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show how the polyhedral model may provide a precious help to compute tricky scheduling and
parallelism informations. Our compiler is available and may be tried online at http://foobar.
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Un algorithme de compilation pour guider
l’ordonnancement dynamique

Résumé : Le parallélisme de tâches est habituellement exploité par un ordonnanceur dy-
namique, après que les tâches aient été compilées sur les différentes unités d’exécution. Dans ce
rapport, nous proposons une nouvelle stratégie d’ordonnancement qui donne une place centrale
au compilateur. Nous proposons un algorithme de compilation complet et un compilateur pour
diviser les tâches en trois parties, dont les propriétés permettent à l’ordonnanceur de prendre les
bonnes décisions. En particulier, nous montrons que le modèle polyédrique permet de construire
et de raffiner ce type de stratégie.

Mots-clés : Compilation, parallélisation automatique, modèle polyédrique, ordonnancement
dynamique
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1 Introduction

Since the end of Dennard scaling, computer architects are striving to increase the computing
power under a constant energy budget, power efficiency is the new performance measure. Hence
the rise of heterogeneous architectures with multicore processors and power efficient hardware
accelerators (typically GPUs). Beside the inherent difficulty of parallel programming, the pro-
grammer is left to a myriad of standards with different levels of abstraction, to control both
coarse-grain and fine-grain parallelism. The general philosophy is to exploit coarse-grain paral-
lelism at runtime and fine-grain parallelism at compile-time: tasks are expressed at the langage-
level, then a runtime system schedules the tasks on the processing units and rules the data
transfers across processing units. The compiler is then responsible to map properly each task to
the processing units. However, runtime scheduling suffers from many drawbacks, notably a lack
of global view on the computation – required to exploit to the best the computing capabilities.

In this report, we propose to put the compiler at the center of the process. At compile-time,
we analyse the task dependences and we produce a task classification which guide the runtime
scheduling. Specifically, this report makes the following contributions:

� A compile-time/runtime strategy to improve task scheduling on CPUs and GPUs.

� A compiler algorithm, which analyses an HPC application and partitions the task instances
according to the scheduling strategy and the type of processing units to be used at runtime
(CPU or GPU).

This report is structured as follows. Section 2 outlines our compilation/scheduling strategy
and introduces the polyhedral model, the compilation framework used to design our compiler
algorithm. Section 3 describes our compiler algorithm. Section 4 concludes this report and draws
research perspectives. Finally the annex presents the input of our compiler, kut.

2 Preliminaries

This section outlines the features of StarPU, the runtime system considered in this report, our
compilation/runtime strategy, and then the polyhedral model, the general framework in which
we express our compilation algorithm.

2.1 Runtime scheduling

StarPU We focus on StarPU [1], a runtime system providing a high-level, unified execution
model tightly coupled with an expressive data management library. StarPU features several
scheduling strategies, which can be selected in a simple manner by the programmer. In partic-
ular, the area-bound strategy relies on an affine expression of the tasks bottom-level to ensure a
progression of the tasks close to the critical path. The bottom-level of a task is the time to com-
pletion, assuming unbounded ressources. Conceptually, it can be defined as an ASAP schedule,
starting from the last task and reverting the dependences. Figure 1.(a) depicts a loop kernel with
BLAS tasks copy (first statement, S), gemm (second statement, T) and trsm (third statement,
U). The expanded dependence graph is given in (b). The last task (◦ (trsm), i = 7, j = 6)
has a bottom-level 0. Assuming latencies δ(copy) = 1 δ(gemm) = 2 and δ(trsm) = 2, all the
tasks above the red line have a bottom-level lower than `red = 8. One of our contributions is
to automate the computation of the bottom-level as an affine function of loop counters i and
j. We will see that, on that example, our compilation algorithm computes the bottom-level
βred(S, i) = 4N − 2i− 2, βred(T, i, j) = 4N − 2(i+ j)− 4 and βred(U, i) = 4N − 4i− 4.
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4 Alias & Thibault & Gonnord

Compile-time / runtime strategy We follow the following strategy. The compiler analyzes
the loop nest, given the CPU/GPU number and latency for each task. Starting from the last
task, the compiler schedules ASAP using the GPU task latency until reaching as many parallel
tasks as the number of GPUs. This gives the red frontier `red depicted on Figure 1.(b). From the
red frontier, the compiler schedules ASAP using average latencies CPU/GPU until reaching as
many parallel tasks as #CPU + #GPU. This gives the green frontier depicted on Figure 1.(b).
The compiler produces a function deciding if a task, given the loop counters, is beyond the red
frontier. It does the same thing for the green frontier.

