R. L. Winslow, N. Trayanova, D. Geman, and M. I. Miller, Computational medicine: translating models to 570 clinical care, Science translational medicine, vol.4, issue.158, pp.158-169, 2012.

L. Bertagna, M. Elia, M. Perego, and A. Veneziani, Data assimilation in cardiovascular fluid-structure interaction problems: an introduction, Fluid-Structure Interaction and Biomedical Applications, pp.395-481, 2014.

C. Bertoglio, P. Moireau, and J. Gerbeau, Sequential parameter estimation for fluid-structure problems: 575 Application to hemodynamics, International Journal for Numerical Methods in Biomedical Engineering, vol.28, issue.4, pp.434-455, 2012.

M. Elia, L. Mirabella, T. Passerini, M. Perego, M. Piccinelli et al., Applications of variational data assimilation in computational hemodynamics, Modeling of Physiological Flows, pp.363-394, 2012.

A. Veneziani and C. Vergara, Inverse problems in cardiovascular mathematics: toward patient-specific data assimilation and optimization, International Journal for Numerical Methods in Biomedical Engineering, vol.29, issue.7, pp.723-725, 2013.

K. Law, A. Stuart, and K. Zygalakis, Data assimilation
URL : https://hal.archives-ouvertes.fr/insu-02330071

M. Asch, M. Bocquet, and M. Nodet, Data assimilation: methods, algorithms, and applications, vol.11, p.585
URL : https://hal.archives-ouvertes.fr/hal-01402885

, SIAM, 2016.

D. Amsallem, M. J. Zahr, and C. Farhat, Nonlinear model order reduction based on local reduced-order bases, International Journal for Numerical Methods in Engineering, vol.92, issue.10, pp.891-916, 2012.

J. S. Hesthaven, G. Rozza, and B. Stamm, Certified reduced basis methods for parametrized partial differential equations, p.590, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01223456

A. Quarteroni, A. Manzoni, and F. Negri, Reduced basis methods for partial differential equations: an introduction, vol.92, 2015.

G. Rozza, D. B. Huynh, and A. T. Patera, Reduced basis approximation and a posteriori error estimation for affinely parametrized elliptic coercive partial differential equations, Archives of Computational Methods in Engineering, vol.15, issue.3, p.1, 2007.
URL : https://hal.archives-ouvertes.fr/hal-01722593

Z. Luo and G. Chen, Proper orthogonal decomposition methods for partial differential equations, 2018.

F. S. Costabal, P. Perdikaris, E. Kuhl, and D. E. Hurtado, Multi-fidelity classification using gaussian processes: Accelerating the prediction of large-scale computational models, Computer Methods in Applied Mechanics and Engineering, vol.357, p.112602, 2019.

R. H. Clayton, O. Bernus, E. M. Cherry, H. Dierckx, F. H. Fenton et al.,

G. Sachse, H. Seemann, and . Zhang, Models of cardiac tissue electrophysiology: progress, challenges and open questions, Progress in biophysics and molecular biology, vol.104, issue.1-3, pp.22-48, 2011.

L. Glass, P. Hunter, and A. Mcculloch, Theory of heart: biomechanics, biophysics, and nonlinear dynamics of cardiac function, 2012.

A. J. Pullan, L. K. Cheng, and M. L. Buist, Mathematically modelling the electrical activity of the heart: from cell to body surface and back again, 2005.

F. Fenton and E. Cherry, Models of cardiac cell, vol.3, issue.8, p.1868, 2008.

P. Lenarda, A. Gizzi, and M. Paggi, A modeling framework for electro-mechanical interaction between excitable deformable cells, European Journal of Mechanics-A/Solids, vol.72, pp.374-392, 2018.

S. Weinberg, Ephaptic coupling rescues conduction failure in weakly coupled cardiac tissue with voltagegated gap junctions, Chaos, vol.27, issue.9, p.93908, 2017.

A. Loppini, A. Gizzi, C. Cherubini, E. Cherry, F. Fenton et al., Spatiotemporal correlation uncovers characteristic lengths in cardiac tissue, Physical Review E, vol.100, issue.2, p.20201, 2019.

L. S. Graham and D. Kilpatrick, Estimation of the bidomain conductivity parameters of cardiac tissue from 615 extracellular potential distributions initiated by point stimulation, Annals of biomedical engineering, vol.38, issue.12, pp.3630-3648, 2010.

Y. Abidi, M. Mahjoub, and N. Zemzemi, Ionic parameters estimation in multi-scale cardiac electrophysiology modelling, INRIA, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02338984

H. Yang and A. Veneziani, Estimation of cardiac conductivities in ventricular tissue by a variational ap-620 proach, Inverse Problems, vol.31, issue.11, p.115001, 2015.

