

)
+Q

(
h− h0√

2Dt

)
< ε, (3)

where t represents the maximum time of interest. Taking h0 = h/2, one obtains

2Q

(
h

2
√

2Dt

)
< ε. (4)

Therefore, with the simplifying assumption h� 2
√

2Dt, the system can be reduced to 2-D. We shall first discuss
the 2-D annular channel and then generalize its applications to various other channels: the 2-D annular channel
with a partially absorbing receiver (with an angle-dependent impulse response), as an estimate for the impulse
response of the 2-D unbounded channel with an absorbing receiver, and finally the 3-D channel with a coaxial
cylindrical receiver.

3 2-D Annular Channel

3.1 Channel Impulse Response

In this section, we start by finding an impulse response for a 2-D annular channel, as depicted in Fig. 1(b),
while deriving the probability density function of the molecules. To describe the diffusion of a molecule inside
the annular region, we shall find a solution to Fick’s Law

D∇2P (r, t|r0) =
∂P (r, t|r0)

∂t
, (5)

where ∇2 is the Laplacian operator and P (r, t|r0) is the probability density function (PDF) of the molecules
inside the diffusion channel. The circular boundary at r = R is reflecting. Furthermore, the transmitter is
assumed to be situated at a distance r = r0 from the origin. In this section, we are interested in the absorption
probability (an angle-independent quantity, see [14]) of the molecules by the receiver. Therefore, our calculations
include an SO(2) symmetry. The physical meaning of this is the following: Instead of releasing molecules from a
single point transmitter at a distance r0 from the origin, we release them on a circle with radius r0 according to
a uniform angular distribution. Even though implementing this process could be physically more challenging,
this assumption simplifies the theoretical problem significantly. As the receiver consumes molecules from all
angles upon contact, both original and SO(2) symmetric problem will lead to the same absorption probability
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at a given time. In Section 4.1, the angle of absorption will be of interest as we discuss a partially absorbing
receiver; hence, we will remove the SO(2) symmetry assumption there. In addition to the initial condition the
probability distribution P (r, t|r0) should be zero when the molecules hit the receiver, where we assume a perfect
receiver due to simplicity. This results in the boundary conditions

∂P (r, t|r0)

∂r

∣∣∣
r=R

= 0, (6a)

P (r, t|r0)
∣∣∣
r=d0

= 0, (6b)

P (r, 0|r0) =
1

2πr
δ(r − r0). (6c)

We recall that, since the boundary is described by a mixture of Neumann and Dirichlet boundary conditions, the
Laplacian operator is guaranteed to have a unique solution by the uniqueness theorem for the 3-D diffusion/heat
equation [26].

Now, we shall start with the separation of variables Ansatz

P (r, t|r0) = φ(r, θ)T (t), (7)

which leads to the equation

D
∇2φ(r, θ)

φ(r, θ)
=
T ′(t)

T (t)
= −µ2, (8)

from which we can easily deduce

T (t) = Ae−µ
2t, (9)

where A and µ are constants. Afterwards, we arrive at the eigenvalue problem for the Laplacian operator

∇2φ(r, θ) = −µ
2

D
φ(r, θ). (10)

We note that the overall factor of the solution is lumped into the time portion, T (t). Therefore, we can arbitrarily
normalize the space part, φ(r, t).

The eigenvalues µ2/D are non-negative and real as either Neumann or Dirichlet conditions impose the
boundary conditions. Furthermore, eigenfunctions corresponding to distinct eigenvalues are orthogonal and
form a basis for all possible solutions [27]. Here, we invoke the idea of SO(2) symmetry in our system. Due
to angular symmetry, the position-dependent part of the Ansatz depends only on the distance from the origin
and not the angle, i.e. φ(r, θ) = φ(r). This choice eliminates certain eigenvalues (and their corresponding
eigenfunctions) from the solution.

Rewriting the eigenvalue equation in polar coordinates, we obtain

r2φ′′(r) + rφ′(r) +
µ2

D
r2φ(r) = 0, (11)

which has the general solution

φ(r) = J0

(
µ√
D
r

)
+ cY0

(
µ√
D
r

)
, (12)

where Jn and Yn are the Bessel functions of the first and second kind of nth order, respectively, and c is
a constant which shall be determined using boundary conditions. We are now ready to shape our solution
according to the boundary conditions given in (6).

At this point, we shall stress that our solution will be a combination of both J0 and Y0. This adds a layer of
complexity to the problem, as opposed to many common cases where the origin is in the region of interest. If
a solution should exist at the origin, one can immediately set c = 0, as Y0(x) diverges as x → 0. In our initial
value problem, this is not the case and further computation will be required. For now, we shall postpone this
computation and consider the special function ηs0(x)

ηs0(x) = J0 (x) + csY0 (x) , (13)

such that η
′s
0 (βs) = 0 and ηs0(αβs) = 0, where α = d0/R (from now on called the aspect ratio) and η

′s
0 (x)

denotes the derivative of ηs0(x) with respect to x. The construction of such a function and the computation
method of the set {βs} are discussed in detail in Appendix A. We note that {βs}, called eigenvalues from now
on, is an (increasingly) ordered, discrete, and infinite set.
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It can be verified through straightforward algebra that the function ηs0(βsr/R) satisfies the two boundary
conditions and is a radial solution for the diffusion equation given in (5). Moreover, the following orthogonality
condition can be shown to hold for ηs0(βsx):∫ 1

