, ANTAQ. National Waterway Transportation Agency

C. Stat, ministry of industry, foreign trade and services

. Ministério-da-agricultura and . Pecuária-e-abastecimento, AGROSTAT -Estatísticas de Comércio Exterior do Agronegócio Brasileiro

, United States Department of Agriculture Foreign Agricultural Service. Table 11 Soybean Area

A. L. Beutel and S. Minner, Safety stock planning under causal demand forecasting, International Journal of Production Economics, vol.140, issue.2, pp.637-645, 2012.

B. Garg, N. Kirar, S. Menon, and T. Sah, A performance comparison of different back propagation neural networks methods for forecasting wheat production, CSIT, vol.4, issue.2, 2016.

R. Hecht-nielsen, Theory of the Backpropagation Neural Network, Proceedings of the International Joint Conference on Neural Network, vol.1, pp.593-611, 1989.

M. Ko, A. Tiwari, and J. Mehnen, A review of soft computing applications in supply chain management, Applied Soft Computing, vol.10, issue.3, pp.661-674, 2010.

U. E. Kocamaz, H. Ta?k?n, Y. Uyaroglu, and A. Göksu, Control and synchronization of chaotic supply chains using intelligent approaches, Computers & Industrial Engineering, vol.102, pp.476-487, 2016.

F. Oecd, . The-united, and A. O. Nations, Oecd-fao agricultural outlook, 2018.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach. Pearson Education India, 2015.

M. G. Simões and I. S. Shaw, Controle e Modelagem Fuzzy. Blucher: FAPESP, 2007.

D. Simi?, I. Kova?evi?, V. Svir?evi?, and S. Simi?, 50 years of fuzzy set theory and models for supplier assessment and selection: A literature review, Journal of Applied Logic, vol.24, pp.85-96, 2017.

L. Zadeh, Is there a need for fuzzy logic?, Information sciences, vol.178, issue.13, pp.2751-2779, 2008.

G. Özkan and M. ?nal, Comparison of neural network application for fuzzy and AN-FIS approaches for multi-criteria decision making problems, Applied Soft Computing, vol.24, pp.232-238, 2014.