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Estimating the infection rate of a SIR epidemic model via differential
elimination

Rosane Ushirobira!, Denis Efimov!, Pierre-Alexandre Bliman

Abstract— A SIR epidemic model is one of the most well-
known mathematical models that helps to understand the
dissemination of an infectious illness. It is a three-compartment
model composed by individuals that are susceptible, infective
and recovered with respect to the disease. In this work, the
infection rate is estimated for a particular SIR epidemic model
by using as the output measurement the incidence rate, which
is a nonlinear function of the state variables. The aim is then
to eliminate variables in the given system for which there
are no measurements, such as the proportion of each type of
individuals (susceptible, infective and recovered). The method
applied here is based on differential elimination concepts
from differential algebra, more precisely the Rosenfeld-Grobner
algorithm is employed. Once the input-output (I0) equation is
determined, the derivatives of the signal are estimated by a
homogeneous finite-time differentiator and a gradient descent
method can be applied to solve the 10 equation for the infection
rate.

I. INTRODUCTION

In 1932, J. Ritt [17] founded the principles of differential
algebra, a theory that allows the study of differential equa-
tions, ordinary or partial, within an algebraic framework.
An important issue among the several developments of
differential algebra is represented by the theory of differential
elimination. This theory consists essentially in rewriting
a system of differential equations into an equivalent one,
taking into account a certain ordering of its variables and
derivatives. Basically, the given ordering indicates what must
be eliminated, allowing a certain control of the elimination
procedure. The theory of differential elimination appeared
naturally from early stages of differential algebra. In au-
tomatic control theory, an example of an application of
differential elimination can be easily seen as a manner of
obtaining a system of equations in the parameters to be
estimated given in terms of measured quantities and their
derivatives, by then eliminating state variables.

Among others, a quite remarkable algorithm for elimina-
tion is based on the Rosenfeld-Grobner method. This algo-
rithm was introduced by F. Boulier [4] and more complete
details can be found for instance in [6]. Boulier used Grobner
bases to design the Rosenfeld-Grobner algorithm and it was
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how initially this algorithm was implemented in Maple. Nu-
merous applications followed from this important algorithm,
for instance in [5] the author describes differential elimina-
tion applied to mathematical problems, notably arising from
biological examples, such as the parameter estimation in
two-compartment problems or the model reduction for the
circadian clock of the green alga Ostreococcus tauri.

Other useful differential algebra tools, especially Grobner
bases, were also used in control problems, such as for
identifiability topics. Parameter identifiability and input es-
timation of nonlinear systems were studied for example in
[16], [13]. Furthermore, a promising algebraic framework
to parameter estimation relies on the concepts of integro-
differential algebras. The reader may find a study in this
context in [7].

In the present paper, an algebraic approach is applied
to analyze a biological mathematical model, a SIR model,
which represents the spreading of an infectious disease. This
three-compartment model is one of the most popular models
to approximate the development of the illness. The estimation
of the parameter describing the infection rate in a SIR model
provides knowledge of the population and of the epidemic.
The available measured output is the incidence rate, that is
the number of new infective individuals per time unit, which
is a nonlinear function of the state variables. Few works
were devoted to this problem of infection rate estimation,
such as in [2] for the time-varying case. In addition, interval
observers were applied in [3] and more recently, the authors
have designed a class of nonlinear adaptive observers for this
model [15]. See also [12] for the design of a class of interval
observers for vector-borne diseases.

This paper is constituted by the following sections. In
Section II, we describe the epidemic model and the parameter
estimation problem to be studied. Basic definitions and
properties of differential algebra are introduced in Section III.
Using these concepts, in Section IV we apply the Rosenfeld-
Grobner algorithm to compute an estimate for the infection
rate. This method is tested numerically. Conclusions follow
in Section V. An Appendix summarizes some results on
homogeneous finite-time differentiator, borrowed from [14].



