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An asymptotic preserving scheme on staggered grids for the
barotropic Euler system in low Mach regimes

Thierry Goudon, Julie Llobell, Sebastian Minjeaud

Université Côte d’Azur, Inria, CNRS, LJAD

Abstract. We present a new scheme for the simulation of the barotropic Euler equation
in low Mach regimes. The method uses two main ingredients. First, the system is treated with
a suitable time splitting strategy, directly inspired from [J. Haack, S. Jin, J.-G. Liu, Comm.
Comput. Phys., 12 (2012) 955–980], that separates low and fast waves. Second, we adapt a
numerical scheme where the discrete densities and velocities are stored on staggered grids, in
the spirit of MAC methods, and with numerical fluxes derived form the kinetic approach. We
bring out the main properties of the scheme in terms of consistency, stability, and asymptotic
behaviour, and we present a series of numerical experiments to validate the method.
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1 Introduction

1.1 Euler equations and low Mach regimes

This work is concerned with the numerical resolution of the barotropic Euler system, which
describes the evolution of a compressible fluid, in low Mach regimes. The unknowns ρ and u
stand respectively for the local density and velocity of the fluid. They both depend on the time
and space variables, t > 0 and x ∈ Ω ⊂ RN , where Ω is a bounded domain. Working with
dimensionless quantities, the evolution of the fluid is governed by the PDE system

∂tρ+ ∇ ·
(
ρu
)

= 0,

∂t
(
ρu
)

+ ∇ ·
(
ρu⊗ u

)
+ 1
ε2
∇
(
p(ρ)

)
= 0.

(1)

The system has obviously to be completed with initial and boundary conditions (periodic or
vanishing flux for instance). Here and below, we suppose that the pressure law ρ 7→ p(ρ) is the
classical power-law p(ρ) = ργ with γ > 1. In (1), ε stands for the Mach number, that is the
ratio of the typical velocity of the fluid to the typical sound speed (ε2 = |uref |2

c2
ref

= ρref |uref |2
γpref

).
We are interested in the numerical approximations of the solution of system (1) for 0 < ε 6 1
varying from very small values to unity.

1.2 Low Mach regimes

In order to understand the behaviour for small ε’s, let us expand the solution as a power series
Q = Q(0)+εQ(1)+ε2Q(2)+..., with Q = (ρ, p,u), and identify the terms that arise with the same
order of magnitude with respect to ε in (1). At the leading order O

(
1/ε2

)
in the momentum

equation, we obtain ∇p(0) = 0 from what we deduce p(0)(x, t) = p(0)(t) and consequently
ρ(0)(x, t) = ρ(0)(t). Similarly, at order O (1/ε) we get ∇p(1) = 0, thus ρ(1)(x, t) = ρ(1)(t) depends
only on the time variable too. Given this information, system (1) at order O (1) becomes{

∂tρ
(0) + ρ(0)∇ · u(0) = 0,

∂t(ρ(0)u(0)) + ρ(0)∇ · (u(0) ⊗ u(0)) +∇p(2) = 0. (2)

Integrating the mass equation in (2) over the domain Ω, yields∫
Ω

(
∂tρ

(0) + ρ(0)∇ · u(0)
)

dx = |Ω|∂tρ(0) + ρ(0)
∫

Ω
∇ · u(0) dx = 0.

Applying the Green theorem leads to

∂tρ
(0) = − 1

|Ω|ρ
(0)
∫
∂Ω

u(0) · n dσ(x)

where n is the outward-pointing normal vector on ∂Ω and dσ(x) is the Lebesgue measure. Let
us restrict to the case of zero-flux boundary conditions, u · n

∣∣
∂Ω = 0, or the case of periodic

boundary conditions, so that in both cases we have
∫
∂Ω u(0) · n dσ(x) = 0. It follows that

∂tρ
(0) = 0. Going back to the mass conservation equation in (2) we arrive at

∇ · u(0)(x, t) = 0 and ρ(0)(x, t) = ρ(0) on Ω× [0,∞).

The momentum equation in (2) can now be cast as

∂tu(0) + ∇ · (u(0) ⊗ u(0)) + 1
ρ(0)∇p

(2) = 0.
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In this relation the pressure term p(2) can be seen as the Lagrange multiplier associated to the
incompressibility constraint ∇ · u(0) = 0. Applying the divergence operator we are led to

∆p(2) = −ρ(0)∇ ·
(
∇ · (u(0) ⊗ u(0))

)
.

Finally, the mass equation in (1) at order O (ε) reads

∂tρ
(1) + ρ(0)∇ · u(1) = 0.

With a similar reasoning, we deduce that ρ(1)(x, t) = ρ(1) is constant in time and space and
that ∇ · u(1) = 0.

Definition 1.1. The initial data (ρ,u)(x, t = 0) for (1) is said to be well-prepared when

ρ(x, t = 0) = ρ(0) + ερ(1) +O
(
ε2
)

(x) with ρ(0), ρ(1) real constants,

u(x, t = 0) = u(0)(x, t = 0) +O (ε) (x) with ∇ · u(0)(x, t = 0) = 0.

Therefore, as ε goes to 0, we expect that solutions (ρ,u) of (1) behave like

ρ(x, t) = ρ(0) + ερ(1) +O
(
ε2
)

(x, t),

u(x, t) = u(0)(x, t) +O (ε) (x, t)

with u(0) solution of the Incompressible Euler system

∂tu(0) + ∇ · (u(0) ⊗ u(0)) + 1
ρ(0)∇p

(2) = 0, ∇ · u(0) = 0. (3)

Further details on the low Mach asymptotics can be found in A. Majda’s book [32]. Rigorous
justification dates back to [27, 28]. When the initial data are not well-prepared, initial layer
might occur [37]. We refer the interested reader to [1] for an up-to-date review detailing further
results and indicating further relevant references on the analysis of the low Mach regimes.

1.3 Numerical issues of the low Mach regimes

There are several numerical issues that make the simulation of (1) challenging as ε becomes
small:

• The stiffness of the pressure term induces severe stability conditions for standard time-
explicit schemes. Indeed, the characteristic speeds of the system behave like |u|± 1

ε

√
p′(ρ)

and thus become very large as ε → 0. It imposes to constrain the time step δt to be
proportional to εδx with δx the mesh size, which leads to non affordable computational
costs.

• Moreover, the usual conservative finite-volume type schemes are also subject to a dramatic
loss of accuracy when ε becomes small, so that it can be very difficult to capture the
correct solution. This phenomena has been brought out in the seminal papers [17, 19]
which explain how Godunov type schemes create spurious pressure waves that prevent
the discrete solutions to be close to a discrete incompressible flow. This has been further
analyzed in [2, 9, 10, 11, 12]. It turns out that the loss of accuracy in fact highly depends
on the geometry of the mesh [18]. In particular UpWind schemes on Cartesian meshes
(that we shall consider here) are inaccurate at low Mach numbers. These analysis have
led to design suitable preconditioning techniques [17, 19, 36].

3



We are thus faced with the difficulty of designing numerical methods that preserve the
asymptotic limit, without inducing too high computational costs. A possible avenue to cope
with these difficulties is to try to develop “Asymptotic Preserving” methods, a term coined by
S. Jin [24, 25].

Definition 1.2. Asymptotic Preserving (AP) Method.
A method is said to be AP when it preserves at the discrete level the asymptotic passage from a
model to another. To be more specific, if the space and time steps δx and δt are kept fixed, the
method automatically transforms to a stable discretization of the limit model when the small
scale parameter tends to zero.

Such methods are intended to be robust in the sense that the asymptotic regimes can be
captured without resolving the small time and spatial scales. The efficiency of an AP scheme
relies on careful time and space discretizations. Since we expect to make use of time steps
much larger than the one imposed by the standard CFL conditions, it is clear that a part of
the system should be treated implicitly to overcome the stiffness. However, the numerical cost
of the implicit solver should remain as reduced as possible. We can mention [8, 14, 20, 29, 34]
for attempts in that direction.

1.4 A new numerical strategy

In this work, we wish to develop an AP procedure by following the ideas introduced by J. Haack,
S. Jin and J.-G. Liu in [20]. The stiff Euler system is split into two parts: a nonlinear and hyper-
bolic system of conservation laws that involves only waves propagating with O(1) speeds, and a
linear system that contains the fast acoustic dynamics. The former equations are treated explic-
itly, the latter are treated implicitly. Next, in this framework, we propose a space discretization
that relies on strategies introduced in [3] and that presents the following originalities:

• we work on staggered grids, with densities (and thus pressures) and velocities stored on
dual locations. This is not usual for hyperbolic conservation laws. However, this approach
is well suited to avoid spurious oscillations in regimes close to incompressible: on Cartesian
grids, we can expect to recover a final scheme based on the principles of MAC schemes
[21]. This approach is also developed, possibly with a different definition of numerical
fluxes though, in e. g. [4, 16, 22, 23, 39].

• the numerical fluxes are defined with an inspiration from kinetic schemes, see [7, 13]
and the references therein. It provides simple formulae, which permit us to justify the
positivity of the density and the entropy-stability [3]. We also refer the reader to [31]
for further developments of the method, in particular its extension to second order (using
muscl-like techniques and a RK2 scheme) and to the full Euler system.

Remark 1.3. We point out that the inspiration from the kinetic viewpoint has been recently
used to develop new methods for solving the Incompressible Navier-Stokes system [5], with in-
teresting theoretical properties, in particular with respect to energy/entropy dissipation. Note
however that, despite the derivation of this method relies on asymptotic analysis and the in-
troduction of vanishing Mach numbers, it is not designed for performing well in low Mach
regimes.

