
HAL Id: hal-02419268
https://inria.hal.science/hal-02419268

Submitted on 19 Dec 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Modular Robot Software Framework for the Intelligent
and Flexible Composition of Its Skills

Lisa Heuss, Andreas Blank, Sebastian Dengler, Georg Lukas Zikeli, Gunther
Reinhart, Jörg Franke

To cite this version:
Lisa Heuss, Andreas Blank, Sebastian Dengler, Georg Lukas Zikeli, Gunther Reinhart, et al.. Modular
Robot Software Framework for the Intelligent and Flexible Composition of Its Skills. IFIP Interna-
tional Conference on Advances in Production Management Systems (APMS), Sep 2019, Austin, TX,
United States. pp.248-256, �10.1007/978-3-030-30000-5_32�. �hal-02419268�

https://inria.hal.science/hal-02419268
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Modular Robot Software Framework for the
Intelligent and Flexible Composition of Its Skills

Lisa Heuss (B)1, Andreas Blank2, Sebastian Dengler1, Georg Lukas Zikeli2,
Prof. Dr.-Ing. Gunther Reinhart1, and Prof. Dr.-Ing. Jörg Franke2

1 Institute for Machine Tools and Industrial Management (iwb), Technical University
Munich (TUM), Garching near Munich, Germany

lisa.heuss@iwb.mw.tum.de
2 Institute for Factory Automation and Production Systems (FAPS)

Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany

Abstract. Current trends such as mass customization necessitate an
agile and transformable production. In this context, robotic technologies
are seen as a key enabler. But, to date, industrial robots lack the flexibil-
ity to easily adapt to changing needs. Therefore, a modular skill-based
software framework aiming for free configurability is presented here. A
generic task control allows varying incoming tasks to be processed, based
on the actual skills of the robot. In this way, the flexible composition of
a robot’s skills can be achieved, according to the actual situation.

Keywords: Autonomous robot · Configurability · Skills

1 Motivation

Customized products combined with the shortening and dynamization of prod-
uct life cycles are challenging trends for the manufacturing industry [3]. To stay
competitive, robotic technologies are seen as a key driver towards achieving an
agile and transformable production [16]. Future robotic systems must be able to
complete a wide variety of tasks at short intervals. Autonomous mobile robots
in particular therefore demonstrate great potential [1]. However, this is contrary
to the current situation. Today’s robots lack the flexibility and reconfigurability
to respond to changing needs. Great system complexity requires well trained ex-
perts to develop and operate those systems [8, 16]. Promising to overcome these
shortcomings is the skill paradigm [4, 5, 10, 12, 15, 17–19]. A skill refers to a func-
tionality or service a system offers. By first dividing the robots’ functionalities
into these skills, they can be freely orchestrated regarding the given task.
Within the scope of this paper, mobile robots should be enabled to autonomously
take over varying production tasks, as coordinated and assigned by an superor-
dinate planning system [6]. The tasks considered include commissioning diverse
machine parts, pre-assembling these during transport or supporting workers dur-
ing assembly. The focus of this paper lies on the skill-based software framework
of the robots and addresses two main goals. First, the robot’s skills should be
freely configurable and easily adjustable to the changing requirements. Second,



2 L. Heuss et al.

the robot should be flexible regarding the task handed over by intelligently com-
posing its skills based on generic task control. The following section presents
the related work. Then, the skill-based software framework will be introduced in
detail and evaluated within two applications. Finally, a conclusion will be given.