II. PROBLEM STATEMENT
Consider a basic SIR model with demography [11]:

S(t) w—BS()I(t) — uS(r),

i) = BS@O)I(t)— (y+w)), (1)
R(r) = 7I(t)—uR(1),

yt) = BSI{),

where the functions S, I, R: R — [0, 1] represent proportions
of susceptible, infected and recovered individuals, respec-
tively; 0 < i <y < 400 are known parameters, representing
the mortalit and recovery rates; B € R, is a unknown pa-
rameter corresponding to the infection rate, and the measured
output available is given by the function y: R, — R, . The
aim of this work is to estimate the value of the infection rate
function 3, based on continuous measurement of y(t).

As mentioned previously, S,  and R are proportions of the
constant total population, that is:

S)+1(t)+R(t) =1

So since the total population is constant, we can then exclude
the dynamics of R in our computations. For this reason,
omitting R from (T)), the simplified model becomes:

vt > 0.

S(t) = p—y(t)—puS(),
i(t) = y()=(y+mi(), )
y1) = BS(@I{).

The proportion of susceptibles and infectious are not di-
rectly accessible to measurement. So the idea is to eliminate
these unknown variables from (@) to obtain input-output
(I0) equations depending only on the parameters and on the
known quantity y and its derivatives. These are the equations
that will provide formulas for the estimate of f3.

For the first step, elimination theory methods from dif-
ferential algebra will determine the input-output equations.
In the next Section, differential algebra and related topics
used here are recalled, before applying in Section IV these
techniques to the problem under study.

III. DIFFERENTIAL ALGEBRA CONCEPTS

Some definitions and structural properties of differential
algebra are given in this part. More details can be found in
Ritt’s seminal book [17].

Let R be a commutative ring with unity. Recall that a
derivation D : R — R is a map that satisfies D(ab) = D(a)b+
aD(b) and D(a+b) = D(a) + D(b), Va, b € R. An element
¢ €R is a constant if D(c) = 0.

Definition 1:
1) A differential ring R is a commutative ring with unity
equipped with commuting derivations Dq,...,D,. We

L As it is common in this simple model (SIR), it is assumed that there is
a natural host lifespan of 1 years. So the rate of natural mortality is given
by the disease-independent factor u [11].

write it sometimes (R;Dy,...,D,). A differential ring
R equipped with a single derivation D is an ordinary
differential ring.

2) A differential ideal 1 of a differential ring
(R;Dy,...,Dy,) is an idea satisfying D;(I) C I,

Vi=1,...,n.
Now, given a polynomial ring R = Kluj,...,u,| on the
indeterminates up,...,u, and coefficients in the field K

(K =R or C), consider Dy,...,D, derivations of R. A
derivation operator of R is a monomial D?‘ ...D¥ with
O1,...,0, € N. A differential polynomial ring K{uy,... u,}
on the differential indeterminates uy,...,u, is the (usual)
commutative polynomial ring on uj,...,u, and A(u;) where
A is a derivation operator of R and i = 1,...,n. Denoting
by U the set of variables uy,...,u,, then the differential
polynomial ring K {uy,...,u,} can be also written as K{U}.

Example 1: An illustrative example can be found in Ritt’s
book [17] and it is given by the ordinary differential equation
h(u) =0, with h(u) = u> —4u where u is a variable depending
on the time ¢. The differential polynomial 4 belongs to
the differential polynomial ring Q{u} equipped with the
derivation (meaning derivation with respect to 7). The
solutions of this ODE are u(f) = (t + K)? (K constant) and
u(t) = 0. Denote by a the differential ideal generated by #,
so a is generated by & and all derivatives of h with respect
to 1.

