, IEEE Standard for Low-Rate Wireless Networks

. Ieee:-piscataway, . Nj, and . Usa, , pp.1-709, 2016.

J. A. Gutierrez, M. Naeve, E. Callaway, M. Bourgeois, V. Mitter et al., IEEE 802.15.4: A developing standard for low-power low-cost wireless personal area networks, IEEE Netw, vol.15, pp.12-19, 2001.

D. Gislason, Zigbee Wireless Networking, 2008.

, ANSI/ISA-100.11a-2011 Wireless Systems for Industrial Automation: Process Control and Related Applications; International Society of Automation Standard, 2011.

D. Chen, M. Nixon, A. Mok, and . Wirelesshart, Real-Time Mesh Network for Industrial Automation, 2010.

X. Vilajosana, T. Watteyne, M. Vu?ini?, T. Chang, and K. S. Pister, Industrial Performance for IPv6 Internet-of-Things Networks, Proc. IEEE 2019, pp.1153-1165
URL : https://hal.archives-ouvertes.fr/hal-02266569

, Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC Sublayer; IEEE Std 802, IEEE Standard for Local and Metropolitan Area Networks-Part, vol.15, pp.4-2012

. Ieee:-piscataway, . Nj, and . Usa, , pp.1-225, 2012.

, Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 3: Physical Layer (PHY) Specifications for Low-Data-Rate, Wireless, Smart Metering Utility Networks, IEEE Standard for Local and Metropolitan Area Networks-Part 15, vol.4, pp.1-252, 2012.

E. Mccune, This Emperor Has No Clothes? IEEE Microwaves Mag, vol.14, pp.48-62, 2013.

P. Sommer, Y. Maret, and D. Dzung, Low-Power Wide-Area Networks for Industrial Sensing Applications, Proceedings of the 2018 IEEE International Conference on Industrial Internet (ICII), pp.23-32, 2018.

C. Sum, F. Kojima, and H. Harada, Coexistence of homogeneous and heterogeneous systems for IEEE 802.15.4g smart utility networks, Proceedings of the 2011 IEEE International Symposium on Dynamic Spectrum Access Networks (DySPAN), pp.510-520, 2011.

Y. Liu, J. Guo, P. Orlik, Y. Nagai, K. Watanabe et al., Coexistence of 802.11ah and 802.15.4g networks, Proceedings of the 2018 IEEE Wireless Communications and Networking Conference (WCNC), pp.1-6, 2018.

J. Munoz, T. Chang, X. Vilajosana, and T. Watteyne, Evaluation of IEEE802.15.4g for Environmental Observations, Sensors, vol.18, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01968648

J. Munoz, E. Riou, X. Vilajosana, P. Muhlethaler, and T. Watteyne, Overview of IEEE802.15.4g OFDM and its Applicability to Smart Building Applications, Proceedings of the Wireless Days Conference (WD), pp.3-5, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01718175

J. Munoz, P. Muhlethaler, X. Vilajosana, and T. Watteyne, Why Channel Hopping Makes Sense, even with IEEE802.15.4 OFDM at 2.4 GHz, Proceedings of the Global IoT Summit (GIoTS), pp.4-7, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01756523

X. Vilajosana, P. Tuset, T. Watteyne, and K. Pister, OpenMote: Open-Source Prototyping Platform for the Industrial IoT, Ad Hoc Networks
URL : https://hal.archives-ouvertes.fr/hal-01208417

N. Mitton, M. E. Kantarci, A. Gallais, and S. Papavassiliou, , pp.211-222, 2015.

P. Tuset-peiró, X. Vilajosana, and T. Watteyne, OpenMote+: A Range-Agile Multi-Radio Mote, Proceedings of the 2016 International Conference on Embedded Wireless Systems and Networks, EWSN '16, pp.333-334, 2016.

, Texas Instruments. CC2538 Powerful Wireless Microcontroller System-On-Chip for 2.4-GHz IEEE 802.15.4, 6LoWPAN, and ZigBee R Applications (Rev. SWRS096D), p.17, 2015.

. Atmel, AT86RF215 Device Family: Sub-1GHz/2.4GHz Transceiver and I/Q Radio for IEEE Std 802, Rev. 42415E, vol.15, p.17, 2016.