2 Related Work

In reviewing related work [4, 15, 17–19] about the modeling of skills, hierarchical
decomposition can be identified as a common key principle. Thereby, the prim-
itives at the lowest level are the reoccurring sub-functions. Skills are composed
of primitives and considered as reoccurring robot behaviors. Tasks refer to an
ordered sequence of skills aiming to achieve a specific goal. Input and output
parameters are used to permit the parametrization of skills [4, 17]. The defini-
tion of preconditions and effects for individual skills allows for planning a skill
sequence to achieve a given task [10, 15]. A common state machine can be used
to provide generic status information during the execution of skills [4].
Multiple approaches have been introduced for the application of the skill paradigm.
Taking into account a whole production system, [12] introduces a holistic frame-
work for the flexible orchestration of devices, based on their offered skills. In a
similar context, [4] defines skills as solution-neutral and describes them in this
way, semantically correlating to the tasks of a product assembly. Automated
matchmaking thus becomes possible. These ideas correlate with the job the su-
perordinate planning system should assume within this work.
With regard to industrial robots itself, skill-based approaches play a significant
role in facilitating robot programming, e.g in developing programming languages
[18], skill-based programming systems [5] or combining these with programming
by demonstration techniques [17]. [19] introduce a development platform to con-
figure the robot skills by choosing from reusable software modules which are
then deployed as apps. These approaches provide a good insight into how to
make the robot software freely configurable or how to teach the robot new skills.
Some generic task control is however needed in order to coordinate the function
call of its skills according to varying tasks sent by a planning system.
[15] follows the trend of cognitive robotics and introduces SkiROS as a skill-
based software architecture for robots, which allows them to autonomously plan
and execute tasks based on their skills. [10] present a similar concept, while their
focus is more on the information models used. Both approaches show the poten-
tials of superordinate task management within the robot architecture. However,
to date, these approaches are only applied to kitting tasks and there is a need
to extend these to other production domains.
In summary, the initially stated requirements can not be fulfilled by the current
state of the art. In order to be flexible regarding the tasks handed over, there is
a need to encapsulate the software realizing a specific skill and provide a generic
interface to use it. In addition, generic task management is needed, which works
independently from the underlying skills. This is the prerequisite for allowing the
easy composition of the robot’s skills across the different domains of production.



Skill-based Robot Software Framework 3

3 Skill-based Robot Software Framework

In order to enable robots to autonomously complete varying tasks, a skill-based
software framework is presented (see also [6]). An overview is given in figure 1.

Skill Set

Manager

Task Controller

Planning and Control System

Task

Management

Layer

Application

Layer

Hardware

Abstraction

Layer

Manipulator Gripper Camera

Move CIRC

Move LIN

Move

Grip by Shape

Grip by Force

Grip Measure Pose

Check Identity

Linemod

Check QR

Skill Set Task Feedback

Mobile Plattform

Navigation

Navigate

Handling

Pick Object

Place Object

Yolo

Move PTP

Fig. 1. Overview of the skill-based robot software framework

The modular robot software framework consists of three consecutive layers.
At the lowest level, the hardware components of the overall system are inte-
grated, with the aim of hardware abstraction. The application layer provides
the skills that enable the robot to achieve tasks. It is expected that robots in
the future will have to achieve a diverse range of tasks within short time cycles.
Furthermore, there are almost unlimited possibilities for combining the skills in
different ways. As a result, it is not possible to store all related knowledge per-
manently in the robot. Therefore, thematically related skills are combined in an
app. Similarly to in the consumer sector, a robot’s apps can be freely configured
in terms of the current task, or can even be downloaded on a situation-specific
basis. Tasks are handed over to and processed by the task management layer.
The skill-set manager is responsible for drawing up a list of all the skills the
robot offers. It passes this list to the planning and control system. Based on a
semantically correlating description of skills and tasks, automated matchmaking
as suggested by [4] or [12] can be performed. In this way, tasks to be completed
get assigned to suitable and available robots. These are then handed over to
and processed by the task controller of the individual robot, which subsequently
coordinates the execution of its skills. The application layer is further explained
in section 3.1 and 3.2 and section 3.3 describes the task management layer.

3.1 Modeling of Skills

Derived from the related work, primitive skills refer to the capabilities of a robot
at the lowest level, which can not be further divided. Composite skills arise



4 L. Heuss et al.

through the combination of primitive or lower-level composite skills and thus al-
low the modeling of complex robot behaviors on different hierarchy levels. As an
example, by composing primitive skills like “move”, “grip” and “measure pose”,
composite skills for “handling” can be achieved.
As well as modeling skills on different hierarchy levels, skills can be described on
different levels of abstraction. Within this context, abstract skills describe the
robot capabilities independently of the executing hardware and the underlying
operating principles, whereas specific skills inherit from abstract skills and take
these into account. [6] Thus, specific skills provide an opportunity to implement
different building blocks for an abstract skill, which can be flexibly used de-
pending on task-specific boundary conditions. For example, a gripper offers the
primitive skill “grip”; by taking the operating principle into account, it can be
separated between the two specific primitive skills “grip by force” and “grip by
shape”. Within this work an extended version of the skill taxonomy of [4] is used
as a basis for the abstract primitive and composite skills.

