A robust expectation-maximization method for the interpretation of small-angle scattering data from dense nanoparticle samples - Archive ouverte HAL Access content directly
Journal Articles Journal of Applied Crystallography Year : 2019

A robust expectation-maximization method for the interpretation of small-angle scattering data from dense nanoparticle samples

(1) , (2) , (1)
1
2
Marc Bakry
  • Function : Author
  • PersonId : 1061347
Oana Bunău
  • Function : Author
Houssem Haddar

Abstract

The Local Monodisperse Approximation (LMA) is a two-parameter model commonly employed for the retrieval of size distributions from the small angle scattering (SAS) patterns obtained on dense nanoparticle samples (e.g. dry powders and concentrated solutions). This work features a novel implementation of the LMA model resolution for the inverse scattering problem. Our method is based on the Expectation Maximiza-tion iterative algorithm and is free from any fine tuning of model parameters. The application of our method on SAS data acquired in laboratory conditions on dense nanoparticle samples is shown to provide good results.
Fichier principal
Vignette du fichier
article_lma_template.pdf (1.13 Mo) Télécharger le fichier
Origin : Files produced by the author(s)
Loading...

Dates and versions

hal-02416529 , version 1 (17-12-2019)

Identifiers

Cite

Marc Bakry, Oana Bunău, Houssem Haddar. A robust expectation-maximization method for the interpretation of small-angle scattering data from dense nanoparticle samples. Journal of Applied Crystallography, 2019, 52 (5), pp.926-936. ⟨10.1107/S1600576719009373⟩. ⟨hal-02416529⟩
37 View
118 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More