The paper is organized as follows. In Section 2.1 we describe the time splitting strategy of
[20]. In Section 2.2 and 2.3 we detail the construction of our scheme. Section 2.4 investigates
the properties of the method: we show how the scheme becomes a (simple) incompressible solver
as ε→ 0 and we check that well-prepared data do not produce spurious oscillations, according
to the analysis of [9, 10, 12]. Finally, we discuss a set of numerical experiments in Section 3.
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2 Numerical resolution

2.1 Splitting of the compressible Euler system

The compressible system (1) is split with two scales: the fast acoustics wave scale and the
slow convection scale that contains the underlying incompressible dynamics. Following [20], we
rewrite the system in the following way ∂tρ+ α∇ · (ρu) + (1− α)∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu⊗ u) +∇
(
p(ρ)−a(t)ρ

ε2

)
+ a(t)

ε2
∇ρ = 0.

(4)

The parameter 0 6 α < 1 is used in order to keep some momentum in the system for the fast
dynamics, see (FD) below, which is necessary to enforce incompressibility. The splitting of the
stiff pressure term also involves a new parameter a(t) > 0.

For the numerical resolution of (4) we adopt the following time-splitting strategy that makes
the two distinct scales appear. We start with the Slow Dynamics system, the hyperbolic system
of conservation laws that reads

∂tρ+ α∇ · (ρu) = 0,

∂t(ρu) + ∇ · (ρu⊗ u) +∇
(
p(ρ)− a(t)ρ

ε2

)
= 0. (SD)

Then, we consider the following Fast Dynamics system ∂tρ+ (1− α)∇ · (ρu) = 0,

∂t(ρu) + a(t)
ε2
∇ρ = 0.

(FD)

Let us focus on the two-dimensional framework. Denoting u and v the components of the
velocity field u = (u, v), the wave speeds of the (SD) in the horizontal (resp. vertical) direction
are given by u (resp. v) and λ̃±(ρ, u) (resp. λ̃±(ρ, v)) where

λ̃±(ρ, ν) = ν ± c̃(ρ, ν) with c̃(ρ, ν) =

√
(1− α)ν2 + α

p′(ρ)− a(t)
ε2

. (5)

The wave speeds λ̃±(ρ, ν) are real for all ν ∈ R and ρ > 0 as soon as

a(t) 6 min
x∈Ω

{
p′
(
ρ(x, t)

)}
.

The system is thus hyperbolic under this condition. It may seem natural to simply set

a(t) = min
x∈Ω

{
p′
(
ρ(x, t)

)}
. (6)

But, with this choice, spurious oscillations are observed in some test cases for large values of ε.
They appear in regions where the density is nearly uniform and the material velocity vanishes.
Indeed, in these regions, the corresponding sound speed vanishes and the spurious oscillations
are probably due to a lack of numerical diffusion in the Slow Dynamic part of the splitting. To
overcome this difficulty, in these test cases (see Section 3.2), we set

a(t) = min
x∈Ω

{
p′
(
ρ(x, t)

)}
− ι(t)ε2 > 0, (7)

where ι(t) is a constant smaller than the minimum of p′ (so that a(t) > ι(t)(1 − ε2) > 0 for
ε < 1). In the numerical tests of Section 3.2, we simply choose ι(t) = 0 or ι(t) = 1 when
additional numerical diffusion is needed for large ε.
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The choice of the splitting parameter α might impact the stability of the scheme: [38] prove
that, for a linearized version of the system when 0 < ε � 1, choosing α ∈ (0, 1

2) ensures the
stability (in a sense defined in [33], see also [35, 38]) of the above splitting when it is combined
with Rusanov-type numerical fluxes. In [20], the numerical experiments are performed with
α = ε2. As detailed below, we also find advantages in adopting this choice. It leads to

λ̃±(ρ, ν) = ν ±
√

(1− ε2)ν2 + p′(ρ)− a(t).

and consequently since a(t) > 0, we have[
λ̃±(ρ, ν)

]±
6 2ν± +

√
p′(ρ), (8)

where the notation
[
·
]± is defined by

[
x
]± =

(
|x| ± x

)
/2, ∀x ∈ R. Whereas the wave speeds

of the original system (1) behave like ν ±
√
p′(ρ)/ε (as recalled in the introduction), we observe

that the wave speeds of the system (SD) remain bounded when ε goes to 0 and thus ensures
unconstrained CFL conditions with respect to ε (see Proposition 2.4).

Remark 2.1. As emphasized in [20], the choice (6) ensures also that wave speeds of the system
(SD) remain bounded when ε goes to 0 whatever the value of α. Indeed, if the initial conditions
are well-prepared, we have

α

ε2

(
p′(ρ)−min

x∈Ω

{
p′
(
ρ(x, t)

)})
= α

(
ρ(2)(t, x)−min

x∈Ω

{
ρ(2)(t, x)

})
p′′
(
ρ(0))+O (ε) .

We now turn to the numerical resolution of those two systems. The characteristic speeds
of the system (SD) are no longer stiff – in contrast to the wave speed of (1) – and it does not
induce severe stability conditions. We shall make use of the space discretization set up in [3] for
this system. The system (FD) is a simple linear hyperbolic system for the variable (ρ,q = ρu).
However, it is not clear whether a direct resolution of the system can preserve the positivity of
the density, a property which is absolutely crucial for the stability of the whole procedure, and
for physical purposes. For this reason, we shall treat (FD) as a non linear system (for variables
ρ and u) to be solved implicitly.

2.2 Time discretization and stability

From now on we use the following notation: given a quantity Q at the current time t we denote
by Q its update at the next time t + δt. Let us detail the scheme by using the explicit Euler
scheme for (SD) and the implicit Euler scheme for (FD), which can be summarized in the
semi-discrete form: 

ρ∗ − ρ
δt

+ α∇ · (ρu) = 0,
ρ∗u∗ − ρu

δt
+ ∇ · (ρu⊗ u) +∇

(
p(ρ)− a(t)ρ

ε2

)
= 0,

and 
ρ− ρ∗

δt
+ (1− α)∇ · (ρu) = 0,

ρu− ρ∗u∗

δt
+ a(t)

ε2
∇ρ = 0.

Remark 2.2. In [20], see also [34], the time discretization is constructed to reach second order
accuracy: the two-level Adams-Bashforth scheme is used for the explicit slow system and the
Crank-Nicolson scheme is used for the fast implicit system. Of course, it is straightforward to
adapt such a time-discretization, but the analysis would be much more involved.
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The construction proposed in [20] relies on the following stability statement for split systems,
see [20, Lemma 3.1].

Lemma 2.3. If both methods

Un+1 − Un

δt
+AUn = 0 and Un+1 − Un

δt
+BUn+1 = 0,

are L2-stable, then the following method is also L2-stable

Un+1 − Un

δt
+AUn +BUn+1 = 0

in the sense that
‖Un‖L2 ≤ eCnδt‖U0‖L2

holds for a certain positive constant C.

Note however that this is a rough notion of stability. It gives an intuition on the relevance
of the splitting. However, as said in introduction, it turns out that certain fast-slow splittings,
that might look physically relevant at first sight with formal stability conditions independent
of ε, give rise in practice to numerical instabilities. This is where the interplay between time
and space discretizations arises: the origin of these instabilities is due to the checkerboard
pressure profiles, a well-known difficulty in incompressible computational fluid mechanics. Since
introducing stabilization terms in the scheme impacts the stability conditions and often leads
to restriction depending on ε again, see in particular [34, sp. Section 3.5, Theorem 4.1 and
Remark 4.2], we take advantages, in this article, of the use of staggered grids and its well-
known stability properties in the incompressible regime. The stability properties of the full
discrete scheme are further analysed in Section 2.4.

2.3 Space discretization

We detail the scheme in 2D for a Cartesian grid. The computational domain is the square

Ω = [ax, bx]× [ay, by] ⊂ R2.

The discretization strategy adopts the principles of the MAC schemes [21], which are precisely
suited to avoid the spurious modes in incompressible regimes. We proceed as follows:

• the primal mesh is given by subdividing each direction

ax = x1 < x2 < ... < xi−1 < xi < xi+1 < ... < xN < xN+1 = bx,

ay = y1 < y2 < ... < yj−1 < yj < yj+1 < ... < yM < yM+1 = by.

• Then, we define the midpoints

xi+1/2 = xi + xi+1
2 , ∀i ∈ {1, ..., N}, and yj+1/2 = yj + yj+1

2 , ∀j ∈ {1, ...,M}.

• We denote by δxi+1/2, δyj+1/2,δxi and δyj the length of [xi, xi+1], [yj , yj+1], [xi−1/2, xi+1/2]
and [yj−1/2, yj+1/2] respectively. We also denote by h = max(maxi δxi+1/2,maxj δyj+1/2)
the size of the mesh.
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The discrete densities, the horizontal and the vertical velocities are stored at different locations,
see Fig. 1:

• the density ρ is evaluated at the centers (xi+1/2, yj+1/2) of the primal cells: the corre-
sponding numerical unknowns are denoted by ρi+1/2,j+1/2,

• the horizontal velocity u is evaluated on the vertical edges of the primal cells, at point
(xi, yj+1/2): the numerical unknowns thus read ui,j+1/2

• the vertical velocity v is evaluated on the horizontal edges of the primal cells, at point
(xi+1/2, yj): the numerical unknowns thus read vi+1/2,j .

ρi+1/2,j+1/2 ui+1,j+1/2×
ui,j+1/2×

vi+1/2,j+1×

vi+1/2,j×

i i+ 1/2 i+ 1

j

j + 1/2

j + 1

Figure 1: Position of the unknowns on a MAC grid

The density can be naturally defined at the edges of the primal mesh by averaging as follows

ρi,j+ 1
2

=
δxi+ 1

2
ρi+ 1

2 ,j+
1
2

+ δxi− 1
2
ρi− 1

2 ,j+
1
2

2δxi
,

ρi+ 1
2 ,j

=
δyj+ 1

2
ρi+ 1

2 ,j+
1
2

+ δyj− 1
2
ρi+ 1

2 ,j−
1
2

2δyj
.