3.2 Modularization of Algorithms into Apps and Strategic Applets

The skill-modeling gives a functional view of the robot capabilities. These given
principles are further used to modularize the underlying software architecture
of the robot by encapsulating it into apps or rather applets [6]. These consider
the implementation view, build on the same structure and provide a generic in-
terface containing a set of common control algorithms applied for all skills. An
applet refers to the software implementation of a specific skill. An app is used as
a generic construct to group a set of thematically-related applets into a software
package, which together aim to perform a defined abstract skill.
Applying these concepts raises the central question of the robust and flexible
programming of skill-building blocks at the outset when developing the robot’s
software architecture. By doing so, user-friendliness as well as constant extensi-
bility of a multi-layer architecture are decisively influenced. In this respect, the
conception of the architecture’s lower levels already proves to be critical. For
the realization of abstract skills as encapsulated apps, algorithms are first inte-
grated into the system as independent functions. Of importance in this respect
is the identification and definition of program sequences and interaction areas,
which are representative for the algorithmic execution of functionalities offered
by specific skills. Code fragments can be programmed or extracted from existing
programs. Interfaces of separated functions are their prototypes and describe
the data types of their return value. Depending on the semantic and functional
nature of an abstract skill, several algorithms can be identified as its technical
specification in the form of a specific skill. In order to guarantee a maximum
degree of adaptability and the continuous modularization of the architecture,
it makes sense to continue collecting such functions in classes according to the
guidelines of object-oriented programming. In addition to its functional charac-
ter, a class is also coherent regarding semantics. Ideally, each skill should create
a class with strategically flexible algorithms available to it, thus giving the en-
tire model an intuitive character. Generally, a skill-building block can then be



Skill-based Robot Software Framework 5

implemented by creating the class object representing an abstract skill in com-
bination with accessing one of its strategically specified skills in the form of a
class method. The result of this concept can be transferred to the framework of
apps and applets (see figure 2) and is exemplified based on a bin-picking task
frequently used within commissioning.

Applet "Pick Object"

Move
Detect

Object
Measure

Pose

Calculate

Grip Point
Move

Camera

Object-ID

Workspace

Database
CAD-Files

...

Pictures

6D-Pose Data

Applet 

"Measure Pose

Linemod"

.objectMethod1()

.algorithmCallback1()

.objectAttribute1()

Member of App-Class

Grip

Information Flow Control and Feedback Flow

Fig. 2. Exemplary interaction of strategic applets within a skill-based system

In the presented work, ROS is used as implementation basis. Thus, the applet
for the exemplary specific skill “measure pose with linemod algorithm” packages
all software to run this process within ROS. In this way, the app provides the
class-based collection of its strategic algorithms, which are then integrated within
the applet. Strategy-based algorithms are similarly defined and used as can be
seen in [7]. The app can further group a set of thematically-related applets,
building on this same class into one software package. Applets are supposed to
interact with all software and hardware resources in relevant system layers to
adequately manipulate data. The call of the applet is done from the higher task
controller or it can be further used to implement a higher-level composite skill.
In this case it is integrated into an applet providing the scripted behavior of a
picking skill. In both cases, the higher-lying calling entity handles the transfer
of relevant messages via defined interfaces to the next applet.

3.3 Generic Task Control

In order to control the skills by the superordinate task controller, the idea is to
include a standardized control interface to every applet. This is illustrated in the
bottom part of figure 3 for the aforementioned applet to implement the composite
skill “pick object”. The control interface is defined by a state machine based on
the PackML Interface State Model [11]. Similar to the concept introduced by
[4], the applet’s state machine describes its current execution status. The state
machine furthermore introduces a set of control functions (marked italic in figure
3) that can be used to start, stop, pause or reset the applet. Expected, as well
as faulty behavior can be monitored via the applet’s feedback messages in the
form of the current state within the PackML-based state machine.



6 L. Heuss et al.

Task

Navigate Pick Place... ...