α

ηs0(βsx)ηl0(βlx)xdx =
1

2

(
(ηs0)2(βs)− α2(ηs1)2(αβs)

)
δsl, (14)

where we simply replace J0 and Y0 by J1 and Y1 in (13) to find ηs1(βsx).
We find the probability distribution function to be of the form

P (r, t|r0) =

∞∑
s=1

Asη
s
0

(
βs
r

R

)
e−β

2
s
Dt
R2 , (15)

where we note that β1 > 0 (see, for example, Table 1 in Appendix B), indicating that for t→∞ the probability
distribution of molecules vanishes everywhere in the space. Taking the orthogonality condition into account,
we find the general normalization constants As

As =
1

πR2
ηs0

(
βs
r0

R

) 1

((ηs0)2(βs)− α2(ηs1)2(αβs))
, (16)

from which we find the solution

P (r, t|r0) =

∞∑
s=1

ηs0
(
βs

r0
R

)
ηs0
(
βs

r
R

)
πR2 ((ηs0)2(βs)− α2(ηs1)2(αβs))

e−β
2
s
Dt
R2 , (17)

where we recall that the set {βs} is defined such that ηs0(αβs) = 0 and η
′s
0 (βs) = −ηs1(βs) = 0 to satisfy the

boundary conditions. Now that we have P (r, t|r0), we can calculate the hitting rate2 as

nhit(t) = 2πd0D
∂P (r, t|r0)

∂r

∣∣∣
r=d0

, (18)

where D ∂P (r,t|r0)
∂r

∣∣∣
r=d0

represents the probability current into the absorbing receiver. Thus, we find the hitting

rate

nhit(t) = −2D

∞∑
s=1

αβsη
s
0

(
βs

r0
R

)
R2 ((ηs0)2(βs)− α2(ηs1)2(αβs))

ηs1 (βsα) e−β
2
s
Dt
R2 . (19)

We conclude this section by emphasizing that we are required to find different eigenvalues {βs} for each
aspect ratio α to construct the special functions ηs0(x) (See Appendix A).

3.2 Verification of Analytic Result and Channel Characteristics

Having found the analytic solution for the 2-D annular channel, we shall now focus on verifying our findings
through comparison with particle-based simulations and then discuss the effects of a reflecting boundary on the
channel response. In this section, we simulate the hitting rate nhit(t) for different aspect ratios α = d0

R and
interpret certain channel characteristics.

In our simulations, we take the radius of the outer cylinder as R = 100µm, unless otherwise stated, and
simulate the system for different receiver radii d0 by changing α = d0

R . Changing the diffusion coefficient only
re-scales time, which does not affect the correctness of the comparison. For simplicity, we set D = 80 µm2/s
for our illustrations. Unless otherwise stated, simulations are performed with 106 particles, and the reflections
are performed according to the rollback mechanism, which is discussed in [20].

Now that we have both our analytic solution and the simulation framework, we shall compare the hitting
rate, nhit(t), for different aspect ratios α, and different initial positions r0, in Figure 2. As can be seen from
the figure, the simulation and the analytic results are in agreement for multiple scenarios, as expected. In these
illustrations, we truncate the analytic result, given in (19), after the 350th term. This is possible as the terms
in the sum are exponentially suppressed for larger βs values. In fact, we can choose a parameter βsc such that

exp

(
−β2

sc

Dt

R2

)
� 1, (20)

2This quantity is also known as first-passage time probability density distribution in the literature. We occasionally use the
term “hitting number” to describe this quantity as well.
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Figure 2: Simulations of hitting rate nhit(t) versus time for D = 80µm2/s, R = 100µm, d0 = 1µm (a,b) and
d0 = 10µm (c,d), r0 = 20µm (a,c) and r0 = 70µm (b,d). Note the correspondence between the analytic solution
and the simulation in each case. We use 350 terms when finding the analytic result for nhit(t).

where t is the final time of interest and truncate the series afterward. In order to visualize the relative contribu-
tion of each term in the summation, we first define a time period of interest [∆t, 10tγ ], where ∆t is the smallest
time possible to detect a signal and

tγ =
(r0 − d0)2

D
(21)

is the scale-free time of the channel such that [∆t, 10tγ ] includes several factors of the characteristic time of the
diffusion process for any set of r0, d0 and D. Therefore, for each set of parameters, a new tγ is calculated. For
the truncation analysis, we set ∆t = tγ/1000.

Having defined the time of interest, we can find the relative contribution of each term in the summation as

fs =
−2

αηs0(βs r0R )
βs((ηs0)2(βs)−α2(ηs1)2(αβs))

ηs1 (βsα) (e−β
2
s
D∆t
R2 − e−β

2
s
Dtγ

R2 )∫ tγ
∆t

dt nhit(t)
, (22)

such that
∑∞
s=1 fs = 1. Furthermore, we define the cumulative contribution as

Fs =

s∑
r=1

fr. (23)

