, RF oscillator: RX mode -TX mode, accumulated difference over T= 5°C to 65°C

. Rf-oscillator, RX mode -TX mode, accumulated difference over all channels (b) FIGURE 14: Crystal-free radio, RF oscillator, experimental data. a) For higher frequency channels, the tuning code difference needed when switching from RX mode to TX mode is higher than for lower frequency channels

, Crystal-free radio: determining the tuning codes for transmission on channels 11-26 is possible after the Initial Calibration phase has been completed and ACK reception is possible (RF oscillator calibrated in Startup Phase for RX mode), FIGURE, vol.15

D. Shaviv, A. Ozgur, and A. Arbabian, Communication With Crystal-Free Radios, IEEE Transactions on Communications, vol.66, issue.10, pp.4513-4520, 2018.

O. Khan, D. Burnett, F. Maksimovic, B. Wheeler, S. Mesri et al., Time keeping ability of crystal free radios, IEEE Internet of Things Journal, pp.1-1, 2018.

, Crystal Or Crystal Oscillator Replacement with Silicon Devices, 2014.

C. Lam, A review of the recent development of MEMS and crystal oscillators and their impacts on the frequency control products industry, IEEE Ultrasonics Symposium, pp.694-704, 2008.

B. Wheeler, F. Maksimovic, N. Baniasadi, S. Mesri, O. Khan et al., Crystal-free narrow-band radios for lowcost IoT, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.228-231, 2017.

S. Li, Revolutionary Timing for Auto-Qualified MEMS Oscillators, Microchip Technology), 2019.

. Epson, Comparison of Crystal Oscillator and Si-MEMS Oscillators, 2019.

P. Pickering, MEMS Oscillators Make Inroads, 2019.

. Sitime, MEMS Oscillators: Enabling Smaller, Lower Power IoT& Wearables, 2019.

, Texas Instruments, 2019.

, Texas Instruments: CC2652RB (PREVIEW) SimpleLink crystal-less BAW wireless MCU, 2019.

, The End of the Crystal? TI Introduces Two New Products Using Breakthrough BAW Resonator Technology, 2019.

A. Paidimarri, N. Ickes, and A. P. Chandrakasan, A 0.68V 0.68mW 2.4GHz PLL for ultra-low power RF systems, 2015 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.397-400, 2015.

A. Y. Jou, H. Shan, H. Pajouhi, J. Peterson, and S. Mohammadi, A Single-Chip Wireless Powered RFID Antenna and Transceiver, IEEE Journal of Radio Frequency Identification, vol.1, issue.3, pp.219-227, 2017.

H. Bhamra, Y. Kim, J. Joseph, J. Lynch, O. Z. Gall et al., A24 µW, Batteryless, Crystal-free, Multinode Synchronized SoC "Bionode" for Wireless Prosthesis Control, IEEE Journal of Solid-State Circuits, vol.50, issue.11, pp.2714-2727, 2015.

M. Tabesh, N. Dolatsha, A. Arbabian, and A. M. Niknejad, A Power-Harvesting Pad-Less Millimeter-Sized Radio, IEEE Journal of Solid-State Circuits, vol.50, issue.4, pp.962-977, 2015.

L. Chuo, Y. Shi, Z. Luo, N. Chiotellis, Z. Foo et al., A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3 × 3 × 3mm 2 wireless sensor node with 20m non-line-of-sight communication, 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp.132-133, 2017.

S. Mesri, Design and user guide for the single chip mote digital system, 2016.

F. Maksimovic, B. Wheeler, D. Burnett, O. Khan, S. Mesri et al., A Crystal-Free Single-Chip Micro Mote with Integrated 802.15.4 Compatible Transceiver, Sub-mW BLE Compatible Beacon Transmitter, and Cortex M0, 2019 Symposium on VLSI Circuits, 2019.

, LTC5800-IPM:SmartMesh IP Node 2.4GHz, 802.15.4e Wireless Mote-on-Chip, 2019.

, Ieee standard for low-rate wireless networks, IEEE, Tech. Rep, 2016.

O. Khan, B. Wheeler, D. Burnett, F. Maksimovic, S. Mesri et al., Frequency reference for crystal free radio, 2016 IEEE International Frequency Control Symposium (IFCS), pp.1-2, 2016.

I. Suciu, F. Maksimovic, D. Burnett, O. Khan, B. Wheeler et al., Experimental clock calibration on a Crystal-Free Mote-on-a-Chip, 2019 IEEE INFOCOM WKSHPS: CNERT 2019: Computer and Networking Experimental Research using Testbeds (INFOCOM 2019 WKSHPS -CNERT 2019), 2019.
URL : https://hal.archives-ouvertes.fr/hal-02266563

L. Peng, Y. Cao, X. Pan, and X. Zhao, A low-power relaxation oscillator with improved thermal stability, 2017 International SoC Design Conference (ISOCC), pp.115-116, 2017.