Task Controller

Completing

Held HoldingUnholding

ExecutingStarting

Aborted Aborting

StoppingStopped

Complete
start()

unhold()

hold()

reset()
reset()

reset()
stop()

Idle

Resetting

Applet

"Pick Object"

Control

Functions
Feedback

Feedback

Fig. 3. Task controller interacting with an applet

The functionality that is provided by the application layer is used by the
superordinate task management layer in order to perform given tasks. The task
controller of the robot receives varying tasks from the superordinate planning
and control system (see figure 3). Tasks have a complex, nested structure of
sequential and parallel actions. Within the task controller, these are modeled as
hierarchical finite state machines. The task controller dynamically builds these
task state machines at runtime, by recursively iterating through the nested task
structure and adding the actions as states to the state machine. Based on the
generic control interface provided by each applet, the task controller is able to
process the task independently of its structure and the actions it uses.
Within each state of the task state machine, the applet that offers the corre-
sponding skill is addressed and controlled via the standardized generic control
functions (see figure 3). Through the interface, the task controller is furthermore
able to monitor the applet’s execution. Faulty behavior of an applet can be de-
tected and handled at task level. The task controller can additionally inform the
planning and control system about the faulty behavior via status feedback.

4 Application Examples

Modular, skill-based bin picking: The methodology for the object-oriented
modularization of skills is evaluated based on an existing bin-picking demonstra-
tor. Figure 2 already showed a potential sequencing of specific primitive skills to
achieve a composite picking skill. The system set-up is primarily concerned with
recognition, 6D pose determination and robust picking of texture-less metallic
machine elements from an associated industrial partner. In this way, the six prim-
itive skills are processed as applets by a SMACH state machine [2]. As shown in
figure 1, encapsulated, strategy-specific functions are aggregated in semantically
coherent classes for apps, as their methods and several applets based on class
methods were created for each app. The actionlib [9] provided by ROS is used in
this case as the syntactic framework for the latter, resulting in an encapsulated
and intuitive way of working when sequencing them within the composite skill.



Skill-based Robot Software Framework 7

A first approach to implementing primitive skills with a focus on the lower layers
of an architecture was successfully evaluated by the demonstrator.

Flexible task-handling for logistic tasks: The generic task controller for
the automatic building and processing of tasks as well as the standardized ap-
plet control interface are evaluated on a simulated TurtleBot [14] equipped with
an OpenManipulator [13]. The mobile manipulator implements multiple primi-
tive and composite skills for performing logistic tasks. By making use of these
skills, the robot is able to process tasks as sets of actions. Through the use of
the generic task controller, these tasks do not need to be manually programmed
within the robot’s control software but can be passed to the robot in form of a
nested JSON object. The task controller is able to automatically build a SMACH
[2] state machine and control the required applets through the standardized con-
trol interface. Additionally, it is possible to halt a running task by sending hold
commands to the task controller. When errors are detected within an applet’s
execution, the task controller gets passed the information about them and stops
its execution as well. Further behaviors for error recovery need to be considered
within the skill implementation, whereas the applet already provides the orga-
nizational structure. Feedback about the preemption or abortion of tasks also
gets passed to the planning and control system.

5 Conclusion

In order to enable autonomous mobile robots to easily adapt to changing needs,
and to flexibly complete varying tasks coordinated by an superordinate planning
system, a modular skill-based software framework is presented. First, to reduce
complexity, skills are hierarchically structured into primitive and composite skills
and are modeled on different levels of abstraction. These concepts are used to
encapsulate the robot’s software according to the guidelines of object-oriented
programming into independent building blocks, referred as apps and applets.
The free configurability of the robot’s skills is thus achieved. The PackML state
model is introduced as a common interface to control and monitor the execution
of the robot’s skills. In this way, a generic task control able to process tasks
independently of their content and structure is achieved. Thus, the proposed
architecture fulfills the prerequisites for use within various production domains.

Acknowledgments. The results presented in this article were developed
within the FORobotics (AZ-1225-16) research network. The authors would like to
thank the Bavarian Research Foundation and all participating project partners
for their funding and support of the project.