A. Barone, F. Fenton, and A. Veneziani, Numerical sensitivity analysis of a variational data assimilation procedure for cardiac conductivities, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.27, p.93930, 2017.

A. Barone, A. Gizzi, F. Fenton, S. Filippi, and A. Veneziani, Experimental validation of a variational data 625 assimilation procedure for estimating space-dependent cardiac conductivities, Computer Methods in Applied Mechanics and Engineering, vol.358

M. Boulakia, E. Schenone, and J. Gerbeau, Reduced-order modeling for cardiac electrophysiology. application to parameter identification, International Journal for Numerical Methods in Biomedical Engineering, vol.28, issue.6-7, pp.727-744, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00644396

J. Gerbeau, D. Lombardi, and E. Schenone, Reduced order model in cardiac electrophysiology with approximated lax pairs, Advances in Computational Mathematics, vol.41, issue.5, pp.1103-1130, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01238830

S. Pagani, A. Manzoni, and A. Quarteroni, Numerical approximation of parametrized problems in cardiac electrophysiology by a local reduced basis method, Computer Methods in Applied Mechanics and Engineering, vol.340, pp.530-558, 2018.

H. Yang and A. Veneziani, Efficient estimation of cardiac conductivities via pod-deim model order reduction, Applied Numerical Mathematics, vol.115, pp.180-199, 2017.

F. Chinesta, R. Keunings, and A. Leygue, The Proper Generalized Decomposition for Advanced Numerical Simulations: a Primer, SpringerBriefs in Applied Sciences and Technology, 2014.

A. Ammar, E. Cueto, and F. Chinesta, Reduction of the chemical master equation for gene regulatory networks using proper generalized decompositions, International Journal for Numerical Methods in Biomedical Engineering, vol.28, issue.9, pp.960-973, 2012.
URL : https://hal.archives-ouvertes.fr/hal-01061274

S. Niroomandi, D. González, I. Alfaro, F. Bordeu, A. Leygue et al., Real-time simulation of biological soft tissues: a PGD approach, International Journal for Numerical Methods in, p.645
URL : https://hal.archives-ouvertes.fr/hal-01007231

, Biomedical Engineering, vol.29, issue.5, pp.586-600, 2013.

M. Signorini, S. Zlotnik, and P. Díez, Proper generalized decomposition solution of the parameterized Helmholtz problem: application to inverse geophysical problems, International Journal for Numerical Methods in Engineering, vol.109, issue.8, pp.1085-1102, 2017.

P. Ladevèze, J. Passieux, and D. Néron, The LATIN multiscale computational method and the proper 650 generalized decomposition, Computer Methods in Applied Mechanics and Engineering, vol.199, pp.1287-1296, 2010.

E. Pruliere, F. Chinesta, and A. Ammar, On the deterministic solution of multidimensional parametric models using the proper generalized decomposition, Mathematics and Computers in Simulation, vol.81, issue.4, pp.791-810, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00704427

J. Lions and E. Magenes, Non Homogeneous Boundary Value Problems and Applications, 1972.

Y. Pinchover and J. Rubinstein, An Introduction to Partial Differential Equations, 2005.

S. Perotto, M. G. Carlino, and F. Ballarin, Model reduction by separation of variables: a comparison 660 between hierarchical model reduction and proper generalized decomposition, Spectral and High Order Methods for Partial Differential Equations, 2018.

A. L. Hodgkin and A. F. Huxley, A quantitative description of membrane current and its application to conduction and excitation in nerve, The Journal of physiology, vol.117, issue.4, pp.500-544, 1952.

J. Keener, J. Sneyd, Mathematical Physiology, 2009.

J. Sundnes, G. T. Lines, X. Cai, B. F. Nielsen, K. Mardal et al., Computing the electrical activity in the heart, vol.1, 2007.

S. Luther, F. H. Fenton, B. Kornreich, A. Squires, P. Bittihn et al., Low-energy control of electrical turbulence in the heart, Nature, vol.475, pp.235-239, 2011.

P. Colli-franzone and L. F. Pavarino, A parallel solver for reaction-diffusion systems in computational electrocardiology, Mathematical models and methods in applied sciences, vol.14, pp.883-911, 2004.

L. Gerardo-giorda, L. Mirabella, F. Nobile, M. Perego, and A. Veneziani, A model-based block-triangular preconditioner for the bidomain system in electrocardiology, Journal of Computational Physics, vol.228, issue.10, pp.3625-3639, 2009.