At runtime, at the beginning, the scheduler deals with a few tasks, scheduled with a HEFT-
like (dmdas) strategy. When there are more ready tasks than processing units, the scheduler uses
an area-bound strategy to maximize the acceleration rather than prioritizing the critical path.
The scheduler uses the bottom-level to ensure the progression of the tasks close to the critical
path. Beyond the green frontier, the tasks are kept to be scheduled later. When there is no more
tasks to schedule, the task kept are scheduled with an HEFT-like (dmdas) strategy. Beyond the
red frontier, (less parallel tasks than GPUs) all the tasks are scheduled on the GPUs.

Computing the bottom-levels and the amount of parallelism at each level requires a precise
static analysis of the program which is possible thanks to the polyhedral model described in the
next section.

2.2 Polyhedral model

for i := 0 to N − 1
• s := bi;

for j := 0 to i− 1
• s := s−Aijxj ;
◦ x := A−1

ii s;

i

j

0

1

2
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4

5

6N − 2 =

0 1 2 3 4 5 6 7= N − 1

tred = 8

tgreen = 7

(a) Forward Substitution kernel (b) Flow dependences

Figure 1: Motivating example: forward substitution kernel. (a) depicts a polyhedral
kernel (• = copy, • = gemm, ◦ = trsm), then (b) gives the polyhedral representation of loop
iterations with N = 8 and flow dependences (red arrows).

The polyhedral model [7] is a general framework to design loop transformations, historically
geared towards source-level automatic parallelization [7] and data locality improvement [2]. It
abstracts loop iterations as a union of convex polyhedra – hence the name – and data accesses
as affine functions. This way, precise – iteration-level – compiler algorithms may be designed
(dependence analysis [5], scheduling [6] or loop tiling [2] to quote a few) .

Inria
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Program model The polyhedral model manipulates loop kernels – referred to as polyhedral
programs – which consist of nested for loops and if conditions manipulating arrays and scalar
variables, such that loop bounds, if conditions, and array access functions are affine expressions
of surrounding loops counters and structure parameters. This way, the control is static, it only
depends on the input size (the structure parameters, e.g. N), and may be analysed at compile-
time. With polyhedral programs, each iteration of a loop nest is uniquely represented by the
vector of enclosing loop counters ~i. The execution of a program statement S at iteration ~i is
denoted by 〈S,~i〉. The set DS of iteration vectors is called the iteration domain of S. Figure 1
depicts a polyhedral program (a) with the iteration domains (b).

Dependences & scheduling With the polyhedral model, data dependences may be computed
exactly at compile-time and represented with a Presburger relation 〈S,~i〉 → 〈T,~j〉 iff (~i,~j) ∈ ΦS,T .
ΦS,T is usually abstracted as a rational polyhedron, called dependence polyhedron. Dependences
are usually classified as flow (write to read), anti (read to write) and output (write to write).
The size of the longest dependence path is refered to as λ∗(→). Figure 1.(b) represents the flow
data dependences across the iterations.

A schedule maps each operation 〈S,~i〉 to a timestamp θS(~i) ∈ (Zd,�). Conceptually, a
schedule specifies a program transformation by mapping each iteration to its new iteration in
the target program. The latency of a schedule, λ(θ), is the number of steps before completion.
Its bounded by the longest dependence path: λ(θ) ≥ λ∗(→). When λ(θ) = λ∗(→), the schedule
is said to be free or optimal. In the polyhedral model, schedules are affine mappings and may
be derived at compile-time. In particular, the greedy algorithm [6] produces an asymptotically
optimal schedule [4] – asymptotically optimal ≡ when structure parameters are big enough –
and will be used in this report to produce an affine “nearly ASAP” schedule.

3 Our compilation algorithm

Our goal is to derive the red and green frontiers `red and `green and the statement-wise predi-

cates below red frontier(S,~i) and below green frontier(S,~i) to check whether a frontier has been
reached by an operation (S,~i). To do so, we need to compute, in the following order:

1. βred(S,~i), the bottom level from the last operation, assuming GPU latencies δred – called
red bottom-level.

2. πred(`) = card{x | βred(x) = `}, the number of operations running concurrently at red
bottom-level `.

3. `red = min�{` | πred(`) ≥ #GPU}, the red frontier. There is no way to automate this
statically; it is computed from πred(`) at runtime by enumerating the first values of `.
Details are given in Algorithm 2. Hence, `red is considered as an input parameter in the
next steps.

4. βgreen(`red, S,~i), the bottom level from the red frontier, assuming average CPU/GPU la-
tencies δgreen – called green bottom-level.