Indeed, the different sets of unknows can be thought of as piecewise constant functions on
different meshes: the primal unknowns ρi+ 1

2 ,j+
1
2
can be considered as constant on primal cells

[xi, xi+1]× [yj , yj+1] whereas the dual unknowns ρi,j+ 1
2
, resp. ρi+ 1

2 ,j
, can considered as constant

on dual cells [xi− 1
2
, xi+ 1

2
] × [yj , yj+1], resp. [xi, xi+1] × [yj− 1

2
, yj+ 1

2
]. The above definitions

of ρi,j+ 1
2
, resp. ρi+ 1

2 ,j
, ensure that the integral of the discrete densities over the dual cell

[xi− 1
2
, xi+ 1

2
]× [yj , yj+1], resp. [xi, xi+1]× [yj− 1

2
, yj+ 1

2
], is the same whatever the considered set

of unknowns (that is the primal unknowns ρi+ 1
2 ,j+

1
2
or the dual unknowns ρi,j+ 1

2
, resp. ρi+ 1

2 ,j
).

These expressions are different from linear interpolation but bearing in mind that xi+ 1
2
is the

midpoint of [xi, xi+1], we have δxi− 1
2

+ δxi+ 1
2

= 2δxi (and similarly δyj− 1
2

+ δyj+ 1
2

= 2δyj )
so that ρi,j+ 1

2
and ρi+ 1

2 ,j
are convex combinations of the densities stored at the centers of the

primal cells.
We solve (SD) in order to produce an intermediate solution (ρ∗i+1/2,j+1/2, u

∗
i,j+1/2, v

∗
i+1/2,j)
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with the following scheme

ρ∗
i+ 1

2 ,j+
1
2
− ρi+ 1

2 ,j+
1
2

δt
+ α

Fxi+1,j+ 1
2
−Fx

i,j+ 1
2

δxi+ 1
2

+
Fy
i+ 1

2 ,j+1 −F
y

i+ 1
2 ,j

δyj+ 1
2

 = 0,

ρ∗
i,j+ 1

2
u∗
i,j+ 1

2
− ρi,j+ 1

2
ui,j+ 1

2

δt
+
Gu,x
i+ 1

2 ,j+
1
2
− Gu,x

i− 1
2 ,j+

1
2

δxi

+
Gu,yi,j+1 − G

u,y
i,j

δyj+ 1
2

+
Πi+ 1

2 ,j+
1
2
−Πi− 1

2 ,j+
1
2

δxi
= 0,

ρ∗
i+ 1

2 ,j
v∗
i+ 1

2 ,j
− ρi+ 1

2 ,j
vi+ 1

2 ,j

δt
+
Gv,xi+1,j − G

v,x
i,j

δxi+ 1
2

+
Gv,y
i+ 1

2 ,j+
1
2
− Gv,y

i+ 1
2 ,j−

1
2

δyj
+

Πi+ 1
2 ,j+

1
2
−Πi+ 1

2 ,j−
1
2

δyj
= 0,

(SDd)

where we are going to define the numerical fluxes in these formulae. The system (SD) differs
from the usual Euler system. Nevertheless, we can readily adapt the scheme proposed in [3, 31].
Bearing in mind that the sound speed c̃(ρ, ν) defined in (5) now depends on ρ and ν a velocity
component u or v, we get the following definition for the fluxes. We introduce

F+(ρ, ν) =


0 if ν 6 −c̃(ρ, ν),

ρ

4c̃(ρ, ν)
(
ν + c̃(ρ, ν)

)2 if |ν| 6 c̃(ρ, ν),

ρν if ν > c̃(ρ, ν),

and

F−(ρ, ν) =


ρν if ν 6 −c̃(ρ, ν),
− ρ

4c̃(ρ, ν)(ν − c̃(ρ, ν))2 if |ν| 6 c̃(ρ, ν),

0 if ν > c̃(ρ, ν).

Note that, with this convention, we have ±F±(ρ, ν) > 0. Then we set

Fx
i,j+ 1

2
= Fx,+

i,j+ 1
2

+ Fx,−
i,j+ 1

2
and Fy

i+ 1
2 ,j

= Fy,+
i+ 1

2 ,j
+ Fy,−

i+ 1
2 ,j
,

with

Fx,+
i,j+ 1

2
= F+(ρi− 1

2 ,j+
1
2
, ui,j+ 1

2
) and Fx,−

i,j+ 1
2

= F−(ρi+ 1
2 ,j+

1
2
, ui,j+ 1

2
),

Fy,+
i+ 1

2 ,j
= F+(ρi+ 1

2 ,j−
1
2
, vi+ 1

2 ,j
) and Fy,−

i+ 1
2 ,j

= F−(ρi+ 1
2 ,j+

1
2
, vi+ 1

2 ,j
).

The definition of the convection fluxes in the momentum equation is given by

Gu,x
i+ 1

2 ,j+
1
2

= ui,j+ 1
2
Fx,+
i+ 1

2 ,j+
1
2

+ ui+1,j+ 1
2
Fx,−
i+ 1

2 ,j+
1
2

and Gu,yi,j = ui,j− 1
2
Fy,+i,j + ui,j+ 1

2
Fy,−i,j

and a similar definition for Gv,xi,j and Gu,y
i+ 1

2 ,j+
1
2
. It uses the averaged mass fluxes

Fx,±
i+ 1

2 ,j+
1
2

= 1
2

(
Fx,±
i,j+ 1

2
+ Fx,±

i+1,j+ 1
2

)
and Fy,±i,j =

δxi+ 1
2
Fy,±
i+ 1

2 ,j
+ δxi− 1

2
Fy,±
i− 1

2 ,j

2δxi
.
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The discrete analog of the parameter a in (7) is the discrete quantity

ad = min
i,j

{
p′(ρi+ 1

2 ,j+
1
2
)
}
− ιε2, (9)

and thus the pressure term Πi+ 1
2 ,j+

1
2
– which differs from the usual Euler case dealt with in [3]

– is defined by

Πi+ 1
2 ,j+

1
2

=
p(ρi+ 1

2 ,j+
1
2
)− ad ρi+ 1

2 ,j+
1
2

ε2
.

We now turn to the resolution of the system (FD) to find (ρi+ 1
2 ,j+

1
2
, ui,j+ 1

2
, vi+ 1

2 ,j
), using

the solution of (SDd) we have just obtained as initial data. Working on staggered grids offers
us the possibility to use a centered scheme for the gradient of the pressure term, which is the
key to overcome the difficulties recorded with methods on colocalized meshes, see [10, 34]. We
set

ρi+ 1
2 ,j+

1
2
− ρ∗

i+ 1
2 ,j+

1
2

δt
+ (1− α)

FUp,xi+1,j+ 1
2
−FUp,xi,j+ 1

2

δxi+ 1
2

+
FUp,yi+ 1

2 ,j+1 −F
Up,y

i+ 1
2 ,j

δyj+ 1
2

 = 0,

ρi,j+ 1
2
ui,j+ 1

2
− ρ∗

i,j+ 1
2
u∗
i,j+ 1

2

δt
+ ad
ε2

ρi+ 1
2 ,j+

1
2
− ρi− 1

2 ,j+
1
2

δxi
= 0,

ρi+ 1
2 ,j
vi+ 1

2 ,j
− ρ∗

i+ 1
2 ,j
v∗
i+ 1

2 ,j

δt
+ ad
ε2

ρi+ 1
2 ,j+

1
2
− ρi+ 1

2 ,j−
1
2

δyj
= 0.

(FDd)

The upwind fluxes FUp,x and FUp,y are obtained by applying the upwinding principle based on
the sign of the velocity. Precisely, we use in (FDd) the following implicit fluxes

FUp,xi,j+ 1
2

= ρi− 1
2 ,j+

1
2
[ui,j+ 1

2
]+ − ρi+ 1

2 ,j+
1
2
[ui,j+ 1

2
]−

and
FUp,yi+ 1

2 ,j
= ρi+ 1

2 ,j−
1
2
[vi+ 1

2 ,j
]+ − ρi+ 1

2 ,j+
1
2
[vi+ 1

2 ,j
]−.

Here, we are still using the definition
[
x
]± =

(
|x| ± x

)
/2, ∀x ∈ R. In contrast to [20], we

are working here on staggered grids and the resolution does not involve the momentum as a
numerical unknown but instead the velocity. Despite the fact that (FD) is a linear system for
the conservative quantities (ρ, q = ρu), the corresponding discrete equation (FDd) becomes a
nonlinear problem for the non-conservative variables. Accordingly, the update does not come
from the resolution of a linear system, and, instead, we have to use a root-finding algorithm
as the Newton-Raphson method. This is absolutely crucial in order to preserve the positivity
of the density (stated below, see Proposition 2.4). Nevertheless, it is important to note that,
even if the system looks fully implicit, the expressions for ui,j+1/2 and vi+1/2,j as a function of
ρi+1/2,j+1/2 can be readily obtained from the last two equations of (FDd) so that the system can
be solved as a non linear system of scalar equations involving only the unknowns (ρi+1/2,j+1/2)
with i ∈ {1, ..., N}, j ∈ {1, ...,M}. This is of great importance to save computational cost.

In terms of stability let us give the following statement, which justifies that the scheme
produces physically relevant quantities with a stability condition that does not degenerate when
ε becomes small.
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Proposition 2.4. We set α = ε2. Suppose that the data (ρ,u) is well-prepared, in the sense of
Definition 2.6 and such that ρj+ 1

2
> 0 for all j. We assume the following CFL-like condition

δt

δxi+ 1
2

([
ui,j+ 1

2

]−
+
[
ui+1,j+ 1

2

]+
+
√
p′(ρi+ 1

2 ,j+
1
2
)
)

+ δt

δyj+ 1
2

([
vi+ 1

2 ,j

]−
+
[
vi+ 1

2 ,j+1

]+
+
√
p′(ρi+ 1

2 ,j+
1
2
)
)
6

1
2 , (10)

then the scheme preserves the non-negativity of the density: ρj+ 1
2
> 0 for all j.