We show the relative contribution of each term in the summation and their cumulative behavior for the
time period [∆t, 10tγ ] in Fig. 3. As can be seen from the figure, the initial position of the transmitter is of
high importance for the most efficient truncation. This can be understood by the exponential suppression of

higher index terms for later times, as exp
(
−β2

s
Dtγ
R2

)
becomes more negligible for large tγ , which is the case for

large r0 values. This also justifies the choice of the upper-bound, 10tγ , for the time of interest, as later times
can already be described by the terms, which one picks when describing earlier times. For many cases, the
most efficient truncation (at term s = sc) can be performed by considering the difference between the absolute
relative contribution of the two consequent terms such that ||fsc+1| − |fsc || � ε, where ε is a small positive
number. An equivalent method is to consider |1 − |Fsc || � ε and then to choose the cut-off sc accordingly,
since Fs is unit-normalized for s → ∞ by definition. For cases where computing {βs} becomes costly, the
most efficient truncation method discussed here can be easily implemented. Fortunately, the channel impulse
response discussed in this letter allows finding a large number of {βn} very efficiently. Hence, for the entirety
of the letter, analytic results in each applicable figure are computed using more than 300 terms.
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Figure 3: Relative contribution fs and cumulative contribution Fs for finite number of terms in (19) for R =
100µm, d0 = 10µm (a)-(c) and d0 = 1µm (b)-(d).

Figure 4: The channel characteristic times (τaverage, τhalf and τpeak) for α = 0.01 (a), the peak time behavior
versus initial condition, r0, for α = 0.01 (b), α = 0.1 (c) and α = 0.5 (d). Note the apparent trend change
for τpeak once the initial release point (r0 − d0) ' 2

3 lc, where lc = R − d0 is the channel length. This is due
to molecules reflecting from the boundary being dominant for the absorption. For closer initial release points
r0, the peak time vs. initial distance scales as τpeak ∼ (r0 − d0)2 in agreement with the 3-D spherical receiver
point transmitter case [14]. The channel characteristics are calculated and illustrated for R = 500nm and
D = 80µm2/s. Due to inherent space scaling symmetry, the shape of the curves are the same for micro-scales
as well, within a scaling of time. We use more than 300 terms (different for each α) in the summation for the
analytic result while computing the channel characteristic times.
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Now, we can focus on the channel performance, specifically effects caused by the existence of the reflecting
boundary. First we define some useful concepts:

Definition 1 (Peak time) The peak time τpeak is defined in [14] as the time such that the hitting rate is
maximum, e.g.

∂nhit(t)

∂t

∣∣∣
t=τpeak

= 0. (24)

Definition 2 (Average time) The average time τaverage is defined as the expected value of the time where
the hitting rate nhit(t) is taken to be the probability density function, i.e.,

τaverage =

∫ ∞
0

t nhit(t) dt. (25)

Note that the hitting rate being the probability density function for time is a direct consequence of the continuity
equation.

Definition 3 (Half time) The half time τhalf is defined as the time it takes for the molecule to be absorbed
with a probability of 0.5, i.e., ∫ τhalf

0

nhit(t) dt = 0.5. (26)

Many of the 2-D annular channel characteristics and the effects of the boundary on the channel can be
captured through the peak, average, and half-time values and their dependence on the initial release point r0.
An illustration of these parameters is shown in Fig. 4.

The importance of peak time, τpeak, in communication aspects has been discussed in [14]. As an addition,
we believe that both τaverage and τhalf can be useful when characterizing the channel. Most importantly, τhalf
could be used as a reliable measure when defining sampling time for communication purposes, as one requires
to sample at least more than half of the messenger molecules to have a signal-to-inter-signal-interference ratio
higher than 1. Unfortunately, determining τhalf has high computational cost, and therefore a measure, which
is easy to compute, is required. Fortunately, τaverage has similar behavior and is within the same order of
magnitude of τhalf while having an easy-to-compute analytic expression. Moreover, comparing τpeak with τhalf
and τaverage, we can qualitatively infer the importance of tail effects in a 2-D channel. The difference between
these quantities shows the relative contribution that comes from the tail of nhit(t) for t ≥ τpeak with respect to
earlier times. If most of the molecules arrive at the receiver at early times close to τpeak, we expect the quantity
|τaverage − τpeak|/τpeak to be of the order unity. Nonetheless, there is an order of magnitude difference between
τpeak and τaverage as can be seen from the Fig. 4(a). Hence, tail effects are highly dominant in a 2-D geometry,
meaning that a communication process taking place in 2-D should include sampling of messenger molecules
for times much larger than τpeak. Moreover, Fig. 4(a) illustrates that τpeak and τaverage have similar behavior
versus r0, where both measures are dominated by the effects due to boundary.

The effect of the reflecting boundary at early times, ∼ O(tγ), can best be seen from the peak time τpeak,
which is plotted for three different aspect ratios α in Fig. 4(b),(c),(d) for illustration purposes. As is apparent
from the figure, the shape of the plot, τpeak vs r0, depends solely on the initial condition R0 and is independent
of α, hence d0 and R. When the molecule is initially close to the receiver, the effect of the boundary at early
times is negligible and we observe a square-law dependence between the distance and the peak-time τpeak, as was
the case for a 3-D spherical receiver and a point transmitter [14]. As we shall see in section 4.2, the unbounded
channel can be described by the analytic expression for the bounded channel for t ∈ [0, τpeak] in this region.
Defining the channel length lc = R−d0, we realize that the deviation from the square-law is apparent when the
release distance is (r0−d0) ' 2

3 lc. This (r0−d0) is indeed the critical distance, after which the boundary effects
become dominant at time scales t ' τpeak. The same transition is not as apparent with τhalf and τaverage due
to the following reason: the existence of the reflecting boundary ensures that the molecules are absorbed earlier
than in the unbounded case, hence the effect of the boundary on τhalf and τaverage is present even when the
molecule is initially very far away from the boundary or close to the receiver.

