L. M. Stewart, S. L. Dance, and N. K. Nichols, Data assimilation with correlated observation errors: experiments with a 1-D shallow water model, Tellus A, vol.65, p.706, 2013.

V. Chabot, M. Nodet, N. Papadakis, and A. Vidard, Accounting for observation errors in image data assimilation, vol.67, pp.4117-4119, 2015.
URL : https://hal.archives-ouvertes.fr/hal-00984508

M. A. Fowler, Data compression in the presence of observational error correlations, Tellus A Dyn. Meteorol. Oceanogr, vol.2020, pp.1-16

J. M. Tabeart, S. L. Dance, S. A. Haben, A. S. Lawless, N. K. Nichols et al., The conditioning of least-squares problems in variational data assimilation, Numer. Linear Algebra Appl, vol.25, pp.2165-2187, 2018.

J. M. Tabeart, S. L. Dance, A. S. Lawless, S. Migliorini, N. K. Nichols et al., The impact of using reconditioned correlated observation-error covariance matrices in the Met Office 1D-Var system, Q. J. R. Meteorol. Soc, vol.72, pp.22-41, 2020.

D. Simonin, J. A. Waller, S. P. Ballard, S. L. Dance, and N. K. Nichols, A pragmatic strategy for implementing spatially correlated observation errors in an operational system: An application to Doppler radial winds, Q. J. R. Meteorol. Soc, vol.145, pp.2772-2790, 2019.

O. Guillet, A. Weaver, X. Vasseur, Y. Michel, S. Gratton et al., Modelling spatially correlated observation errors in variational data assimilation using a diffusion operator on an unstructured mesh, Q. J. R. Meteorol. Soc, vol.145, pp.1947-1967, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02160404

M. Asch, M. Bocquet, and M. Nodet, Data Assimilation: Methods, Algorithms, and Applications, vol.11, 2016.

A. T. Weaver and P. Courtier, Correlation modelling on the sphere using a generalized diffusion equation, Q. J. R. Meteorol. Soc, vol.127, pp.1815-1846, 2001.

L. Berre and G. Desroziers, Filtering of Background Error Variances and Correlations by Local Spatial Averaging: A Review, Mon. Weather. Rev, vol.138, pp.3693-3720, 2010.

L. Stewart, S. Dance, and N. Nichols, Correlated observation errors in data assimilation, Int. J. Numer. Meth. Fluids, vol.56, pp.1521-1527, 2008.

N. Bormann, S. Saarinen, G. Kelly, and J. N. Thépaut, The spatial structure of observation errors in atmospheric motion vectors from geostationary satellite data, Mon. Weather. Rev, vol.131, pp.706-718, 2003.

F. Chevallier, Impact of correlated observation errors on inverted CO 2 surface fluxes from OCO measurements, Geophys. Res. Lett, vol.34, 2007.

S. Rainwater, C. H. Bishop, and W. F. Campbell, The benefits of correlated observation errors for small scales, Q. J. R. Meteorol. Soc, vol.141, pp.3439-3445, 2015.

K. Ide, P. Courtier, M. Ghil, and A. C. Lorenc, Unified Notation for Data Assimilation: Operational, Sequential and Variational, J. Meteorol. Soc. Jpn. Ser. II, vol.75, pp.181-189, 1997.

D. Chaver, M. Prieto, L. Pinuel, and F. Tirado, Parallel wavelet transform for large scale image processing, Proceedings 16th International Parallel and Distributed Processing Symposium, p.6, 2002.

C. Pires, R. Vautard, and O. Talagrand, On extending the limits of variational assimilation in nonlinear chaotic systems, by the authors. Licensee MDPI, vol.48, pp.96-121, 1996.