Taking the derivative of &, we obtain a new ordinary
differential equation:

2u (i —2) =0

and we remark that the solutions (z 4+ K)? and 0 are also
solutions of this ODE. This is again valid for any higher order
derivative of h(u) = 0. Generally speaking, the solutions also
hold for any finite linear combination of derivatives of 4 with
differential polynomials as coefficients. In other words, they
hold for any element in the radical of a. E]

As mentioned in the Introduction, a very efficient algo-
rithm in elimination theory is the Rosenfeld-Grobner method.
One of the main issues of this algorithm is to give a
representation of the radical of a differential ideal generated
by a set of ordinary differential polynomials. For that, it is
necessary to have also a ranking to indicate which variables
must be eliminated.

The notion of ranking is very important for algorithmic
aspects of differential algebra. A ranking is a total ordering
of the variables and their derivatives. So given a system F of
differential polynomials and a ranking on the indeterminates
and its derivatives, the Rosenfeld-Grobner algorithm provides

2An ideal I of a ring R is a non-empty subset of R that satisfies I+1 C I
and IR C 1.

3The radical of an ideal ¢ in the commutative ring R is the set of all
elements in R whose some power belongs to c.



a decomposition of the radical of the differential ideal
generated by J. More precisely, the algorithm returns a finite
family {Cj,...,C,} of finite subsets of K{U}\K, called
differential chains. A differential ideal ¢; is associated to each
C; by taking all elements in K{U} such that their pseudore-
mainder by C; is zero. E] With this notation, the radical t of
the differential ideal generated by J is decomposed as:

t=c N---Ngc,.

Example 2: In Ritt’s example (see Example 1), applying
the Rosenfeld-Grobner algorithm to F = {h(u)} and the
ranking u < u# < ii < ..., it results in a decomposition of
the radical ¢ of the differential ideal generated by F:

t=c;MNcy,

where ¢; = {h(u)} and ¢y = {u}. The ideal ¢; corresponds
to the solution u(t) = (t +K)? and ¢, to the trivial solution.

Elimination theory concepts in differential algebra thus
provide a new manner to represent a system by eliminating
state variables in a state-space representation and rewriting
it into an input-output representation. Classical notions in
control theory such as observability and identifiability can
be tested by using these tools, see for instance [8], [9] and
[13].

To further detail the elimination procedure to obtain 10
equations, according to [18] let us consider a nonlinear
dynamic system defined by time-dependent differential poly-
nomials equations:

(1) = f(x(0),ut),p), ¥(1) = g(x(1),p),

with x(r) = (x1(¢),...,x,(r)) € R" is the state, u(r) € R is
the input and y(¢) € R” is the measured output. The constant
unknown parameter vector p belongs to R” and f and g
are polynomial functions of their arguments and may be
rational in p. Consider F be the family of polynomials
x(t) — f(x(2),u(t)) and y(r) — g(x(¢)). Choosing the following
order relation

USU<H< <Y<Y <o <X <Xy < oo <X <Xp <.

a differential characteristic set is a family of differential
polynomials of the form:

Al(u7y)" . 7Ar(u7y)a
AI’-‘rl(u7yax1)aAr+2(u)y7xl7x2)7 cee aAr+n(u7y7x17' .. axn)~

This corresponds to the fact that the state variables were
eliminated from the given system of equations and the first r
polynomial differential equations A;(u,y) =0, i=1,...,r in
u and y and its derivatives form the input-output relations of
the system. The Rosenfeld-Grobner algorithm is indeed an
efficient tool to find these IO equations.

4For f and g polynomials, a pseudoremainder is the remainder of the
pseudodivision of f by g (that is, the Euclidean division of ¢dee(/)—deg(&)=1 ¢
by g where c is the leading coefficient of g).

Example 3: Consider a linear two-compartment model
without input of the type:

X1 = axi+bx

X» = cx;+dx

where x| and x; are variables and a, b, ¢ and d are param-
eters. Assume that only x; is observable. Apply differential
elimination tools to obtain an IO equation in terms of y = x;
and the result is:

y—(a+d)y+ (ad —bc)y=0.