Considering that there are infinitely many summed terms in the expression for nhit(t), it is not straightfor-
ward to obtain a formula for τpeak and τhalf . Fortunately, one can find an analytic expression for the average
time:

τaverage = −2

∞∑
s=1

αR2ηs0
(
βs

r0
R

)
ηs1 (αβs)

Dβ3
s ((ηs0)2(βs)− α2(ηs1)2(αβs))

. (27)

While finding this expression we exchange the integral and the sum, therefore, we shall present a proof of
concept for the convergence of this expression. In order to do so, we first define an estimate for τaverage as

τestaverage(t) =

∫ t

0

nhit(τ)τ dτ, (28)

8



Figure 5: Comparison of τaverage and τestaverage(tmax) for d0 = 1µm, R = 100µm, D = 80µm2/s and various
tmax versus r0/R (a), for tmax = tγ versus r0/R (b). All analytic results are calculated using 350 terms.

Figure 6: Comparison of simulation and angular-dependent analytic result of nhit(t) for R = 100µm, d0 = 10µm,
r0 = 20µm, D = 80µm2/s, θf = π/2 (a) and θf = π/6 (b). Comparing with Fig. 2(c), one can see that for
r0 = 20µm almost all particles hit inside the angle range [−π/2, π/2]. We use 4× 106 terms when obtaining the
angular-dependent analytic result.

where limt→∞ τestaverage(t) = τaverage. We compare the estimate with the analytic expression in Fig. 5(a) for
various final times tmax versus r0/R. As can be seen from the figure, the estimate converges to the analytic
result. This is expected, since in (27) the terms in the summation behave as ∼ 1/β3

s for large indices and are
suppressed accordingly.

We note that the similar behavior of τhalf and τaverage is not surprising at all. We already illustrated this
similarity in Fig. 4(a), but this result can be considered more general due to the scale invariance of nhit(t) as
long as tail effects are dominant. One way to see this scale invariance is to consider (19), where nhit(t) depends
dominantly on the parameter α and r0/R as long as t ≥ O(τpeak) or equivalently t ≥ O(tγ). Therefore, as
long as times t ≥ tγ have more dominant effects on τaverage, we can expect similar behavior for both τaverage
and τhalf . Finally, we plot τaverage and τestaverage(tγ) versus initial condition r0 in Fig. 5(b) to show that earlier
times, t ≤ tγ , have negligible contributions for τaverage. Therefore, as tγ/τpeak is of the order unity, the tail
effects are indeed dominant when determining τaverage.

4 Applications to Various Channels

Having characterized the 2-D annular channel, we now perform comparisons with particle based simulations
to illustrate that the impulse response can be used for different types of channels under certain conditions. In
addition, we show that with a similar approach, we can also find the angle-dependent impulse response for the
2-D annular channel.

4.1 2-D Annular Channel: Angular Dependent Impulse Response

Inspired from the nature of diffusion, it has been shown that using a partially-counting receiver based on
angular position has beneficial effects in molecular communication [28]. Since molecules move slowly, it takes
much higher expected time to move to the part of the receiver that is far from the transmitter. These parts can
also be represented by the reception angle as shown in Fig. 1(c). In addition, angle-dependent channel impulse
response can be used to improve the channel performance by reducing inter symbol interference as proposed in
[28].
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Figure 7: Comparison of Simulation and Analytic Estimations for unbounded channel for α = 0.1 and r0 = 20µm
(a), for α = 0.1&0.01 and r0 = 50µm (b), for α = 0.1&0.01 and r0 = 70µm (c), for α = 0.01 and r0 = 200µm
(d). For all simulations, d0 = 10µm and D = 80µm2/s, whereas R changes in each subfigure according to
α = d0/R.

The receiver (in Fig. 1(c)) absorbs all the molecules upon collision, but counts only those that arrive inside
the angular interval [−θf , θf ] and disregards the rest. We can modify our previous calculations to find an
analytic solution for this case as well, which is carried out in Appendix B.

For this channel, we define the hitting rate as the probability of a single released molecule to hit the receiver
inside the angle range [−θf , θf ] between times t and t+ dt

nhit(θf , t) =

∫ θf

−θf
Dd0

(
∂

∂r
P (r, θ, t)

) ∣∣∣∣∣
r=d0

dθ. (29)

From (B.10), we find the hitting rate as (For definitions, see Appendix B)

nhit(θf , t) =

∞∑
s=1

θfDαβ0s

πR2I0s
ηs0

(
β0s

r0

R

)
η

′s
0

(
β0s

d0

R

)
e−β

2
0s
Dt
R2

+

∞∑
p=1

∞∑
s=1

2Dαβps
pπR2Ips

sin(pθf )ηpsp

(
βps

r0

R

)
η

′ps
p

(
βps

d0

R

)
e−β

2
ps
Dt
R2 . (30)

A comparison of analytic and simulation results for this channel type is given in Fig. 6. For the remainder
of this letter, we focus on the receiver type with θf = π, for which (30) reduces to (19).