Proof. We adapt readily the arguments in [31] to justify that (SDd) preserves positive densities,
under the following CFL-like condition

δt

δxi+ 1
2

([
λ̃−(ρi+ 1

2 ,j+
1
2
, ui,j+ 1

2
)
]−

+
[
λ̃+(ρi+ 1

2 ,j+
1
2
, ui+1,j+ 1

2
)
]+)

+ δt

δyj+ 1
2

([
λ̃−(ρi+ 1

2 ,j+
1
2
, vi+ 1

2 ,j
)
]−

+
[
λ̃+(ρi+ 1

2 ,j+
1
2
, vi+ 1

2 ,j+1)
]+)

6 1.

Owing to (8) which holds since α = ε2, this condition is ensured when (10) is satisfied. Thus,
it proves that ρ∗

i+ 1
2 ,j+

1
2
> 0 for all i, j. We now turn to the resolution of the Fast Dynamics

(FDd). The monotonicity of the implicit Upwind scheme [6] ensures that ρi+ 1
2 ,j+

1
2
> 0 as soon

as ρ∗
i+ 1

2 ,j+
1
2
> 0. We conclude that ρi+ 1

2 ,j+
1
2
> 0 at every time step under the CFL-like condition

(10).

2.4 Low Mach regimes and AP-scheme

We wish now to show that the scheme performs well in low Mach regimes and exhibits the AP
features. Let us suppose that the initial data of the system are well prepared in the sense of
Definition 1.1. As said above, the solutions of the compressible Euler system (1) converge to
a constant density and a velocity field solution of the Incompressible Euler system (3). Our
purpose is two-fold:

1) to show that our solver automatically becomes an incompressible solver for (3) in the low
Mach number regime 0 < ε� 1. It makes the AP character of the scheme precise.

2) to justify that the scheme preserves well prepared data, in the discrete sense given in
Definition 2.6 below. This crucial property justifies that the proposed discretization does
not produce spurious oscillations that can prevent to capture the correct solution in low
Mach regimes, see [9, 10, 12, 19, 17, 34].

In order to bring out that the behaviour of the continuous case is well reproduced, we introduce
an ansatz of the discrete solution:

• ρi+ 1
2 ,j+

1
2

= ρ
(0)
i+ 1

2 ,j+
1
2

+ ερ
(1)
i+ 1

2 ,j+
1
2

+ ε2ρ
(2)
i+ 1

2 ,j+
1
2

+ ...

• ui,j+ 1
2

= u
(0)
i,j+ 1

2
+ εu

(1)
i,j+ 1

2
+ ε2u

(2)
i,j+ 1

2
+ ... and vi+ 1

2 ,j
= v

(0)
i+ 1

2 ,j
+ εv

(1)
i+ 1

2 ,j
+ ε2v

(2)
i+ 1

2 ,j
+ ...

• pi+ 1
2 ,j+

1
2

= p
(0)
i+ 1

2 ,j+
1
2

+ εp
(1)
i+ 1

2 ,j+
1
2

+ ε2p
(2)
i+ 1

2 ,j+
1
2

+ ...

11



The investigation of the asymptotic regime ε → 0 will make the following discrete operators
appear.

Definition 2.5. We define the discrete divergence operator ∇d· of a vector u = (u, v) as

∇d · ui+ 1
2 ,j+

1
2

=
ui+1,j+ 1

2
− ui,j+ 1

2

δxi+ 1
2

+
vi+ 1

2 ,j+1 − vi+ 1
2 ,j

δyj+ 1
2

,

and the discrete Laplacian operator ∆d of a scalar quantity p as

∆dpi+ 1
2 ,j+

1
2

= 1
δxi+ 1

2

(
pi+ 3

2 ,j+
1
2
− pi+ 1

2 ,j+
1
2

δxi+1
−
pi+ 1

2 ,j+
1
2
− pi− 1

2 ,j+
1
2

δxi

)

+ 1
δyj+ 1

2

(
pi+ 1

2 ,j+
3
2
− pi+ 1

2 ,j+
1
2

δyj+1
−
pi+ 1

2 ,j+
1
2
− pi+ 1

2 ,j−
1
2

δyj

)
.

Since the preparation of data is an important assumption for the analysis of the asymptotic
behaviour, it is convenient to introduce an equivalent definition at the discrete level.

Definition 2.6. Discrete data (ρ,u = (u, v)) are said to be well-prepared if they satisfy, for all
i, j,

• ρi+ 1
2 ,j+

1
2

= ρ(0) + ερ(1) +O(ε2) with ρ(0), ρ(1) real constants,

• ∇d · u
(0)
i+1/2,j+1/2 = 0, and thus ∇d · ui+1/2,j+1/2 = O (ε) .

This definition appeared in [9, 10, 12]; it plays a crucial role in the analysis of the sensitivity
of numerical solvers to the grid geometry. It is the discrete counterpart of Definition 1.1.

Let us suppose that the discrete solution is well-prepared in the sense of Definition 2.6 from
time t = 0 up to time t > 0. We wish to show that the updated physical quantities still satisfy
the conditions of Definition 2.6.

The first thing to notice is that the explicit pressure term drops out, as the modified explicit
pressure has a simple expansion for small ε’s.

Lemma 2.7. Let (ρ,u) be well-prepared. The modified pressure p(ρ)−adρ in (SDd) admits the
expansion

Πi+ 1
2 ,j+

1
2

:=
p
(
ρi+ 1

2 ,j+
1
2

)
− adρi+ 1

2 ,j+
1
2

ε2
= C−2

ε2
+ C−1

ε
+ C0 +O (ε)

where the coefficients C−2, C−1, C0 do not depend on the considered cell.

Proof. Since the data are well-prepared, the pressure pi+ 1
2 ,j+

1
2

= p(ρi+ 1
2 ,j+

1
2
) expands as

pi+ 1
2 ,j+

1
2

= p
(
ρ(0))+ ερ(1)p′

(
ρ(0))+ ε2

(
ρ

(2)
i+ 1

2 ,j+
1
2
p′
(
ρ(0))+ ρ(1)2

2 p′′
(
ρ(0)))+O

(
ε3
)
. (11)

Hence we obtain

pi+ 1
2 ,j+

1
2
− adρi+ 1

2 ,j+
1
2

ε2
=
p
(
ρ(0))− a(0)

d ρ(0)

ε2
+
ρ(1)p′

(
ρ(0))− a(0)

d ρ(1) − a(1)
d ρ(0)

ε

+
(
ρ

(2)
i+ 1

2 ,j+
1
2
p′
(
ρ(0))+ ρ(1)2

2 p′′
(
ρ(0))− a(0)

d ρ
(2)
i+ 1

2 ,j+
1
2
− a(1)

d ρ(1) − a(2)
d ρ(0)

)
+O (ε) .
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An expansion of the coefficient ad = mini,j p′(ρi+ 1
2 ,j+

1
2
)− ιε2:

a
(0)
d = p′

(
ρ(0)), a

(1)
d = ρ(1)p′′

(
ρ(0)), a

(2)
d = min

i,j

{
ρ

(2)
i+ 1

2 ,j+
1
2

}
p′′
(
ρ(0))+ ρ(1)2

2 p′′′
(
ρ(0))− ι,

(12)
leads to the conclusion with the following expressions of the constants C−2, C−1, C0

C0 = −ρ
(1)2

2
(
p′′
(
ρ(0))+ ρ(0)p′′′

(
ρ(0)))−min

i,j

{
ρ

(2)
i+ 1

2 ,j+
1
2

}
ρ(0)p′′

(
ρ(0))+ ιρ(0),

C−1 = −ρ(0)ρ(1)p′′
(
ρ(0)),

C−2 = p
(
ρ(0))− ρ(0)p′

(
ρ(0)).

As we did for the continuous system, we now insert the expansion in the scheme obtained
by taking the sum of (SDd) and (FDd)

ρi+ 1
2 ,j+

1
2
− ρi+ 1

2 ,j+
1
2

δt
+ α

Fxi+1,j+ 1
2
−Fx

i,j+ 1
2

δxi+ 1
2

+
Fy
i+ 1

2 ,j+1 −F
y

i+ 1
2 ,j

δyj+ 1
2


+(1− α)

FUp,xi+1,j+ 1
2
−FUp,xi,j+ 1

2

δxi+ 1
2

+
FUp,yi+ 1

2 ,j+1 −F
Up,y

i+ 1
2 ,j

δyj+ 1
2

 = 0,
(13)

ρi,j+ 1
2
ui,j+ 1

2
− ρi,j+ 1

2
ui,j+ 1

2

δt
+
Gu,x
i+ 1

2 ,j+
1
2
− Gu,x

i− 1
2 ,j+

1
2

δxi
+
Gu,yi,j+1 − G

u,y
i,j

δyj+ 1
2

+
Πi+ 1

2 ,j+
1
2
−Πi− 1

2 ,j+
1
2

δxi
+ ad
ε2

ρi+ 1
2 ,j+

1
2
− ρi− 1

2 ,j+
1
2

δxi
= 0,

(14)

ρi+ 1
2 ,j
vi+ 1

2 ,j
− ρi+ 1

2 ,j
vi+ 1

2 ,j

δt
+
Gv,xi+1,j − G

v,x
i,j

δxi+ 1
2

+
Gv,y
i+ 1

2 ,j+
1
2
− Gv,y

i+ 1
2 ,j−

1
2

δyj

+
Πi+ 1

2 ,j+
1
2
−Πi+ 1

2 ,j−
1
2

δyj
+ ad
ε2

ρi+ 1
2 ,j+

1
2
− ρi+ 1

2 ,j−
1
2

δyj
= 0,

(15)

and we identify terms arising with the same power of ε.