It is important to stress that singular solutions are in-
cluded in the outcome of the Rosenfeld-Grobner algorithm.
A singular solution of an algebraic differential equation
p(t,x,%,%,...,x"") =0 of order n is a solution that satisfies
also the differential equation %(t,x,x,x, ...,x") =0 (that
is, the derivative of p with respect to the differential inde-
terminate x of highest order, called the separant of p).
Hence, a singular solution satisfies a lower order equation
that results from the elimination of x) in p and a‘)({’l). The
non-singular solutions are called general solutions. !

Example 4: [10] Consider the algebraic differential equa-
tion given by

p(t,x,%,%) = 4i°%% — 16525 + 1252 + 16x = 0.

So p is polynomial in x and its derivatives. Singular solutions
must satisfy %(r,x,x,jc') = 84%%% — 1652 = 0. Therefore, after
the elimination of ¥ in p and %, a singular solution has
to fulfill

X —4x =0.

There are two types of solutions for this equation x(r) =
(t +a)? and x(t) = 0. These are the singular solutions of p.

IV. ESTIMATION

The methods presented in the previous section are quite
elaborated and do allow computations with more variables
and complex interactions than in (I). To give a grasp on the
soundness of differential-algebraic methods, our goal of this
paper is to calculate 10 equations for the system (2)). That can
be obtained by applying the Rosenfeld-Grobner algorithm
implemented in Maple.

In Maple, the DifferentialAlgebra package was
used to define the differential ring with derivations in ¢ and
the following variable order

S>1>y.

The Rosenfeld-Grobner algorithm is implemented in Maple
into the function RosenfeldGrobner. More precisely,
for a given system of nonlinear differential equations (or
inequations) sys and a differential ring R with a predefined
ranking, the RosenfeldGroebner function returns a list
of regular differential chains with respect to the ranking of R



(see Section [II). So the first argument of this algorithm is a
system of differential polynomial equations and the second
one is a total ordering on the set of indeterminates.

Applying the Rosenberg-Grobner algorithm, seven regu-
lar differential chains are obtained. That means that seven
equations can be obtained by rewriting (2)) according to the
given order of variables. All solutions but one are singular,
corresponding usually to equilibrium points. The nonzero
singular solutions are the following:

~2_2 3
=t 2P 3
Yy
Bu—p?
— 4
y B 4
¥ =—4y’B )

From (3), it follows

ﬁ:w—f
2y3
The expression (@) implies:
p-
=y
Finally, () provides:
s 3
4y3

The general solution resulting from the Rosenfeld-Grobner
algorithm is given by:

Theorem 1: The input-output equation of (I)) is given by

with
ro= 4 (-p)’
2
= 4y(y—p)i—(4*—6uy+3u®) L
f yy—p)y (y Ky #)y—u
—2(xu—xy+2u2)yy'+(12+4xu—4u2)(y—u)y2
g = Yzf((Zy*u)y'zfx(y*2u)yy'+xzy2(y7u)>y(yy_u)
+ —x—Q2x-
yy—u) bx—(2x “)“)y(y—u)
2
- (xz—xuﬂtz)y—(xz—3xu+u2>u>yi—“
»

+(2 (xfu)yfu(3x+2u))xuﬁ — X7 (u—)y*

A closed-form for the estimate of B can then be obtained
by solving the above second-degree equation. However, for
applications such a solution may be problematic when y =
0 or y = u. In that case, the nonlinear expression doesn’t
approach the linear expression. In order to avoid poles in the
desired solution, a gradient descent method can be used in
the following way. Consider the function:

F(v) = n?+fv+g

Define G(v) = ||F(v)|[3. Zeroing F is equivalent to mini-
mizing G. The gradient of G being F(v)F’'(v) provides the
zeros of this latter function.