5. πgreen(`red, `), the number of operations above the red frontier running concurrently at green
bottom-level `, πgreen(`red, `) = card{x | βgreen(x) = ` ∧ βred(x)� `red}

6. `green(`red) = min�{` | πgreen(`red, `) ≥ #CPU + #GPU}, the green frontier. Again, this
is compute at runtime, once `red is known. Details are given in Algorithm 2.

RR n° 9315



6 Alias & Thibault & Gonnord

Except steps 3 and 6 (computing the final red and green frontiers), all these steps are computed
at compile-time by the Algorithm 1 described in Section 3.1. Then, Section 3.2 describes the
Algorithm 2 to generate the code computing the red and green frontiers at runtime and defining
the final predicates below red frontier(S,~i) and below green frontier(S,~i).

3.1 Bottom-levels and parallelism volume

Algorithm 1 computes the bottom levels βred, βgreen and the parallelism volume πred, πgreen from
the polyhedral dependence graph → and the dependence delays δred (GPU) and δgreen (average
CPU/GPU). By definition, a bottom-level is obtained by scheduling with an asap strategy
(asap scheduling) the reverse dependence graph →−1. Reverting a dependence graph is direct:
it suffices to swap the source and the target operations (Step 1). The polyhedral counterpart of
asap scheduling is the greedy scheduling algorithm [6] described in Section 2.

Red part It suffices to feed the greedy scheduling algorithm with the reverted dependences
→red and the GPU delays δred = δgpu to obtain βred (Step 2). Here, with δgpu(S) = 1 and
δgpu(T ) = δgpu(U) = 2, we obtain: βred(S, i) = 4N − 2i− 2, βred(T, i, j) = 4N − 2(i+ j)− 4 and
βred(U, i) = 4N − 4i − 4. We point out that we obtain a monodimensional mapping, since the
free latency is linear: λ∗(→) = 4N . However, when λ∗(→) is more than linear (e.g. O(N2)),
we get a multidimensional bottom-level. Our algorithm does not make any assumption on the
dimension of the bottom-level, and is thus general enough to handle this case.

Then, we compute πred(`), the number of operations running concurrently at bottom-level
`, πred(`) = card{x | βred(x) = `} (Step 5). Writing FS(`) the instances of statement S at
bottom-level `, FS(`) = {~i | βred(S,~i) = ` ∧~i ∈ DS}, we have:

πred(`) =
∑

S cardFS(`) (1)

For each statement S, FS(`) is an integer polyhedron parametrized by ` (and the program
parameters, here N), whose volume cardFS(`) might be computed with [3]. The result is a
piecewise Ehrhart polynomial:

cardFcopy(`) = [1 0]` ∀2N ≤ ` ≤ 4N − 2

cardFgemm(`) =

{
[0 0 1

2 0]` + [ 14 0]`` ∀2 ≤ ` ≤ 2N − 2
[−1 0 − 1

2 0]` + [− 1
4 0]``+ [1 0]`N ∀2N − 2 < ` ≤ 4N − 6

cardFtrsm(`) = [1 0 0 0]` ∀0 ≤ ` ≤ 4N − 4

The notation [a0 . . . an−1]` is called a periodic number. It is interpreted as a` mod n, the coefficient
selected rotates depending on `. Likewise, the final summation πred(`) is a piecewise Ehrhart
polynomial obtained by separating the pieces common to each mapping. There is no way to
compute statically the red frontier `red = min�{` | πred(`) ≥ #GPU}. Even though, it is much
more cheaper and easier to compute it dynamically, simply by enumerating the red bottom levels
increasingly. Again, the details are given in the Algorithm 2 described in the next section.

Green part The green bottom-level is computed from the red frontier `red, which is only
known at runtime. Hence, we have to keep `red as a parameter and let all the intermediate
results depend on it. Step 3 substracts from the original dependence graph → the operations
below the red frontier. Then, the green bottom-level is computed from this new dependence graph
with average CPU/GPU latencies δgreen (step 4). Here, we obtain the mapping βgreen(`red, S, i) =
12N−6i−3`red−9 and βgreen(`red, T, i, j) = 12N−6(i+j)−3`red−15. Finally, step 6 computes
the parallelism volume similarly to step 5. Again, the obtained mapping, πgreen, depends of the
red frontier `red.

