H. Elmaraghy, G. Schuh, W. Elmaraghy, F. Piller, P. Schönsleben et al., Product variety management, CIRP Annals, vol.62, issue.2, pp.629-652, 2013.

D. Gyulai, A. Pfeiffer, G. Nick, V. Gallina, W. Sihn et al., Lead time prediction in a flow-shop environment with analytical and machine learning approaches, IFAC-PapersOnLine, vol.51, issue.11, pp.1029-1034, 2018.

N. Duffie, J. Bendul, and M. Knollmann, An analytical approach to improving due-date and lead-time dynamics, Journal of Manufacturing Systems, vol.45, pp.273-285, 2017.

T. Berlec and M. Starbek, Forecasting of Production Order Lead Time in SME's, Products and services, 2010.

G. Schuh, M. Brettel, C. Reuter, D. Bendig, C. Dölle et al., Towards a Technology-Oriented Theory of Production, Integrative Production Technology, pp.1047-1079, 2017.

A. Öztürk, S. Kayal?gil, and N. E. Özdemirel, Manufacturing lead time estimation using data mining, European Journal of Operational Research, vol.173, issue.2, pp.683-700, 2006.

A. Pfeiffer, D. Gyulai, and L. Monostori, Improving the Accuracy of Cycle Time Estimation for Simulation in Volatile Manufacturing Execution Environments, Simulation in Produktion und Logistik, pp.413-422, 2017.

H. Mather and G. Plossl, Priority Fixation versus Throughput Planning, Journal of Production and Inventory Management, issue.19, pp.27-51, 1978.

M. R. Niehues, Adaptive Produktionssteuerung für Werkstattfertigungssysteme durch fertigungsbegleitende Reihenfolgebildung. Dissertation, 2016.

G. Schuh, C. Reuter, J. Prote, F. Brambring, and J. Ays, Increasing data integrity for improving decision making in PPC, CIRP Annals, vol.66, issue.1, pp.425-428, 2017.

M. Chen, S. Mao, and Y. Liu, Big Data: A Survey, Mobile Netw Appl, vol.19, issue.2, pp.171-209, 2014.

I. Guyon, A. Elisseeff, J. Kacprzyk, S. Gunn, I. Guyon et al., Feature extraction. Foundations and applications, pp.1-25, 2006.

O. Niggemann, G. Biswas, J. S. Kinnebrew, H. Khorasgani, S. Volgmann et al., Datenanalyse in der intelligenten Fabrik, pp.471-490, 2017.

Y. Meidan, B. Lerner, G. Rabinowitz, and M. Hassoun, Cycle-Time Key Factor Identification and Prediction in Semiconductor Manufacturing Using Machine Learning and Data Mining, IEEE Trans. Semicond. Manufact, vol.24, issue.2, pp.237-248, 2011.

I. Tirkel, Forecasting flow time in semiconductor manufacturing using knowledge discovery in databases, International Journal of Production Research, vol.51, issue.18, pp.5536-5548, 2013.

C. Wang and P. Jiang, Deep neural networks based order completion time prediction by using real-time job shop RFID data, J Intell Manuf, vol.19, issue.4, pp.1-16, 2017.

L. Lingitz, V. Gallina, F. Ansari, D. Gyulai, A. Pfeiffer et al., Lead time prediction using machine learning algorithms: A case study by a semiconductor manufacturer, Procedia CIRP, vol.72, pp.1051-1056, 2018.

J. Wang, J. Zhang, and X. Wang, A Data Driven Cycle Time Prediction With Feature Selection, IEEE Trans. Semicond. Manufact, vol.31, issue.1, pp.173-182, 2018.

M. G. Rahman and M. Islam, A Decision Tree-based Missing Value Imputation Technique, Conferences in Research and Practice in Information Technology Series 121, 2012.

J. M. Kanter and K. Veeramachaneni, Deep feature synthesis: Towards automating data science endeavors, Proceedings of the 2015 IEEE International Conference on Data Science and Advanced Analytics (DSAA), Campus des Cordeliers, pp.1-10, 2015.

I. Guyon, Feature extraction: Foundations and applications, vol.778, p.pp, 2006.

C. Zhang, A. Kumar, and C. Ré, Materialization Optimizations for Feature Selection Workloads, ACM Trans. Database Syst, vol.41, issue.1, pp.1-32, 2016.

I. H. Witten, C. J. Pal, E. Frank, and M. A. Hall, Data mining: Practical machine learning tools and techniques, p.641, 2017.

M. R. Anderson, D. Antenucci, V. Bittorf, M. Burgess, M. J. Cafarella et al., Brainwash: A Data System for Feature Engineering, 2013.

G. Schuh, J. Prote, M. Luckert, and F. Sauermann, Determination of order specific transition times for improving the adherence to delivery dates by using data mining algorithms, Procedia CIRP, vol.72, pp.169-173, 2018.

J. Kacprzyk, S. Gunn, I. Guyon, M. Nikravesh, and . Zadeh, Feature extraction: Foundations and applications, 2006.

J. W. Grzymala-busse and M. Hu, A Comparison of Several Approaches to Missing Attribute Values in Data Mining, in: Rough Sets and Current Trends in Computing, pp.378-385, 2001.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, J. Mach. Learn. Res, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905