L. Gerardo-giorda, M. Perego, and A. Veneziani, Optimized schwarz coupling of bidomain and monodomain models in electrocardiology, ESAIM: Mathematical Modelling and Numerical Analysis, vol.45, issue.2, pp.309-334, 2011.

S. Linge, J. Sundnes, M. Hanslien, G. T. Lines, and A. Tveito, Numerical solution of the bidomain equations, p.680

, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.367, pp.1931-1950, 1895.

L. Mirabella, F. Nobile, and A. Veneziani, An a posteriori error estimator for model adaptivity in electrocardiology, Computer Methods in Applied Mechanics and Engineering, vol.200, pp.2727-2737, 2011.

L. F. Pavarino and S. Scacchi, Multilevel additive schwarz preconditioners for the bidomain reaction-685 diffusion system, SIAM Journal on Scientific Computing, vol.31, issue.1, pp.420-443, 2008.

L. F. Pavarino and S. Scacchi, Parallel multilevel schwarz and block preconditioners for the bidomain parabolic-parabolic and parabolic-elliptic formulations, SIAM Journal on Scientific Computing, vol.33, issue.4, pp.1897-1919, 2011.

M. Perego and A. Veneziani, An efficient generalization of the rush-larsen method for solving electro-690 physiology membrane equations, Electronic Transactions on Numerical Analysis, vol.35, pp.234-256, 2009.

G. Plank, M. Liebmann, R. W. Santos, E. J. Vigmond, and G. Haase, Algebraic multigrid preconditioner for the cardiac bidomain model, IEEE transactions on bio-medical engineering, vol.54, issue.4, p.585, 2007.

E. J. Vigmond, F. Aguel, and N. A. Trayanova, Computational techniques for solving the bidomain equations in three dimensions, IEEE Transactions on Biomedical Engineering, vol.49, issue.11, pp.1260-1269, 2002.

E. J. Vigmond, R. W. Santos, A. J. Prassl, M. Deo, and G. Plank, Solvers for the cardiac bidomain equations, Progress in biophysics and molecular biology, vol.96, issue.1-3, pp.3-18, 2008.

D. E. Hurtado and G. Rojas, Non-conforming finite-element formulation for cardiac electrophysiology: an effective approach to reduce the computation time of heart simulations without compromising accuracy, Computational Mechanics, vol.61, issue.4, pp.485-497, 2018.

C. Luo and Y. Rudy, A model of the ventricular cardiac action potential. depolarization, repolarization, and their interaction, Circulation research, vol.68, issue.6, pp.1501-1526, 1991.

C. Luo and Y. Rudy, A dynamic model of the cardiac ventricular action potential. i. simulations of ionic currents and concentration changes, Circulation research, vol.74, issue.6, pp.1071-1096, 1994.

K. H. Tusscher, D. Noble, P. Noble, and A. V. Panfilov, A model for human ventricular tissue, p.705

, American Journal of Physiology-Heart and Circulatory Physiology, vol.286, issue.4, pp.1573-1589, 2004.

E. M. Cherry and F. H. Fenton, Effects of boundaries and geometry on the spatial distribution of action potential duration in cardiac tissue, Journal of Theoretical Biology, vol.285, pp.164-176, 2011.

G. A. Holzapfel and R. W. Ogden, Constitutive modelling of passive myocardium: a structurally based framework for material characterization, Philosophical Transactions of the Royal Society A: Mathemat-710 ical, Physical and Engineering Sciences, vol.367, pp.3445-3475, 1902.

M. S. Spach, Anisotropy of cardiac tissue: a major determinant of conduction, Journal of cardiovascular electrophysiology, vol.10, issue.6, pp.887-890, 1999.

M. S. Spach, J. F. Heidlage, R. C. Barr, and P. C. Dolber, Cell size and communication: role in structural and electrical development and remodeling of the heart, Heart Rhythm, vol.1, issue.4, pp.500-515, 2004.

L. Clerc, Directional differences of impulse spread in trabecular muscle from mammalian heart, The Journal of physiology, vol.255, issue.2, pp.335-346, 1976.

D. E. Roberts, L. T. Hersh, and A. M. Scher, Influence of cardiac fiber orientation on wavefront voltage, conduction velocity, and tissue resistivity in the dog, Circulation research, vol.44, issue.5, pp.701-712, 1979.

D. E. Roberts and A. M. Scher, Effect of tissue anisotropy on extracellular potential fields in canine my-720 ocardium in situ, Circulation Research, vol.50, issue.3, pp.342-351, 1982.

P. R. Johnston, A sensitivity study of conductivity values in the passive bidomain equation, Mathematical biosciences, vol.232, issue.2, pp.142-150, 2011.