S. Sakphrom, T. Limpiti, N. Wichaipanich, and A. Thanachayanont, Sub-30ppm/ ? C High-frequency Temperature-compensated CMOS Relaxation Oscillator, 2018 15th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology, pp.305-308, 2018.

D. Cherniak, R. Nonis, and F. Padovan, A precision 140MHz relaxation oscillator in 40nm CMOS with 28ppm/ ? C frequency stability for automotive SoC applications, 2017 IEEE Radio Frequency Integrated Circuits Symposium (RFIC), pp.57-60, 2017.

H. V. Nguyen, J. Kim, and S. Kim, Temperature And Supply Voltage Insensitive Relaxation Oscillator Using Voltage Reference, TENCON 2018 -2018 IEEE Region 10 Conference, pp.555-0558, 2018.

D. Burnett, B. Wheeler, L. Lee, F. Maksimovic, A. Sundararajan et al., CMOS oscillators to satisfy 802.15.4 and bluetooth LE PHY specifications without a crystal reference, 2019 IEEE 9th Annual Computing and Communication Workshop and Conference (CCWC) (IEEE CCWC 2019), 2019.

R. B. Staszewski, P. Cruise, and D. Leipold, Crystal Drift Compensation in a Mobile Phone, 2006 IET Irish Signals and Systems Conference, pp.241-245, 2006.

J. Bae, K. Song, H. Lee, H. Cho, and H. Yoo, A Low-Energy Crystal-Less Double-FSK Sensor Node Transceiver for Wireless Body-Area Network, IEEE Journal of Solid-State Circuits, vol.47, issue.11, pp.2678-2692, 2012.

D. Griffith, P. T. Roine, T. Kallerud, B. Goodlin, Z. Hughes et al., A ±10ppm -40 to 125 ? C BAW-based frequency reference system for crystal-less wireless sensor nodes, 2017 IEEE International Symposium on Circuits and Systems (ISCAS), pp.1-4, 2017.

X. Vilajosana, P. Tuset-peiro, T. Watteyne, and K. Pister, Openmote: Open-source prototyping platform for the industrial iot, International Conference on Ad Hoc Networks (AdHocNets), 2015.
URL : https://hal.archives-ouvertes.fr/hal-01208417

K. Wang, J. Koo, R. Ruby, and B. Otis, 21.7 A 1.8mW PLL-free channelized 2.4GHz ZigBee receiver utilizing fixed-LO temperature-compensated FBAR resonator, 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.372-373, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02353429

L. Chuo, Y. Shi, Z. Luo, N. Chiotellis, Z. Foo et al., A 915MHz asymmetric radio using Q-enhanced amplifier for a fully integrated 3 × 3 × 3mm 3 wireless sensor node with 20m non-line-of-sight communication, 2017 IEEE International Solid-State Circuits Conference (ISSCC), pp.132-133, 2017.

Y. Tu, J. Liu, K. Cheng, and C. Chang, Low supply voltage and multiphase all-digital crystal-less clock generator, IET Circuits, Devices Systems, vol.12, issue.6, pp.720-725, 2018.

H. Foundation, Industrial networks -Wireless communication network and communication profiles -WirelessHART, HART Foundation, Tech. Rep, vol.62591, 2016.

P. Thubert, T. Watteyne, R. Struik, and M. Richardson, An Architecture for IPv6 over the TSCH mode of IEEE 802, 2015.

X. Vilajosana, T. Watteyne, M. Vucinic, T. Chang, and K. Pister, Special issue Real-Time Networks and Protocols for Factory Automation and Process Control Systems, IEEE Proceedings Journal, 2019.

M. Vucini?, J. Simon, K. Pister, and M. Richardson, Internet Engineering Task Force, Internet-Draft draft-ietf-6tisch-minimal-security-10, 2019.

N. Salman, I. Rasool, and A. H. Kemp, Overview of the IEEE 802.15.4 standards family for Low Rate Wireless Personal Area Networks, Symposium on Wireless Communication Systems, pp.701-705, 2010.

&. Basics, , 2019.

H. Gavin, Fitting Models to Data, Generalized Linear Least Squares, and Error Analysis, CEE 629. System Identification, 2019.

, Massachusetts Institute of Technology, Department of Mechanical Engineering, 2.161 Signal Processing -Continuous and Discrete, 2008.