1) The leading order term in the momentum equations (14) and (15) scales as O
(

1
ε2

)
. It

comes from the pressure gradient. However, owing to Lemma 2.7, the explicit pressure
gradient defined from Πi+ 1

2 ,j+
1
2
contains only O(ε) terms. It leads to

ρ
(0)
i+ 1

2 ,j+
1
2
− ρ(0)

i− 1
2 ,j+

1
2

δxi
= 0 and

ρ
(0)
i+ 1

2 ,j+
1
2
− ρ(0)

i+ 1
2 ,j−

1
2

δyj
= 0.

From this, we deduce that, for all (i, j), ρ(0)
i− 1

2 ,j+
1
2

= ρ
(0)
i+ 1

2 ,j+
1
2

= ρ
(0)
i+ 1

2 ,j−
1
2
. In other words,

at the discrete level the leading term in the updated density ρ(0) is constant in space.

2) Then, at order O
(

1
ε

)
, we similarly get

ρ
(1)
i+ 1

2 ,j+
1
2
− ρ(1)

i− 1
2 ,j+

1
2

δxi
= 0 and

ρ
(1)
i+ 1

2 ,j+
1
2
− ρ(1)

i+ 1
2 ,j−

1
2

δyj
= 0.

13



We deduce that, for all (i, j), ρ(1)
i− 1

2 ,j+
1
2

= ρ
(1)
i+ 1

2 ,j+
1
2

= ρ
(1)
i+ 1

2 ,j−
1
2
: at the discrete level ρ(1) is

constant in space, too.

3) Let us now consider terms of order O (1). Since the data (ρ,u) is assumed to be well-
prepared, by multiplying the mass equation (13) by δxi+ 1

2
δyj+ 1

2
and summing over i and

j (with periodic or wall boundary conditions and denoting by N,M the number of grid
points in the horizontal and vertical direction, respectively), we get

M∑
j=1

N∑
i=1

δxi+ 1
2
δyj+ 1

2

ρ(0) − ρ(0)

δt
= 0.

We remind the reader that
M∑
j=1

N∑
i=1

δxi+ 1
2
δyj+ 1

2
= |Ω|. Therefore ρ(0) = ρ(0): the discrete

density at leading order is constant in space and time.
At the order O (1), since the density ρ(0) and the updated density ρ(0) at leading order
are constant in space and equal, the mass fluxes become

Fx,(0)
i,j+ 1

2
= F+(ρ(0), u

(0)
i,j+ 1

2
) + F−(ρ(0), u

(0)
i,j+ 1

2
) = ρ(0)u

(0)
i,j+ 1

2
,

similarly Fy,(0)
i+ 1

2 ,j
= ρ(0)v

(0)
i+ 1

2 ,j
, FUp,xi,j+ 1

2
= ρ(0)u

(0)
i,j+ 1

2
and FUp,yi+ 1

2 ,j
= ρ(0)v

(0)
i+ 1

2 ,j
. Going back to

the discrete mass balance equation (13) it becomes at the order O (1)

αρ(0)∇d · u(0)
i+ 1

2 ,j+
1
2

+ (1− α)ρ(0)∇d · u(0)
i+ 1

2 ,j+
1
2

= 0.

Since ∇d · u(0)
i+ 1

2 ,j+
1
2
vanishes for all (i, j), the update also satisfies ∇d · u(0) = 0 and the

second property in Definition 2.6 is preserved in the low Mach regime.

Remark 2.8. When the initial data u(x, 0) = uinit(x) satisfies ∇ · uinit,(0)(x) = 0 at the
continuous level, the simple evaluation on the grid

∇d · uinit,(0)
i+ 1

2 ,j+
1
2

=
uinit,(0)(xi+1, yj+ 1

2
)− uinit,(0)(xi, yj+ 1

2
)

δxi+ 1
2

+
vinit,(0)(xi+ 1

2
, yj+1)− vinit,(0)(xi+ 1

2
, yj)

δyj+ 1
2

is of order O(h). This consistency error can propagate, and the obtained discrete velocity
field is not discrete-divergence-free. In particular, if the mesh does not resolve the small
scale (δx� ε), the discrete initial data does not fulfill the criterion in Definition 2.6. Ob-
viously, it is possible to adopt more involved definitions of uinit

i+ 1
2 ,j+

1
2
, for instance based on

a discrete Helmholtz decomposition to get rid of this issue but we can also take advantages
to set

α = ε2.

This choice, which already appears in [20], modifies the expansion above and the identifi-
cation of the O(1) and O(ε2) terms in the discrete mass balance equation. In particular,
with this choice, the method automatically projects the velocity onto the space of discrete-
divergence-free fields when ε → 0: indeed, in this case, at the order O (1), the discrete
mass balance equation becomes ∇d · u(0)

i+ 1
2 ,j+

1
2

= 0.
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4) At the order O (ε), we multiply the mass equation (13) by δxi+ 1
2
δyj+ 1

2
and sum for i, j

and, since ρ(1) is a constant in space, we obtain that ρ(1) = ρ(1). The first property in
Definition 2.6 is satisfied in the low Mach regime.

Remark 2.9. Using that ρ(k) = ρ(k) are constant for k ∈ {0, 1}, we can expand the mass
flux Fx

i,j+ 1
2
as

Fx
i,j+ 1

2
= F+

(
ρ(0) + ερ(1), u

(0)
i,j+ 1

2
+ εu

(1)
i,j+ 1

2

)
+ F−

(
ρ(0) + ερ(1), u

(0)
i,j+ 1

2
+ εu

(1)
i,j+ 1

2

)
+O(ε2)

=
(
ρ(0) + ερ(1)

)
u

(0)
i,j+ 1

2
+ ερ(0)u

(1)
i,j+ 1

2
+O(ε2),

so that we obtain the following expression

Fx,(1)
i,j+ 1

2
= ρ(1)u

(0)
i,j+ 1

2
+ ρ(0)u

(1)
i,j+ 1

2
.

Similarly, we have
Fy,(1)
i+ 1

2 ,j
= ρ(1)v

(0)
i+ 1

2 ,j
+ ρ(0)v

(1)
i+ 1

2 ,j
,

FUp,x,(1)
i,j+ 1

2
= ρ(1)u

(0)
i,j+ 1

2
+ ρ(0)u

(1)
i,j+ 1

2
,

FUp,y,(1)
i+ 1

2 ,j
= ρ(1)v

(0)
i+ 1

2 ,j
+ ρ(0)v

(1)
i+ 1

2 ,j
.

Thus, when α = ε2, the first order term O (ε) in the mass equation (13) reads:

ρ(1)∇d · u(0)
i+1/2,j+1/2 + ρ(0)∇d · u(1)

i+1/2,j+1/2 = 0.

Since, as said above in Remark 2.8, in this case we have ∇d · u(0) = 0, we conclude that
∇d · u(1) = 0, in analogy to the continuous case.

5) At the order O (1), using that ρ(0) and ρ(1) are constant, the momentum equation (14)
gives us:

ρ(0)
u

(0)
i,j+ 1

2
− u(0)

i,j+ 1
2

δt
+
Gu,x,(0)
i+ 1

2 ,j+
1
2
− Gu,x,(0)

i− 1
2 ,j+

1
2

δxi

+
Gu,y,(0)
i,j+1 − G

u,y,(0)
i,j

δyj+ 1
2

+
p

(2)
i+ 1

2 ,j+
1
2
− p(2)

i− 1
2 ,j+

1
2

δxi
= 0,

where p(2)
i+ 1

2 ,j+
1
2
is the O(ε2) term in the expansion of p(ρi+ 1

2 ,j+
1
2
) (which is similar to

(11)). Indeed, bearing in mind the expansion (12) of ad, we have p(2)
i+ 1

2 ,j+
1
2
− p(2)

i− 1
2 ,j+

1
2

=

a
(0)
d

(
ρ

(2)
i+ 1

2 ,j+
1
2
− ρ(2)

i− 1
2 ,j+

1
2

)
.

We now turn to give a simple expression of the fluxes Gu,x,(0)
i+ 1

2 ,j+
1
2
and Gu,y,(0)

i,j in the case
where α = ε2. We first remark that in this case

c̃(0)(ρ, ν) = |ν(0)|.
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Going back to the definition of F± we thus observe that

F+,(0)(ρ, ν) = ρ(0)[ν(0)]+ and F−,(0)(ρ, ν) = −ρ(0)[ν(0)]−.

Hence we get Gu,x,(0) = ρ(0)Gu,x and Gu,y,(0) = ρ(0)Gu,y with

Gu,x
i+ 1

2 ,j+
1
2

= {u(0)}x
i+ 1

2 ,j+
1
2
· {u(0)}x

i+ 1
2 ,j+

1
2
− {|u(0)|}x

i+ 1
2 ,j+

1
2
· Ju(0)Kx

i+ 1
2 ,j+

1
2

(16)

and

Gu,yi,j =
{δxv(0)}xi,j

δxi
· {u(0)}yi,j −

{|δxv(0)|}xi,j
δxi

· Ju(0)Kyi,j , (17)

where we have introduced the following notations for the average and the jump of a
quantity Q, for k and l in N or N + 1

2N,

{Q}xk,l =
Qk− 1

2 ,l
+Qk+ 1

2 ,l

2 and {Q}yk,l =
Qk,l− 1

2
+Qk,l+ 1

2

2 ,

JQKxk,l =
Qk+ 1

2 ,l
−Qk− 1

2 ,l

2 and JQKyk,l =
Qk,l+ 1

2
−Qk,l− 1

2

2 .