M. G. Carlino, Model reduction by proper generalized decomposition in electrocardiology, 2017.

A. Ern and J. Guermond, Theory and Practice of Finite Elements, vol.159, 2004.

Y. Saad, Iterative methods for sparse linear systems, vol.82, 2003.

L. Bertagna, S. Deparis, L. Formaggia, D. Forti, and A. Veneziani, The lifev library: engineering mathematics beyond the proof of concept

T. Passerini, A. Quaini, U. Villa, A. Veneziani, and S. Canic, Validation of an open source framework for the simulation of blood flow in rigid and deformable vessels, International journal for numerical methods in biomedical engineering, vol.29, issue.11, pp.1192-1213, 2013.

M. Heroux, R. Bartlett, V. Hoekstra, J. Hu, T. Kolda et al., An Overview of Trilinos, 2003.

A. Gizzi, E. M. Cherry, J. Gilmour, R. F. , S. Luther et al., Effects of pacing site and stimulation history on alternans dynamics and the development of complex spatiotemporal patterns in cardiac tissue, Frontiers in Physiology, vol.4, pp.1-20, 2013.

F. Fenton, S. Luther, E. Cherry, N. Otani, V. Krinsky et al., , p.740

, Termination of atrial fibrillation using pulsed low-energy far-field stimulation, Circulation, vol.120, p.467, 2009.

J. Nocedal and S. Wright, Numerical optimization, 2006.

Y. A. Brandes-costa and . Barbosa, Isogeometric hierarchical model reduction: from analysis to patientspecific simulations, 2020.

L. Alvarez, P. Blanco, C. Bulant, E. Dari, A. Veneziani et al., Transversally enriched pipe element method (tepem): An effective numerical approach for blood flow modeling, International journal for numerical methods in biomedical engineering, vol.33, issue.4, p.2808, 2017.

S. Guzzetti, L. M. Alvarez, P. Blanco, K. T. Carlberg, and A. Veneziani, Propagating uncertainties in large-scale hemodynamics models via network uncertainty quantification and reduced-order modeling, p.750

, Computer Methods in Applied Mechanics and Engineering, vol.358, p.112626, 2020.

C. M. Fleeter, G. Geraci, D. E. Schiavazzi, A. M. Kahn, and A. L. Marsden, Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics, 2019.

J. Seo, C. Fleeter, A. M. Kahn, A. L. Marsden, and D. E. Schiavazzi, Multi-fidelity estimators for coronary circulation models under clinically-informed data uncertainty, 2019.

K. Kunisch and M. Wagner, Optimal control of the bidomain system (i): The monodomain approximation with the rogers-mcculloch model, Nonlinear Analysis: Real World Applications, vol.13, issue.4, pp.1525-1550, 2012.

K. Kunisch and M. Wagner, Optimal control of the bidomain system (ii): Uniqueness and regularity theorems for weak solutions, Applicata, vol.192, issue.6, pp.951-986, 2013.

K. Kunisch and M. Wagner, Optimal control of the bidomain system (iii): Existence of minimizers and first-760 order optimality conditions, ESAIM: Mathematical Modelling and Numerical Analysis, vol.47, issue.4, pp.1077-1106, 2013.

C. Nagaiah, K. Kunisch, and G. Plank, Optimal control approach to termination of re-entry waves in cardiac electrophysiology, Journal of Mathematical Biology, vol.67, issue.2, pp.359-388, 2013.

A. Petras, M. Leoni, J. M. Guerra, J. Jansson, and L. Gerardo-giorda, Tissue drives lesion: computational 765 evidence of interspecies variability in cardiac radiofrequency ablation, International Conference on Functional Imaging and Modeling of the Heart, pp.139-146, 2019.

C. C. Mitchell and D. G. Schaeffer, A two-current model for the dynamics of cardiac membrane, Bulletin of mathematical biology, vol.65, issue.5, pp.767-793, 2003.

F. Fenton and A. Karma, Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: 770 Filament instability and fibrillation, Chaos: An Interdisciplinary Journal of Nonlinear Science, vol.8, issue.1, pp.20-47, 1998.

A. Bueno-orovio, E. M. Cherry, and F. H. Fenton, Minimal model for human ventricular action potentials in tissue, Journal of theoretical biology, vol.253, issue.3, pp.544-560, 2008.

A. Appendix, PGD Approximation of the Whole Action Potential 775

, The simulations considered in the body of this work only focused on the wavefront propagation to limit computational costs related to the offline phase. Here we investigate the accuracy of the PGD method to reconstruct the waveback propagation