Inria
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3.2 Code generation: finding red and green frontiers

The final code is generated with the Algorithm 2. The red frontier is computed at runtime with
the function red frontier (lines 2 to 10). The domain rangeβred is a general Presburger set. We
propose to iterate on an integral approximation using [8], then to guarding the test with the
actual expression of rangeβred (line 5, which could be long). In particular, we generate the code
to evaluate a general piecewise Ehrhart polynomial. Once the red frontier is known (line 34),
the green frontier can be computed similarly (line 35). The predicate to check whether a frontier

has been reached by an operation (S,~i) is simply βred(S,~i)
�
= `red for the red frontier (lines 22 to

24) and βgreen(`red)(S,~i)
�
= `green for the green frontier (lines 27 to 29) Here, we obtain `red = 8

and `green = 7, the red and green frontiers are depicted on figure 1.

Algorithm 1: Compute the bottom-level (green and red) and the related parallelism

Input : A program, represented as a polyhedral dependence graph → and the dependence
delays δred (GPU) and δgreen (average CPU/GPU).

Output: The bottom-levels βred, βgreen and the related parallelism level πred, πgreen

/* βred */

1 →red := {(y, x) | x→ y};
2 βred := greedy(→red, δred);
/* βgreen */

3 →green (`red) := →red ∩{(x, y) | βred(x)� `red ∧ βred(y)� `red};
4 βgreen(`red) := greedy(→green (`red), δgreen);
/* πred, πgreen */

5 πred(`) := card{x | βred(x) = `};
6 πgreen(`red, `) := card{x | βgreen(`red)(x) = `};

4 Conclusion

In this report, we have described a compilation-centric scheduling strategy. We propose a com-
pilation algorithm to split the tasks in three parts, whose properties are intended to guide
the runtime scheduling decisions. The compiler is available and may be tried online at http:

//foobar.ens-lyon.fr/kut. In particular, we show how the polyhedral model may provide a
precious help to compute tricky scheduling (bottom-level) and parallelism (parallel volume) in-
formations. The compiler has been applied successfully to 5 HPC kernels (Forward substituion,
cholesky factorization, LU and LQ decomposition). The results may be obtained with the online
demonstrator. The next step is to connect this compiler to the scheduler. In the future, we plan
to refine the compilation scheme to preallocate the processing units and to limit the memory
footprint.

RR n° 9315
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8 Alias & Thibault & Gonnord

Algorithm 2: Code generation

Input : The bottom-levels βred, βgreen and the related parallelism level πred, πgreen
Output: The target C program with bottom-level predicates

1 Emit
2 function red frontier()
3 begin
4 foreach ` ∈ rangeβred, increasing do
5 if πred(`) ≥ #gpu then
6 return `;
7 end

8 end
9 Error(“red level not found”);

10 end
11

12 function green frontier(`red)
13 begin
14 foreach ` ∈ rangeβgreen(`red), increasing do
15 if πgreen(`red, `) ≥ #cpu+ #gpu then
16 return `;
17 end

18 end
19 Error(“green level not found”);

20 end
21

22 function below red frontier(S,~i, `red)
23 begin

24 return βred(S,~i)
�
= `red;

25 end
26

27 function below green frontier(S,~i, `red, `green)
28 begin

29 return βgreen(`red)(S,~i)
�
= `green;

30 end
31

32 function main()
33 begin
34 `red := red frontier();
35 `green := green frontier(`red);
36 . . .

37 end

38 end

Inria
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Annex – kut input syntax

Our compiler, kut, is available and may be tried online at http://foobar.ens-lyon.fr/kut.
kut inputs a C program with a single function annotated with pragmas:

i n t N;

void k e r n e l t r i s o l v ( )
{

i n t i , j ;

//INPUTS
i n t ** L ;
i n t * x ;
i n t * b ;

#pragma beg in scop
#pragma re sou r c e [NCPUS ] [NGPUS]

f o r ( i = 0 ; i < N; i++)
{

#pragma la t ency [COPY CPU ] [COPY GPU]
x [ i ] = b [ i ] ;
f o r ( j = 0 ; j < i ; j++)

#pragma la t ency [GEMMCPU] [GEMMGPU]
x [ i ] = x [ i ] − L [ i ] [ j ] * x [ j ] ;

#pragma la t ency [TRSM CPU ] [TRSM GPU]
x [ i ] = x [ i ] / L [ i ] [ i ] ;

}
#pragma end scop
}

kut uses the following pragmas:

� pragmas begin scop and end scop delimits the portion to be processed.

� pragma resource specifies the number of CPU/GPU in the target platform

� For each statement, pragma latency specifies (a model of) the latency on CPU/GPU. A
latency is always an integer, it does not depend on the input. At first glance, this may seem
rough. Typically a statement is a BLAS kernel, whose latency only depends on the input
size (matrix/vector dimension), not on input values. Since the size is always the same, this
model makes sense.

� Additional pragmas allow to specify multiple outputs (which happens often with BLAS
kernels). They are not detailed in this report.

RR n° 9315
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