The fluxes Gu,x
i+ 1

2 ,j+
1
2
(resp. Gu,yi,j ) can be interpreted as fluxes in the horizontal (resp.

vertical) direction of the advected quantity u(0) at velocity u(0) (resp. v(0)). We obtain a
similar expression of the fluxes for the second component of the velocity v:

Gv,y
i+ 1

2 ,j+
1
2

= {v(0)}y
i+ 1

2 ,j+
1
2
· {v(0)}y

i+ 1
2 ,j+

1
2
− {|v(0)|}y

i+ 1
2 ,j+

1
2
· Jv(0)Ky

i+ 1
2 ,j+

1
2

(18)

and

Gv,xi,j =
{δyu(0)}yi,j

δyj
· {v(0)}xi,j −

{|δyu(0)|}yi,j
δyj

· Jv(0)Kxi,j . (19)

Thus, with similar calculation for the vertical component, we arrive at the following result

Proposition 2.10. When setting α = ε2, formally, as ε tends to zero, the compressible
Euler solver (SDd)-(FDd) behaves like the following scheme for solving the Incompressible
Euler system (3)

u
(0)
i,j+ 1

2
− u(0)

i,j+ 1
2

δt
+
Gu,x
i+ 1

2 ,j+
1
2
−Gu,x

i− 1
2 ,j+

1
2

δxi
+
Gu,yi,j+1 −G

,u,y
i,j

δyj+ 1
2

+ 1
ρ(0)

p
(2)
i+ 1

2 ,j+
1
2
− p(2)

i− 1
2 ,j+

1
2

δxi
= 0,

v
(0)
i+ 1

2 ,j
− v(0)

i+ 1
2 ,j

δt
+
Gv,y
i+ 1

2 ,j+
1
2
−Gv,y

i+ 1
2 ,j−

1
2

δyj
+
Gv,xi+1,j −G

,v,x
i,j

δxi+ 1
2

+ 1
ρ(0)

p
(2)
i+ 1

2 ,j+
1
2
− p(2)

i+ 1
2 ,j−

1
2

δyj
= 0,

∇d · u(0)
i+ 1

2 ,j+
1
2

= 0,

(20)

with the definitions (16), (17), (18), (19) for fluxes G.
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Remark 2.11. The 1D version of the fluxes G for the linear transport equation with
constant velocity is exactly the upwind fluxes. In the case of the 1D Burgers equation
∂tu+ ∂x

(
u2

2

)
= 0, the analogue of the fluxes G would be the following fluxes:

Gi+ 1
2

= 1
4


(ui + ui+1)ui if ui > 0 and ui+1 > 0,
(ui + ui+1)ui+1 if ui < 0 and ui+1 < 0,
2uiui+1 if ui < 0 < ui+1,
u2
i+1 + u2

i if ui > 0 > ui+1.

Numerical experiments show that these fluxes do not produce non entropic shocks, in
contrast to the upwind scheme which is known to be non entropic since it captures wrong
stationary shock solutions [30, Sections 13 & 14].

In the limit scheme (20), the divergence free constraint on the velocity can also be written
as an elliptic problem for the pressure which reads as follows:

∆dp
(2)
i+ 1

2 ,j+
1
2

= −ρ(0)

Ui+1,j+ 1
2
− Ui,j+ 1

2

δxi+ 1
2

+
Vi+ 1

2 ,j+1 − Vi+ 1
2 ,j

δyj+ 1
2

 , (21)

where Ui,j+ 1
2
and Vi+ 1

2 ,j
are defined by

Ui,j+ 1
2

=
Gu,x
i+ 1

2 ,j+
1
2
−Gu,x

i− 1
2 ,j+

1
2

δxi
+
Gu,yi,j+1 −G

u,y
i,j

δyj+ 1
2

,

Vi+ 1
2 ,j

=
Gv,y
i+ 1

2 ,j+
1
2
−Gv,y

i+ 1
2 ,j−

1
2

δyj
+
Gv,xi+1,j −G

v,x
i,j

δxi+ 1
2

.

Note that ∆d is the standard 5−points discretization of the Laplace operator, in contrast
to the operator that arises in the original scheme [20, eq. (28)] which decouples odd/even
points of the discretization. This is a well-known drawback of colocalized methods which
can lead to spurious oscillations due to the nontrivial checkerboard modes that belong to
the kernel of the operator. Using staggered grids avoids this difficulty; it can be related
to the MAC discretization, which gets rid of these spurious modes [12].
Note that, as mentioned in Remark 2.8, the limit scheme (written here only in the case
α = ε2) automatically projects the initial velocity to discrete-divergence-free velocity fields.
Actually, for the first time step the elliptic problem (21) should be written

∆dp
(2)
i+ 1

2 ,j+
1
2

= −ρ(0)

Ui+1,j+ 1
2
− Ui,j+ 1

2

δxi+ 1
2

+
Vi+ 1

2 ,j+1 − Vi+ 1
2 ,j

δyj+ 1
2

+
∇d · u(0)

i+ 1
2 ,j+

1
2

δt
,

which enforces ∇d · u(0) = 0 as required in the limit scheme (20) even if ∇d · u(0) 6= 0.

3 Numerical simulations
In this section we present some numerical test cases, in 1D and 2D, to illustrate the performances
of the proposed scheme. In particular, we point out in the numerical experiments the stability
and consistency issues.

As suggested above, we use α = ε2 for all numerical experiments and otherwise specified,
we adopt in the numerical tests the definition (9) with ι = 0.
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3.1 Simulation of 1D Riemann problems in low Mach regime

We start with a simple 1D Riemann problem, issued from [14]. The solution is made of two
moving rarefaction waves, a left and a right one, separated by a constant state. The pressure
law is given by p(ρ) = ρ2 and the initial conditions are

ρ(0)(x) =
{

1 + ε2 if x < 0.5,
1 if x > 0.5, and u(0)(x) =

{
1− ε if x < 0.5,
1 + ε if x > 0.5.

We compute the solution on the interval (0, 1) for three different values of (ε, T ) where T is the
final time. For each case, the number of grid points is N = 200 and the time step is defined
by δt = βδx with β = 0.2, 0.1 or 0.01. We compare the results produced by the AP scheme
described in this paper with the results given by the first order explicit scheme of [3].

We first choose ε close to one (ε =
√

0.99) and thus the Fast Dynamics part of the scheme
does not play a significant role in the resolution. The results obtained with the two schemes
are very close and all the values of β can be used. The results obtained with β = 0.2 at time
T = 0.1 are reported in Figure 2.

We then choose ε smaller (ε =
√

0.1) and for β = 0.2 the fully explicit scheme returns a
negative density (which means that the CFL condition for this scheme is violated and the time
step should be reduced) whereas the AP scheme still returns a relevant result. A time step
divided by 2 (that is β = 0.1) ensures the positivity of the density for both schemes. The
results obtained with β = 0.2 (for the AP scheme) and β = 0.1 at time T = 0.05 are reported
in Figure 3.

Finally we choose ε close to zero (ε =
√

0.001) and the explicit scheme returns a negative
density for β = 0.2 and β = 0.1. We recover a relevant result with β = 0.01. The AP scheme
provides a relevant results for all the values of β. The results obtained with β = 0.2, 0.1 (for
the AP scheme) and β = 0.01 at time T = 0.007 are reported in Figure 4.

This test confirms that the stability condition for the explicit method is sensitive to the
value of the Mach number ε and it shows that the AP strategy allows us to keep significantly
larger time steps. It leads to significant computational cost savings (especially when ε � 1),
but obviously at the price of a loss of accuracy.

(a) density (b) velocity

Figure 2: 1D Riemann problem, comparison between the AP scheme and an explicit scheme for
(ε, T ) = (

√
0.99, 0.1) and δt = βδx.
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(a) density (b) velocity

Figure 3: 1D Riemann problem, comparison between the AP scheme and an explicit scheme for
(ε, T ) = (

√
0.1, 0.05) and δt = βδx.

(a) density (b) velocity

Figure 4: 1D Riemann problem, comparison between the AP scheme and an explicit scheme for
(ε, T ) = (

√
0.001, 0.007) and δt = βδx.

3.2 Low Mach regime simulations in 2D

We discuss several test cases in 2D, all with periodic boundary conditions. We adopt the
following notation. For discrete quantities ρ, u or v, depending on their location, we introduce
the L1 and L∞ discrete norms

‖ρ‖1 =
∑
i,j

δxi+1/2δyj+1/2|ρi+1/2,j+1/2|, ‖ρ‖∞ = max
i,j
|ρi+1/2,j+1/2|,

‖u‖1 =
∑
i,j

δxiδyj+1/2|ui,j+1/2|, ‖u‖∞ = max
i,j
|ui,j+1/2|,

‖v‖1 =
∑
i,j

δxi+1/2δyj |vi+1/2,j |, ‖v‖∞ = max
i,j
|vi+1/2,j |.

To evaluate the behaviour of the scheme when the mesh size goes to zero, associated to a
quantity q (which can stand for ρ, u or v), we consider the following errors in L1 or L∞ discrete
norm

e
(N)
1,q = ‖q(N) − qexact‖1 and e(N)

∞,q = ‖q(N) − qexact‖∞,

where q(N) stands for the approximate solution obtained on a N × N grid, whereas qexact is
the exact solution. Similarly, to evaluate the behaviour of the scheme when ε goes to zero, we
introduce the following quantities

e
(ε)
1,q = ‖q(ε) − q(0)‖1 and e(ε)

∞,q = ‖q(ε) − q(0)‖∞,

19



where q(ε) stands for the approximate solution obtained for a fixed value of ε, whereas q(0) is
the exact solution of the limit problem when ε → 0. In the computation of the norms, the
expression of qexact and q(0) are simply evaluated at the corresponding grid points.

3.2.1 Test 1: traveling vortex

The traveling vortex test case is extracted from [26]. The exact solution is known and a direct
comparison is possible. We consider the domain [0, 1] × [0, 1]. The pressure law is given by
p(ρ) = 1

2ρ
2 and the initial density and velocity are given by

ρ(x, y, 0) = 110 + ε2

(4π)2 f(rc),

u(x, y, 0) =
(
v0
v1

)
+ g(rc)

(
0.5− y
x− 0.5

)
,

where rc = 4π
(
(x − 0.5)2 + (y − 0.5)2) 1

2 and f , g are two functions such that f is continuous
and piecewise C1, g is continuous and

f ′(r) = rg(r)2, for almost all r.