An important step in this estimation problem is also its
numerical differentiation aspect since the first and second
derivatives of y appear in the expressions for f and g
in (7). Many methods may be applied to estimate these
derivatives, mostly within a statistics context. Among non-
asymptotic techniques for numerical differentiation, algebraic
methods appeared in the last twenty years, strongly based on
differential algebra concepts. These methods were broadly
applied to practical problems as in latency compensation
for human-machine interaction or to detect marine bivalves

Y-yt - ((2y—u)y'2— (y—2u)xyy—4By* - (xz—SuB)y3 spawning [19], [1]. Another very efficient non-asymptotic

(22 —4uB) ) 5+ 3t = (v — 2 —wyw)y* - (4By*+
2

method is based on homogeneity concepts [14] whose effec-
tiveness was proven through real-life applications as well.

(x —xu+(u—6p) u) y— <x2 —3xu+u-3p) [.L) u) y*+ An important feature of these methods is their robustness

(2B + (22~ (u+2B)x 2B u) 23+ (=327 + (u+ )
4BRIK) Py +4BY + (1P +axn—4(n+3B)u) By +
(2 —(u+2B) 22 —8Bxu+4(2u+3B)uB) uy'+
(~22+ (B + 4B —4(n+B)Bu )y =0 ©
where ¥ = v+ 2U.

To estimate f3, (6)) is rewritten as a second-degree equation

in B:

rB+fB+g=0 7

to noise measurements. We adopt this later to estimate the

2t derivatives in the illustration below, a brief description is

given in the Appendix.
To illustrate the estimation method, we used the parameter
values:

1 365 1
u_70 and Y= 7year .

After applying the homogeneous finite-time differentiator
described in the Appendix, Fig. [I] shows the error estimation
for the reconstructed signal y(r) from the noiseless simulated
signal.

The whole procedure just discussed, highlights all benefits
of symbolic-numerical methods.

year~



error of y
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Fig. 1. The error of estimation for y

V. CONCLUSION

A parameter estimation problem has been considered in
this paper for a SIR model (T)). More precisely, a method for
estimating the infection rate § was proposed, based on the
measured signal y(z) = BS(¢)I(¢). An algebraic approach was
applied to determine an input-output equation from the given
nonlinear system, based on differential algebra theory, more
precisely by applying the Rosenfeld-Grobner algorithm, as
a remarkable illustration of this theory potential. Using the
resulting closed formula for §, a homogeneous numerical
differentiator was applied to estimate the derivatives of y(7)
appearing in the formula. A part of future research includes
the adaptation of more highly evolved numerical solutions
to the quadratic equation that provides the estimate of the
infection rate, taking into account that the system has no
persistent excitation.

VI. APPENDIX: HOMOGENEOUS FINITE-TIME
DIFFERENTIATOR

Consider a smooth signal y(r). The goal of the homoge-
neous finite-time differentiator is to provide estimates for all
derivatives up to order n: y(), ..., y" D (r). Set y") (1) =
6(r)and z=(y y y(”_l))T. Therefore

z=Az+0(r), y=Cz
01 0 0 O
00 1 0 O
with A= 1: : @ - f, c=( 0 0) and
00 0 0 1
00 0 0 O

O)= (0 0 G(t))T € R". The homogeneous finite-
time differentiator is proposed in [14]:

21 = -ki[z1—-y|%

Zo= Ga—k[ai—y) Y =2, 01, 8)
2= ka7 —y)"e Y

where [x]P := |x|Psign(x) for all x€ R and p >0, 7€ R" is
the estimate of z, the coefficients ki,...,k, define a Hurwitz

polynomial and a choice a € (0,n~!) ensures the system
homogeneity, for the weights r;=1—(i—1)a fori=1,...,n.
Then, after some finite transient we obtain /=1 (r) =2;(z),

j=1,...,n . The differentiation error dynamics is of the
form:
ér = ex—kifer]%,
6 = ep—kfe* N i=2,..n-1, (9
én = 0(t)—kp[er]"* 71,

The convergence of the error to zero is not possible without
having some knowledge about the signal 0(¢). However, by
assuming that y(7) is locally polynomial and that on a small
time interval, 6(r) =0, this problem can be bypassed and all
time derivatives can then be estimated.
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