4.2 2-D Unbounded Channel: An Analytic Approximation

The impulse response for the 2-D unbounded channel with an absorbing receiver has been missing from the
literature, whereas the impulse responses for 1-D and 3-D channels are well-known [14, 6]. Fortunately, our
derivations for the 2-D annular channel can be utilized to estimate the impulse response for the 2-D unbounded
channel with an arbitrarily small error. The trade-off for obtaining an arbitrarily small error is the computational
complexity, as more βs terms will be required in (19) to describe the channels with smaller aspect ratios α.
This is due to the fact that as α→ 0, the eigenvalues βs become closer and closer. Therefore, it is not trivial to
obtain an exact analytic result in the limit α→ 0, since this would require integrating an integrand, which has
combinations of various Bessel functions both in its numerator and denominator and has infinitely many poles.
Therefore, we shall focus on making accurate estimations for the 2-D unbounded channel while confirming our
observations regarding the effects of the boundary on τpeak from section 3.2.

In Fig. 7, simulation results for the 2-D unbounded channel and corresponding analytic estimates are
illustrated. As is apparent from the figure, as long as the boundary R is sufficiently far away, the analytic
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Figure 8: Comparison of Simulation and Analytic Estimations for the 3-D channel with R = 100µm, d0 = 10µm,
D = 80µm2/s, the boundary height hb →∞ and various receiver heights h for r0 = 20µm (a) and for r0 = 70µm
(b). χ values are evaluated with tmax = 3.75s for (a) and with tmax = 135s for (b). 350 terms are used when
obtaining the analytic estimate in each case.

estimate matches the simulations quite well. In fact, from our discussion on τpeak, we expect that the boundary
effects on the peak-time will be apparent when (r0 − d0) ' 2

3 lc. This is certainly the case for Fig. 7(c), where
the analytic estimate with R = 100µm diverges from the simulation around the peak position. In this case,
simply increasing the boundary radius R → 1000µm results in an estimate that matches the simulations well.
We can infer from the simulations that choosing the boundary radius R according to (r0 − d0) ' 0.2 results in
a good-agreement between the simulation and the analytic estimate for the time of interest t ∈ [0, O(tγ)].

Fig. 7(b) illustrates the strong influence of the boundary on τhalf and τaverage, as the analytic estimate with
R = 100µm does not match the tail of the simulation. Even though τpeak matches in this case, the increase in
the tail results in molecules being absorbed earlier than in the unbounded case. This leads to the saturation
effect we observe in Fig. 4(a) for τhalf and τaverage for larger r0/R values. Thus, we see once more that τpeak
alone is not sufficient to describe the characteristics of the 2-D bounded channel.

4.3 3-D Channel: Comparison with Simulations

Now, we turn to estimating the impulse response for the 3-D channel with coaxial cylinders, as depicted in
Fig. 1(a). In section 2, we discussed a simplified assumption such that the 3-D channel can be approximated
by the 2-D annular channel. Now, we shall perform comparisons with particle based simulations to verify our
findings.

For now, we will revisit (4) and re-write it, for simplicity, as follows

χ = 2Q

(
h

2
√

2Dtmax

)
=⇒ χ < ε, (31)

where ε is our crude over-estimate of the error-bound and tmax is the maximum time of interest. For illustration
purposes, we shall consider the most extreme case, where the boundary height hb →∞ and the receiver height
is h = 2h0. The transmitter is located in the middle as in Fig. 1. The comparison is shown in Fig. 8 for
two different initial conditions r0 = 20µm and r0 = 70µm. As can be seen from the figure, χ is indeed an
over-estimate, since the analytic estimate follows the simulations even for high χ values.

As can be seen from Fig. 8(b), the discrepancy between the analytic estimate and the simulations becomes
more apparent for large r0/R values, as the tail effects become important at earlier times and more particles
arrive at the receiver until the time of interest, amplifying the existing error correspondingly. For the usual
time of interest, t ∈ [0, O(tγ)], the analytic estimate matches the simulations if h = 10(r0 − d0) very well. We
can also see this from our crude estimate by setting tmax = κtγ and h = 10(r0 − d0):

χ = 2Q

(
h

2
√

2Dκtγ

)
= 2Q

(
5√
2κ

)
. (32)

For example, this function yields 0.04 for κ = 3 and 0.15 for κ = 6. Both cases are acceptable since this is a
crude overestimate of the upper-bound on the error.

5 Conclusion

In this work, we derived the impulse response of the 2-D annular channel first for SO(2) symmetric initial
conditions, then broke the symmetry while offering a more rigorous and angle-dependent description for the
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impulse response inside the channel. In this pursuit, we defined a special function ηs0(x) (or ηpsp (x) in general),
which is a combination of Bessel functions of the first and second kind. This function satisfies the necessary
boundary conditions and is an exact solution to the radial part of the diffusion equation under separation of
variable Ansatz. This method of obtaining an impulse response leads to an infinite number of terms, the sum
of which converges for t > 0. It is shown that the infinite sum in the analytic solution can be truncated after
a certain number of terms depending on the time interval one is interested in. Furthermore, we show the
agreement between the Monte-Carlo simulations and the analytic solutions for different channel and receiver
parameters, such as the aspect ratio α, the boundary radius R, and the receiver radius d0. This equivalence
constitutes the evidence for the accuracy of our findings.