This problem reduces to a pure transport, the vortex is traveling at speed (v0, v1): the exact
solution is simply

ρ(x, y, t) = ρ(x− v0t, y − v1t, 0),
u(x, y, t) = u(x− v0t, y − v1t, 0).

As in [26], we first choose

f(r) = (1.5)2δ(rc)(k(rc)− k(π)),
g(r) = 1.5(1 + cos(rc))δ(rc),
v0 = 0.6, v1 = 0,

where

k(r) = 2 cos(r) + 2r sin(r) + 1
8 cos(2r) + 1

4r sin(2r) + 3
4r

2,

δ(r) = 1r<π.

We observe in numerical simulations for this test case some spurious oscillations for large values
of ε (for instance ε = 0.8 and ε = 0.5) when we set ι = 0 in the definition (9) of the coefficient
ad. We observe that setting ι = 1 is sufficient to eliminate these oscillations so that we adopt
this definition for all the simulations performed for this test case. In Figures 5, 6 and 7 we
show the density, the horizontal and vertical velocity respectively at initial time (left) and final
time T = 0.5 (right) for ε = 0.8, δx = δy = 1/32 and δt = 5 × 10−4. Cuts are available in
Figure 8. Numerical solutions at time T = 0 (blue solid lines) and T = 0.5 (black dashed lines)
are represented. The density (top) and the vertical velocity (bottom right) are plotted along
the line y = 0.5 as a function of x−v0T . It allows us to compare the shape of the initial solution
and the shape of the numerical solution at time T = 0.5. The horizontal velocity (bottom left)
is plotted along the line x = 0.5 + v0T as a function of y. The results are oscillations-free but
we observe an important numerical diffusion inherent to the use of a first order scheme.
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Figure 5: Test 1 (traveling vortex), density at time T = 0 (left) and T = 0.5 (right). At T = 0.5,
mini,j ρi+ 1

2 ,j+
1
2

= 109.9951.
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Figure 6: Test 1 (traveling vortex), horizontal velocity at time T = 0 (left) and T = 0.5 (right).
At T = 0.5, mini,j ui,j+ 1

2
= 0.52, maxi,j ui,j+ 1

2
= 0.67.
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Figure 7: Test 1 (traveling vortex), vertical velocity at time T = 0 (left) and T = 0.5 (right).
At T = 0.5, mini,j vi+ 1

2 ,j
= −0.069, maxi,j vi+ 1

2 ,j
= 0.064.
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(a) Density

(b) Horizontal velocity (c) Vertical velocity

Figure 8: Test 1 (traveling vortex), translated cuts at time T = 0 (blue solid lines) and T = 0.5
(black dashed lines). Density along y = 0.5 as a fonction of x− v0T (top). Horizontal velocity
along x = 0.5+v0T as a function of y (bottom left). Vertical velocity along y = 0.5 as a fonction
of x− v0T (bottom right).

We then provide a convergence study in Fig 9. For different Mach numbers ε ∈ {0.01, 0.1,
0.4, 0.8}, we perform computations with δt = 5 × 10−4 on different grids (10 × 10, 14 × 14,
20× 20, 28× 28, 40× 40 and 56× 56). We plot in logarithmic scales the discrete L1 error norm
at time T = 0.01 between the exact solution and the discrete one (for the density on the left
and for the first component of the velocity on the right) as a function of the mesh size. We
clearly observe a first order convergence. Similar results are obtained for the second component
of the velocity.
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Figure 9: Test 1 (traveling vortex) L1 error norm at T = 0.01 as a function of the mesh size for
different values of ε and δt = 5× 10−4.

Finally, to justify the AP character of the scheme, using a 32 × 32 grid and a time step
δt = 5 × 10−4, we study for different values of the Mach number ε ∈ {0.0125, 0.025, 0.05,
0.1, 0.2, 0.4, 0.8}, the discrete L1 and L∞-norm at time T = 0.01 of the difference between
the discrete solution and ρ(0) = 110. The results are reported in Table 1. It confirms that
the density tends to be constant, equal to ρ(0) when ε tends to zero and that the norm of the
difference behaves like cε2 (with c a constant independent of ε).

` ε` e
(ε`)
1,ρ

log
(
e
(ε`+1)
1,ρ /e

(ε`)
1,ρ

)
log(ε`+1/ε`)

e
(ε`)
∞,ρ

log
(
e
(ε`+1)
∞ /e

(ε`)
∞
)

log(ε`+1/ε`)
1 0.8 1.06× 10−3 1.62 2.54× 10−2 1.84
2 0.4 3.44× 10−4 2.24 7.11× 10−3 2.00
3 0.2 7.30× 10−5 2.32 1.78× 10−3 2.00
4 0.1 1.46× 10−5 2.00 4.46× 10−4 1.99
5 0.05 3.64× 10−6 2.00 1.12× 10−4 2.01
6 0.025 9.13× 10−7 2.00 2.79× 10−5 2.00
7 0.0125 2.28× 10−7 −− 6.97× 10−6 −−

Table 1: Test 1 (traveling vortex) Errors e
(ε`)
1,ρ = ‖ρ(ε`) − ρ(0)‖1 and e

(ε`)
∞,ρ = ‖ρ(ε`) − ρ(0)‖∞ at

T = 0.01 for different ε on a 32× 32 grid and δt = 5× 10−4.

Next, concerning the velocity, we provide in Table 2, for different values of ε ∈ {0.0125,
0.025, 0.05, 0.1, 0.2, 0.4, 0.8} and at T = 0.01, the L1 norm of the discrete divergence and the
L1 norm of the difference between the approximate velocity u(ε) and the exact limit velocity
u(0) obtained when ε → 0. Unfortunately, this test case does not illustrate the fact that the
approximate velocity converges towards the correct solution when ε → 0. Indeed, in Table 2,
the difference in L1 norm seems to remain close to 2× 10−4 when ε goes to 0. This is probably
due to the fact that, in this test case, contrarily to the density, the exact velocity does not
depend on ε or, in other words, this is due to the fact that, even for ε 6= 0, the exact velocity
is equal to the limit velocity. Therefore, the observed difference is certainly a truncation error
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due to the mesh rather than a difference due to a positive value of ε. Nevertheless, even if this
difference does not vanish when ε → 0, we observe that the discrete divergence goes to 0, in
accordance with Remark 2.8. For small values of ε, we recover that the norm of the discrete
divergence behaves like cε2 as expected.

` ε` e
(ε`)
1,div

log(e(ε`+1)
1,div /e

(ε`)
1,div)

log(ε`+1/ε`)
e
(ε`)
1,u

1 0.8 1.37× 10−3 1.15 3.60× 10−4

2 0.4 6.16× 10−4 1.92 2.69× 10−4

3 0.2 1.63× 10−4 4.21 2.15× 10−4

4 0.1 8.81× 10−6 5.90 2.03× 10−4

5 0.05 1.48× 10−7 1.96 1.98× 10−4

6 0.025 3.80× 10−8 1.95 1.97× 10−4

7 0.0125 9.82× 10−9 −− 1.96× 10−4

Table 2: Test 1 (traveling vortex) Discrete L1 norm of the discrete divergence e
(ε`)
1,div =

‖∇d · u(ε`)‖1 and error e
(ε`)
1,u = ‖u(ε`) − u(0)‖1 at T = 0.01 for different ε on a 32 × 32 grid

and δt = 5× 10−4.

In Table 3, we present the results of the same study on a finer mesh (a 64 × 64 grid).
The behaviour of the discrete divergence is similar and, as previously, we also observe that the
difference in L1 norm between the approximate velocity u(ε) and the exact limit velocity u(0) does
not vanish. However it now remains close to 9.30 × 10−5. It confirms the hypothesis that this
almost constant error could be due to the discretization error since it becomes (approximatively)
twice smaller on a twice finer grid.

` ε` e
(ε`)
1,div

log(e(ε`+1)
1,div /e

(ε`)
1,div)

log(ε`+1/ε`)
e
(ε`)
1,u

1 0.8 9.98× 10−4 2.49 1.77× 10−4

2 0.4 1.78× 10−4 2.15 1.27× 10−4

3 0.2 4.00× 10−5 4.18 1.03× 10−4

4 0.1 2.20× 10−6 4.77 9.62× 10−5

5 0.05 8.04× 10−8 1.99 9.40× 10−5

6 0.025 2.02× 10−8 1.97 9.33× 10−5

7 0.0125 5.15× 10−9 −− 9.31× 10−5

Table 3: Test 1 (traveling vortex) Discrete L1 norm of the discrete divergence e
(ε`)
1,div =

‖∇d · u(ε`)‖1 and error e
(ε`)
1,u = ‖u(ε`) − u(0)‖1 at T = 0.01 for several ε on a 64 × 64 grid

and δt = 5× 10−4.

To observe the behaviour of the discrete velocity when ε goes to zero, we propose to study
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a perturbed version of this test case, more relevant for our purpose, by setting

f(r) = (1.5 + ε)2δ(rc)(k(rc)− k(π)),
g(r) = (1.5 + ε)(1 + cos(rc))δ(rc).

The results are reported in Table 4 (for the density) and in Table 5 (for the velocity and the
divergence of the velocity). The behaviour of ρ(ε) and ∇d ·u(ε) remains unchanged. But we now
clearly observe that the discrete velocity tends to the exact limit velocity when ε tends to zero
and, as expected, that the norm of the difference behaves like cε (with c a constant independent
of ε).