References

1. Bøgh, S., Hvilshøj, M., Kristiansen, M., Madsen, O.: Identifying and evaluating
suitable tasks for autonomous industrial mobile manipulators (AIMM). The Inter-



8 L. Heuss et al.

national Journal of Advanced Manufacturing Technology 61(5), 713–726 (2012)
2. Bohren, J., Cousins, S.: The SMACH High-Level Executive [ROS News]. IEEE

Robotics & Automation Magazine 17(4), 18–20 (2010)
3. ElMaraghy, H.A.: Flexible and reconfigurable manufacturing systems paradigms.

International Journal of Flexible Manufacturing Systems 17(4), 261–276 (2005)
4. Hammerstingl, V., Reinhart, G.: Skills in Assembly (2018),

https://mediatum.ub.tum.de/1428286
5. Herrero, H., Moughlbay, A.A., Outón, J.L., Sallé, D., de Ipiña, K.L.: Skill based

robot programming: Assembly, vision and Workspace Monitoring skill interaction.
Neurocomputing 255, 61–70 (2017)

6. Heuss, L., Lux-Gruenberg, G., Hammerstingl, V., Schnös, F., Rinck, P., Reinhart,
G., Zäh, M.: Autonome mobile Roboter in der Smart Factory. wt Werkstattstechnik
online 108(9), 574–579 (2018)

7. Hoffmann, A.: Serviceorientierte Automatisierung von Roboterzellen: Modularität
und Wiederverwendbarkeit von Software in der Robotik. Ph.D. thesis, University
of Augsburg (2015)

8. Hvilshøj, M., Bøgh, S., Skov Nielsen, O., Madsen, O.: Autonomous industrial mo-
bile manipulation (AIMM): past, present and future. Industrial Robot: An Inter-
national Journal 39(2), 120–135 (2012)

9. Janssen, R., van Meijl, E., Di Marco, D., van de Molengraft, R., Steinbuch, M.: In-
tegrating planning and execution for ROS enabled service robots using hierarchical
action representations. In: IEEE ICAR. pp. 1–7 (2013)

10. Kootbally, Z., Kramer, T.R., Schlenoff, C., Gupta, S.K.: Implementation of an
Ontology-Based Approach to Enable Agility in Kit Building Applications. Inter-
national Journal of Semantic Computing 12(01), 5–24 (2018)

11. Nøkleby, C.: OMAC PackML Unit Machine Implementation Guide (2016),
http://omac.org/wp-content/uploads/2016/11/PackML Unit Machine Implemen
tation Guide-V1-00.pdf

12. Pfrommer, J., Stogl, D., Aleksandrov, K., Schubert, V., Hein, B.: Modelling and
orchestration of service-based manufacturing systems via skills. In: IEEE ETFA.
pp. 1–4 (2014)

13. Robotis: OpenManipulator (2019), http://emanual.robotis.com/docs/en/platform/
openmanipulator x/overview/

14. Robotis: TurtleBot3 (2019), http://emanual.robotis.com/docs/en/platform/turtle
bot3/overview/

15. Rovida, F., Crosby, M., Holz, D., Polydoros, A.S., Großmann, B., Petrick, R.P.A.,
Krüger, V.: SkiROS—A Skill-Based Robot Control Platform on Top of ROS. In:
Koubaa, A. (ed.) Robot Operating System (ROS), Studies in Computational In-
telligence, vol. 707, pp. 121–160. Springer International Publishing (2017)

16. SPARC: Robotics 2020 Mulit-Annual Roadmap (2016), https://www.eu-
robotics.net/cms/ upload/topic groups/H2020 Robotics Multi-Annual Roadmap
ICT-2017B.pdf

17. Stenmark, M., Topp, E.A.: From Demonstrations to Skills for High-level Program-
ming of Industrial Robots. In: AAAI Fall Symposium Series 2016, pp. 75–78. AAAI
Press (2016)

18. Thomas, U., Hirzinger, G., Rumpe, B., Schulze, C., Wortmann, A.: A new skill
based robot programming language using UML/P Statecharts. In: IEEE ICAR.
pp. 461–466 (2013)

19. Wenger, M., Eisenmenger, W., Neugschwandtner, G., Schneider, B., Zoitl, A.: A
model based engineering tool for ROS component compositioning, configuration
and generation of deployment information. In: IEEE ETFA. pp. 1–8 (2016)