Having verified our findings, we explore the dependency of certain channel characteristics on the initial
position of the transmitter. Regarding the peak time τpeak simulations, the effect of the boundary on the peak
time is more apparent as the initial position of the transmitter is around 2lc/3, where lc = R−d0 is the channel
length. As r0 > lc, there is an apparent shift in the peak time, caused by the boundary. Nonetheless, this
trend shift is not apparent for the average and half time, τaverage and τhalf . The intuitive reason behind this
phenomenon can be explained through the tail effect. The average and half time values are more dependent on
the existence of the boundary as they rely not only on the peak of the hitting rate, but also on the behavior
of the tail that follows the peak. As the transmitter is placed further from the receiver, the contribution from
the tail surpasses greatly the contribution from the peak, hence smoothing out the distinct trend shift for
r ' 2lc/3. Evidence for this phenomenon can be observed from the relatively large values of average and half
times compared to lower values of the peak times, as the difference between τpeak and τaverage/τhalf depicted
in Fig. 4 is approximately an order of magnitude. Moreover, we present an analytic expression for τaverage,
which can be extremely useful when choosing a sampling time for the receiver in a communication scenario.

Finally, we used our findings to describe the impulse response of various channels: the angular-dependent
response of the 2-D annular channel, an analytic estimate for the 2-D unbounded channel and finally an analytic
approximation for the 3-D diffusion channel consisting of a cylindrical receiver and reflecting boundary. Since
no exact analytic result exists in the literature, our findings constitute a leap forward in understanding the
impulse response of the 2-D unbounded channel. As a future work, we plan to explore the angular dependent
impulse response of the 2-D annular channel and the corresponding channel characteristics, as well as possible
applications to many transmitter communications.
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APPENDIX

A Derivation of ηs0(βsx)

When finding the impulse response of the 2-D channel, we have assumed that there exist functions ηs0(βsx)
such that η

′s
0 (βs) = 0 and ηs0(αβs) = 0. In this section, we shall discuss how to construct such functions and

illustrate an algorithm to find the eigenvalues ({βs}).
To begin with, we can rearrange the radial solution slightly (ignoring the general normalization constant for

now) as
φ(r) = J0 (ar) + cY0 (ar) , (A.1)

where we define a ≡ µ√
D

for simpler algebra. Using the boundary conditions (6a) and (6b), we find the following

set of linear equations:

−aJ1(aR)− caY1(aR) = 0, (A.2a)

J0(ad0) + cY0(ad0) = 0. (A.2b)

Rearranging the terms, we can obtain

c = −J1(aR)

Y1(aR)
, (A.3a)

c = −J0(ad0)

Y0(ad0)
, (A.3b)

where setting aR = β and α = d0

R , we look for the solutions of the equation

J1(β)

Y1(β)
− J0(αβ)

Y0(αβ)
= 0, (A.4)

which we call the characteristic equation. There are infinitely many solutions for this equation, each of which
corresponds to a distinct eigenvalue and an eigenfunction of the Laplacian operator. We also note that c is fully
determined by the procedure above. Finally, we define the function

ηs0(x) = J0 (x) + csY0 (x) . (A.5)

Without a given aspect ratio α, this is the most general function we can define. If α is given, then we
can construct a code that finds the roots of the characteristic equation. This is feasible, because the roots
become periodic as β → ∞. This can be shown by considering the large argument asymptotic behavior of the
Bessel functions, where both Jp(x) and Yp(x) behave as ∼ cos

(
x− pπ2 −

π
4

)
/
√
x and ∼ sin

(
x− pπ2 −

π
4

)
/
√
x,

respectively. Then, (A.4) becomes a trigonometric equation:

cot

(
β − 3π

4

)
= cot

(
αβ − π

4

)
. (A.6)

For small α, such that α < 0.5, the shift β → β + π leaves the left-hand-side (LHS) of this equation invariant
while the RHS changes slowly. Then, in the second shift β → β + π, the RHS does not complete a periodic
rotation over its range, as α2π < π, whereas the LHS completes the second periodic rotation. Hence, for α < 0.5,
the consecutive roots are contained at least within the interval βn−1 − βn ∈ [π, 2π]. A similar argument can be
made for cases 0.5 < α < 1. Hence, as β →∞, the roots are contained within periodic intervals, an example of
which can be seen in Table 1 for α = 0.1.

As {βs} depends solely on α, this computation needs to be carried out only once for each α value. Once the
roots βs are found, we can construct the eigenfunctions ηs0(βsx) given in (13) by finding cs’s.
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B Derivation of Angle-Dependent Response

To describe the diffusion of the molecule inside the annular region under angle-dependent conditions, we
shall find a solution to Fick’s Law, satisfying the necessary boundary conditions

∂P (r, θ, t)

∂r

∣∣∣
r=R

= 0, (B.1a)

P (r, θ, t)
∣∣∣
r=d0

= 0, (B.1b)

P (r, θ, 0) =
1

r
δ(r − r0)δ(θ − θ0). (B.1c)

We shall start with the separation of variables ansatz

P (r, θ, t) = φ(r, θ)T (t), (B.2)

which leads to
T (t) = Ae−µ

2t, (B.3)

and

R′′

R
+
R′

rR
+

Θ′′

r2Θ
= −µ

2

D
, (B.4)

where we define φ(r, θ) = R(r)Θ(θ) and A is the overall normalization factor to be determined by the initial
conditions. R′(r) denotes the derivative of R(r) with respect to r. This equation can be transformed into a
Bessel differential equation for the radial part if we set