` ε` e
(ε`)
1,ρ

log(e(ε`+1)
1,ρ /e

(ε`)
1,ρ )

log(ε`+1/ε`)
1 0.8 2.34× 10−3 2.20
2 0.4 5.10× 10−4 2.48
3 0.2 9.12× 10−5 2.46
4 0.1 1.66× 10−5 2.09
5 0.05 3.89× 10−6 2.04
6 0.025 9.44× 10−7 2.02
7 0.0125 2.32× 10−7 −−

Table 4: Test 1 (traveling vortex, perturbed version) Discrete L1 norm of e(ε`)
1,ρ = ‖ρ(ε`) − ρ(0)‖1

at T = 0.01 for different ε on a 32× 32 grid and δt = 5× 10−4.

` ε` e
(ε`)
1,div

log(e(ε`+1)
1,div /e

(ε`)
1,div)

log(ε`+1/ε`)
e
(ε`)
1,u

log(e(ε`+1)
1,u /e

(ε`)
1,u )

log(ε`+1/ε`)
1 0.8 2.81× 10−3 1.82 6.45× 10−3 0.98
2 0.4 7.98× 10−4 2.10 3.26× 10−3 1.01
3 0.2 1.86× 10−4 4.30 1.62× 10−3 0.99
4 0.1 9.43× 10−6 5.90 8.13× 10−4 1.00
5 0.05 1.58× 10−7 2.01 4.06× 10−4 0.98
6 0.025 3.93× 10−8 1.98 2.06× 10−4 0.52
7 0.0125 9.99× 10−9 2.00 1.44× 10−4 −−

Table 5: Test 1 (traveling vortex, perturbed version) Discrete L1 norm of the discrete divergence
e
(ε`)
1,div = ‖∇d · u(ε`)‖1 and e

(ε`)
1,u = ‖u(ε`)−u(0)‖1 at T = 0.01 for different ε on a 32× 32 grid and

δt = 5× 10−4.

3.2.2 Test 2: cylindrical explosion problem

We consider a 2D isentropic cylindrical explosion problem extracted from [14]. The computa-
tional domain is Ω = [−1, 1]× [−1, 1], discretized with a 50× 50 grid. The pressure is given by
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p(ρ) = ρ and the initial density and velocity are given by

ρ(x, y, 0) = 1 + ε21r(x,y)61/4,

u(x, y, 0) = −xβ(x, y)
r(x, y)ρ(x, y, 0)1r(x,y)>10−15 ,

v(x, y, 0) = −yβ(x, y)
r(x, y)ρ(x, y, 0)1r(x,y)>10−15 ,

where r is the distance to the center of the domain, r(x, y) =
√
x2 + y2 and

β(x, y) = max{0, 1− r(x, y)} ×
(
1− e−16r(x,y)2)

.

The initial density and velocity field are shown in Fig. 10.
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Figure 10: Test 2 (explosion problem), time t = 0 and ε = 1, velocity field (left) and density
profile (middle and right).

Like in [14] we display the numerical solution obtained at time t = 0.1, t = 0.25 and t = 0.5
for ε = 1 in Fig. 11 to Fig. 13. The simulation is performed on a 50× 50 grid with a time step
δt = 5× 10−4.

The results obtained for ε = 1 at time t = 0.1 and t = 0.5 are very close to the results
obtained with a different AP-scheme in [14]. Note that, as confirmed by its authors, the result
reported in [14] for t = 0.25 does not correspond to this simulation time. We warmly thanks
the authors for taking the time to re-consider this test case and for many useful hints.
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Figure 11: Test 2 (explosion problem), time t = 0.1 and ε = 1, velocity field (left) and density
profile (middle and right).
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Figure 12: Test 2 (explosion problem), time t = 0.25 and ε = 1, velocity field (left) and density
profile (middle and right).
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Figure 13: Test 2 (explosion problem), time t = 0.5 and ε = 1, velocity field (left) and density
profile (middle and right).

We present in Fig. 14 the results obtained at t = 0.05 using the AP-scheme with ε = 5×10−3.
We use again a 50 × 50 grid and compare the velocity fields obtained with a small time step,
δt = 10−4, at left and a large one, δt = 5 × 10−3, at right. As in [14], we observe that the
AP scheme resolves the small waves dynamics when using a small time step but also that the
AP-scheme can handle large time step and, in this case, it captures the limit solution.
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(a) δt = 10−4 (b) δt = 5× 10−3

Figure 14: Test 2 (explosion problem), velocity field at time t = 0.05, using the AP-scheme with
ε = 5 × 10−3, comparison between the results obtained for δt = 10−4 (left) and δt = 5 × 10−3

(right).

3.2.3 Test 3

The third test case is extracted from [8]. The computational domain is Ω = [0, 1]× [0, 1]. The
final time is T = 1 and the time step is given by δt = 2.5× 10−2. The pressure law is given by
p(ρ) = ρ2 and the initial data reads

ρ = 1 + ε2 sin2(2π(x+ y)),

qu = sin(2π(x− y)) + ε2 sin(2π(x+ y)) and u = qu
ρ
,

qv = sin(2π(x− y)) + ε2 cos(2π(x+ y)) and v = qv
ρ
.

As in [8], we compute the solution for ε = 0.8 and ε = 0.05. For ε = 0.8, the result in [8] is
presented on a 20× 20 grid; we obtain a similar figure with a 12× 12 grid, but the results are
different when the mesh is refined. With a 20 × 20 grid, the result given by the AP method
is close to the one obtained with a 64 × 64 grid. Results for ε = 0.8 using a 64 × 64 grid are
presented in Figure 15. The result obtained with ε = 0.05 using a 64× 64 grid are presented in
Figure 16 for the AP-Scheme and in Figure 17 with the limit scheme (20). The density obtained
with the AP-scheme is almost equal to the constant state ρ(0) = 1: ‖ρ − ρ(0)‖∞ ∼ 10−3, the
horizontal and vertical velocities have converged to the solution of the limit scheme.

Figure 15: Test 3, ε = 0.8, horizontal and vertical velocity (left and middle) and density (right).
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Figure 16: Test 3, ε = 0.05, horizontal (left) and vertical velocity (right).

Figure 17: Test 3, horizontal (left) and vertical velocity (right) using the limit scheme (20).

3.3 Incompressible Euler simulations using the limit scheme

We now turn to the resolution of the incompressible Euler system in order to check the validity
of the limit scheme (20). We consider two test cases from [15]. The computational domain is
Ω = [0, 2π]× [0, 2π] for both test cases. The density is assumed to be constant equal to 1.

3.3.1 Test A: analytical solution

We test the capability of the limit scheme (20) to (approximately) preserve a stationary solution
of the incompressible Euler system:

u(x, y, t) = − sin(x) cos(y), v(x, y, t) = cos(x) sin(y) and p(x, y, t) = 1
2(cos(x)2 + cos(y)2).

The exact vorticity equal to
w(x, y, t) = −2 sin(x) sin(y).

The initial data is chosen as the evaluation on the grid of the stationary solution and using the
limit scheme (20), we perform different numerical simulations up to time T = 2 on different
meshes with a time step δt = 2× 10−4.

The result obtained using a 160 × 160 mesh is reported in Figure 18 (vorticity) and in
Figure 19 (velocity and pressure), the discrete vorticity w being defined by

wi,j =
vi+ 1

2 ,j
− vi− 1

2 ,j

δxi
−
ui,j+ 1

2
− ui,j− 1

2

δyj
.

We next provide in Table 6 the L∞ error norms e(N)
∞,u and e(N)

∞,w, N ∈ {40, 60, 80, 100, 120, 140,
160}, for the horizontal velocity u (the results for the vertical velocity v are similar) and for the
vorticity w. As expected, we observe a first order convergence.
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Figure 18: Test A, vorticity w using the limit scheme (20) at T = 2 on a 160 × 160 grid with
δt = 2× 10−4.
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Figure 19: Test A, horizontal (left) and vertical (middle) velocity and pressure (right) using the
limit scheme (20) at T = 2 on a 160× 160 grid with δt = 2× 10−4.

` N` e
(N`)
∞,u

log(e(N`+1)
1,u /e

(N`)
1,u )

log(N`/N`+1) e
(N`)
∞,w

log(e(N`+1)
1,w /e

(N`)
1,w )

log(N`/N`+1)
1 40 1.08× 10−1 0.85 2.58× 10−1 0.86
2 60 7.65× 10−2 0.87 1.82× 10−1 0.91
3 80 5.96× 10−2 0.91 1.40× 10−1 0.88
4 100 4.87× 10−2 0.93 1.15× 10−1 0.95
5 120 4.11× 10−2 0.93 9.67× 10−2 0.94
6 140 3.56× 10−2 0.94 8.37× 10−2 0.95
7 160 3.14× 10−2 −− 7.37× 10−2 −−

Table 6: Test A, error norms e(N)
∞,u and e(N)

∞,w using the limit scheme (20) for different meshes at
time T = 2 with δt = 2× 10−4

3.3.2 Test B: double shear layer

The initial data of the last test case are given by

u(x, y, 0) = tanh
(
y − π

2
π/15

)
1y6π + tanh

( 3π
2 − y
π/15

)
1y>π,

v(x, y, 0) = 0.05 sin(x).
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The exact solution is not known but we can compare with the results given in [15], based on
computations with the ENO scheme on 64× 64 and 128× 128 grids. We perform a simulation

(a) t = 4 (b) t = 6

(c) t = 8 (d) t = 10

Figure 20: Test B (double shear layer), contour of the vorticity w at different times on a 128×128
grid with δt = 10−3 using the limit scheme (20).

using the limit scheme (20) on a 128× 128 grids. We display the vorticity in Figure 20 with 60
equally spaced contours from −4.9 to 4.9 at t = 4 (left up), t = 6 (right up), t = 8 (left bottom)
and t = 10 (right bottom). These results are qualitatively very close to the ones obtained with
the ENO scheme on the 64 × 64 grid in [15]. The ENO scheme used in [15] is fourth-order
accurate (in the L1 sense), while our scheme is only first order accurate. Nevertheless, the
vortices developed by the solution with smaller and smaller scales are well reproduced.
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