Θ′′ = −p2Θ =⇒ Θ(θ) = Ap cos(pθ) +Bp sin(pθ). (B.5)

Then, the radial equation becomes

r2R′′(r) + rR′(r) +

(
µ2

D
r2 − p2

)
R(r) = 0. (B.6)

After proper re-scaling of the independent variable r, we can find the solution as

R(r) = Jp

(
µ√
D
r

)
+ cYp

(
µ√
D
r

)
. (B.7)

Here, we shall define the function ηpsp (x) analogously to (13) as

ηpsp (x) = Jp(x) + cpsYp(x) (B.8)

such that η
′ps
p (βps) = 0 and ηpsp (αβps) = 0, where α = d0

R as usual. Then, ηpsp (βps
r
R ) are indeed solutions to the

radial equation with the boundary conditions satisfied, where βps = Rµ√
D

. In general, to find βps, we shall solve

a linear set of equations similar to what we have done for ηs0(βsx).
Before continuing, we shall give the normalization condition for the special function ηp(βpsx) as∫ 1

α

ηpsp (βpsx)ηp
′s′

p′ (βp′s′x)xdx = Ipsδpp′δss′ , (B.9)

where we note that Ips can be written in terms of linear combinations of Bessel functions of the first and second
kind. Without loss of generality, we can set θ0 = 0 and find the probability density function for the molecules
as

P (r, θ, t) =

∞∑
s=1

1

2πR2I0s
ηs0

(
β0s

r0

R

)
ηs0

(
β0s

r

R

)
e−β

2
0s
Dt
R2

+

∞∑
p=1

∞∑
s=1

1

πR2Ips
cos(pθ)ηpsp

(
βps

r0

R

)
ηpsp

(
βps

r

R

)
e−β

2
ps
Dt
R2 .

(B.10)

Some βps values are given in Table 1 in the following page while we note that cps values can be calculated easily
by straightforward algebra.
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Table 1: βps values for α = 0.1 calculated by our algorithm to be used in (30). β0s values can also be used for
the impulse response given in (19).

s=1 s=2 s=3 s=4 s=5 s=6 s=7 s=8 s=9 s=10 s=11 s=12 s=13
p=0 1.103 4.979 8.554 12.087 15.603 19.111 22.614 26.114 29.612 33.108 36.604 40.099 43.593
p=1 1.879 5.532 8.975 12.422 15.880 19.346 22.818 26.293 29.772 33.253 36.736 40.219 43.704
p=2 3.056 6.724 10.042 13.347 16.677 20.038 23.424 26.831 30.254 33.689 37.133 40.584 44.041
p=3 4.201 8.016 11.353 14.612 17.858 21.118 24.402 27.714 31.054 34.416 37.798 41.195 44.606
p=4 5.318 9.282 12.682 15.967 19.206 22.428 25.650 28.886 32.142 35.423 38.728 42.056 45.404
p=5 6.416 10.520 13.987 17.313 20.576 23.807 27.020 30.227 33.437 36.657 39.894 43.151 46.430
p=6 7.501 11.735 15.268 18.637 21.932 25.184 28.411 31.622 34.823 38.021 41.222 44.431 47.653
p=7 8.578 12.932 16.529 19.942 23.268 26.545 29.791 33.016 36.226 39.426 42.620 45.812 49.006
p=8 9.647 14.116 17.774 21.229 24.587 27.889 31.155 34.397 37.620 40.831 44.031 47.225 50.414
p=9 10.711 15.287 19.005 22.501 25.891 29.219 32.505 35.764 39.002 42.225 45.436 48.637 51.832
p=10 11.771 16.448 20.223 23.761 27.182 30.535 33.842 37.118 40.371 43.607 46.829 50.040 53.243
p=11 12.826 17.600 21.431 25.009 28.461 31.838 35.167 38.460 41.729 44.978 48.211 51.433 54.645
p=12 13.879 18.745 22.629 26.246 29.729 33.131 36.481 39.792 43.075 46.338 49.583 52.816 56.037
p=13 14.928 19.883 23.819 27.474 30.987 34.415 37.784 41.114 44.412 47.688 50.946 54.189 57.420
p=14 15.975 21.015 25.002 28.694 32.237 35.689 39.079 42.426 45.740 49.030 52.299 55.553 58.794
p=15 17.020 22.142 26.178 29.907 33.478 36.954 40.365 43.730 47.059 50.363 53.644 56.909 60.160
p=16 18.063 23.264 27.347 31.112 34.712 38.212 41.643 45.025 48.371 51.687 54.982 58.257 61.518
p=17 19.104 24.382 28.511 32.311 35.940 39.463 42.914 46.314 49.674 53.005 56.311 59.598 62.869
p=18 20.144 25.496 29.670 33.504 37.160 40.707 44.178 47.595 50.971 54.315 57.634 60.932 64.213
p=19 21.182 26.606 30.824 34.691 38.375 41.945 45.436 48.870 52.261 55.619 58.950 62.259 65.550
p=20 22.219 27.712 31.974 35.874 39.585 43.177 46.687 50.139 53.545 56.916 60.260 63.580 66.881
p=21 23.255 28.816 33.119 37.052 40.789 44.403 47.933 51.401 54.823 58.208 61.563 64.895 68.206
p=22 24.289 29.916 34.261 38.225 41.988 45.624 49.173 52.659 56.095 59.494 62.861 66.204 69.525
p=23 25.323 31.014 35.399 39.394 43.183 46.841 50.409 53.911 57.362 60.774 64.154 67.507 70.839
p=24 26.356 32.109 36.533 40.559 44.373 48.053 51.639 55.158 58.624 62.049 65.441 68.806 72.148
p=25 27.387 33.202 37.665 41.721 45.559 49.260 52.865 56.400 59.881 63.320 66.724 70.099 73.451
p=26 28.418 34.293 38.793 42.879 46.742 50.463 54.087 57.638 61.134 64.585 68.001 71.388 74.750
p=27 29.448 35.382 39.919 44.033 47.920 51.663 55.305 58.872 62.382 65.847 69.275 72.672 76.045
p=28 30.478 36.468 41.042 45.185 49.096 52.859 56.518 60.101 63.626 67.104 70.543 73.952 77.334
p=29 31.506 37.553 42.163 46.333 50.268 54.051 57.728 61.327 64.866 68.356 71.808 75.228 78.620
p=30 32.534 38.636 43.281 47.479 51.436 55.239 58.934 62.549 66.102 69.605 73.069 76.499 79.902
p=31 33.562 39.717 44.397 48.622 52.602 56.425 60.137 63.768 67.334 70.851 74.326 77.767 81.179
p=32 34.588 40.797 45.510 49.762 53.765 57.607 61.337 64.982 68.563 72.092 75.579 79.031 82.453
p=33 35.615 41.875 46.622 50.900 54.925 58.787 62.533 66.194 69.789 73.330 76.828 80.291 83.723
p=34 36.641 42.952 47.731 52.036 56.083 59.963 63.727 67.403 71.011 74.565 78.075 81.548 84.990
p=35 37.666 44.028 48.839 53.169 57.238 61.137 64.917 68.608 72.230 75.796 79.317 82.801 86.253
p=36 38.691 45.102 49.945 54.301 58.390 62.308 66.105 69.811 73.446 77.024 80.557 84.051 87.513
p=37 39.715 46.174 51.049 55.430 59.541 63.477 67.290 71.010 74.659 78.250 81.794 85.298 88.770
p=38 40.739 47.246 52.152 56.557 60.689 64.643 68.472 72.207 75.869 79.472 83.027 86.542 90.023
p=39 41.762 48.317 53.253 57.682 61.835 65.807 69.652 73.401 77.076 80.692 84.258 87.783 91.274
p=40 42.785 49.386 54.352 58.806 62.978 66.969 70.829 74.593 78.281 81.908 85.486 89.021 92.521
p=41 43.808 50.454 55.450 59.927 64.120 68.128 72.005 75.782 79.483 83.122 86.711 90.257 93.766
p=42 44.830 51.521 56.546 61.047 65.260 69.285 73.177 76.969 80.683 84.334 87.933 91.489 95.008
p=43 45.852 52.588 57.642 62.166 66.398 70.441 74.348 78.154 81.880 85.543 89.153 92.719 96.248
p=44 46.874 53.653 58.735 63.282 67.534 71.594 75.517 79.336 83.075 86.750 90.371 93.947 97.485
p=45 47.895 54.717 59.828 64.397 68.669 72.745 76.683 80.517 84.268 87.954 91.586 95.172 98.719
p=46 48.916 55.781 60.919 65.511 69.801 73.895 77.848 81.695 85.459 89.156 92.798 96.394 99.951
p=47 49.937 56.843 62.009 66.623 70.932 75.042 79.010 82.871 86.647 90.356 94.009 97.614 101.180
p=48 50.958 57.905 63.098 67.734 72.062 76.188 80.171 84.045 87.834 91.553 95.217 98.832 102.407
p=49 51.978 58.966 64.186 68.844 73.190 77.333 81.330 85.217 89.018 92.749 96.423 100.048 103.632
p=50 52.998 60.026 65.273 69.952 74.316 78.475 82.487 86.387 90.200 93.943 97.627 101.262 104.855
p=51 54.017 61.086 66.358 71.059 75.441 79.616 83.642 87.556 91.381 95.134 98.828 102.473 106.076
p=52 55.037 62.145 67.443 72.164 76.565 80.756 84.796 88.722 92.559 96.324 100.028 103.683 107.294
p=53 56.056 63.203 68.527 73.269 77.687 81.894 85.948 89.887 93.736 97.511 101.226 104.890 108.510
p=54 57.075 64.260 69.609 74.372 78.808 83.030 87.099 91.051 94.911 98.697 102.422 106.096 109.725
p=55 58.093 65.317 70.691 75.474 79.928 84.165 88.248 92.212 96.084 99.881 103.616 107.299 110.937
p=56 59.112 66.373 71.772 76.575 81.046 85.299 89.395 93.372 97.256 101.064 104.809 108.501 112.148
p=57 60.130 67.428 72.852 77.675 82.163 86.431 90.541 94.531 98.426 102.244 105.999 109.701 113.356
p=58 61.148 68.483 73.931 78.774 83.279 87.562 91.686 95.688 99.594 103.423 107.188 110.899 114.563
p=59 62.166 69.537 75.010 79.872 84.394 88.692 92.829 96.843 100.761 104.601 108.375 112.095 115.768
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