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Abstract  13 

Background: Microalgae are 10 to 20 times more productive than the current agricultural biodiesel 14 

producing oleaginous crops. However, they require larger energy supplies, so that their environmental 15 

impacts remain uncertain, as illustrated by the contradictory results in the literature. Besides, during 16 

most of the year, solar radiation is too high relative to the photosynthetic capacity of microalgae. This 17 

leads to photosaturation, photoinhibition, overheating and eventually induces mortality. Shadowing 18 

microalgae with solar panels would therefore be a promising solution for both increasing productivity 19 

during hotter periods and producing local electricity for the process. The main objective of this study 20 

is to measure, via LCA framework, the energy performance and environmental impact of microalgae 21 

biodiesel produced in a solar greenhouse, alternating optimal microalgae species and photovoltaic 22 

panel (PV) coverage. A mathematical model is simulated to investigate the microalgae productivity in 23 

raceways under meteorological conditions in Sophia Antipolis (south of France) at variable coverture 24 

percentages (0% to 90%) of CIGS solar panels on greenhouses constructed with low-emissivity (low-25 

E) glass.  26 
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Results: A trade-off must be met between electricity and biomass production, as a larger photovoltaic 27 

coverture would limit microalgae production. From an energetic point of view, the optimal 28 

configuration lies between 10% and 20% of PV coverage. Nevertheless, from an environmental point 29 

of view, the best option is 50% PV coverage. However, the difference between impact assessments 30 

obtained for 20% and 50% PV is negligible, while the NER is 48% higher for 20% PV than for 50% 31 

PV coverage. Hence, A 20% coverture of photovoltaic panels is the best scenario from an energetic 32 

and environmental point of view.  33 

Conclusions: In comparison with the cultivation of microalgae without PV, the use of photovoltaic 34 

panels triggers a synergetic effect, acting both as a source of electricity and in reducing climate 35 

change impacts. Considering an economic approach, low photovoltaic panel coverage would probably 36 

be more attractive. However, even with a 10% area of photovoltaic panels, the environmental 37 

footprint would already significantly decrease. It is expected that significant improvements in 38 

microalgae productivity or more advanced production processes should rapidly enhance these 39 

performances. 40 

Keywords: Biodiesel; Chlorococcum sp.; Desmodesmus sp.; Life cycle assessment; Raceway; 41 

Renewable energy. 42 
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Background 54 

 55 

Renewable liquid fuels are expected to play an essential role in reaching targets to replace petroleum-56 

derived transportation fuels with a viable alternative, and to contribute to the reduction of GHG 57 

emissions. Although biodiesel from oleaginous crops and bioethanol from sugarcane are being 58 

produced in increasing amounts as renewable liquid fuels, their production cannot sustainably address 59 

the demand [1]. Hence, alternative sources of biomass are required to supply this increasing demand. 60 

Microalgae-based oil is currently being considered as a promising alternative raw material for 61 

biodiesel [2].  62 

Microalgae are photosynthetic microorganisms that transform sunlight, water and carbon dioxide into 63 

chemical energy. This energy is stored as chemical bound energy, especially into lipids, carbohydrates 64 

and proteins. Oil extracted from microalgae species can then be converted into biodiesel [3]. In turn, 65 

biodiesel is a form of solar energy. Conventional agricultural oil crops are widely used to produce 66 

biodiesel; however, the oil fraction is very low (around 5% of total biomass basis) compared with 67 

certain species of microalgae whose oil content can exceed 60% of dry weight [1]. 68 

Microalgae has several advantages over land-based crops in terms of oil production: high biomass 69 

productivity, no competition with feed crops, possibility to uptake industrial sources of CO2 and 70 

reduced competition for land [2]. Microalgae has the possibility to grow on marginal land by using 71 

brackish or seawater avoiding its competition for resources with conventional agriculture. Their 72 

simple unicellular structure and high photosynthetic efficiency allow for a potentially higher oil yield 73 

per area than the best oilseed crops [4] and its culture do not require herbicides nor pesticides [5].  74 

Despite these advantages, microalgae-based fuels are still not widely produced, mainly due to their 75 

current cost of production [4]. Simultaneous algae biomass production and lipid accumulation is one 76 

of the main economic and technological bottlenecks [6]. Productive microalgae species and optimized 77 

culture conditions allowing for the production of strains with a simultaneously high growth rate and 78 

lipid content are necessary. The high cost and energy demand of harvesting diluted algae cells also 79 

remain a major challenge.  80 
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The use of microalgae for generating energy requires large-scale, low-cost production. This implies 81 

cheap, scalable reactor designs with high algal productivity.  Many different algal cultivation systems 82 

have been developed, which can be divided into two main categories, open and closed. Closed 83 

systems, consist of containers, tubes or transparent plastic bags of various sizes closed to the 84 

atmosphere [7], while open systems consist of natural or agitated artificial ponds and containers open 85 

to the atmosphere.  86 

To date, most commercial production have taken place in open ponds, thanks to their low cost and 87 

ease of construction and operation [7]. The most common technical design is the raceway pond: an 88 

oblong, looped pond mixed with a paddlewheel. However, some disadvantages of open systems have 89 

been detected, such as high evaporation rates, diffusion of CO2 to the atmosphere, contamination with 90 

competing species and low control of solar radiation and temperature [7]. Ponds enclosed in glass 91 

houses or plastic-covered greenhouses which allow a better control of the growth environment [8]. 92 

Climate control in greenhouses contributes to maintain a better-adapted temperature for growth and 93 

therefore enhances the productivity. In addition, it reduces water losses through evaporation as well as 94 

the risk of contamination by other algal species or grazers [9].  95 

Light and temperature influence algal biomass productivity and lipid cell content [10-12]. High 96 

irradiance and high temperature generate an increase in triglyceride synthesis, with a more saturated 97 

fatty acid composition compared to conditions at low irradiance and/or temperature [13]. Since light 98 

and temperature vary seasonally, these factors are crucial for learning the lipid composition and 99 

accumulation in outdoor cultivation systems. Microalgae species should be alternated during the year 100 

to best adapt to the season, and thus improve yearly production. Hence, the seasonal variation of lipid 101 

productivity results from several processes, which need to be accounted for in order to accurately 102 

estimate the algal oil yield 103 

Moreover, solar radiation is, for most of the year, too high relative to the photosynthetic capacity of 104 

microalgae, thus leading to photosaturation, photoinhibition, also leading to overwarming eventually 105 

significantly increasing mortality [9]. Shadowing the microalgae with solar panels therefore turns out 106 

to be a promising solution for both increasing productivity during hotter periods and producing local 107 

electricity for the process. Jez, Fierro [14] demonstrated an increase in economic competitiveness for 108 
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microalgae biofuels when photovoltaic panels were used as a source of electricity in the facility. It is 109 

also a noteworthy option for producing algal biofuel in remote areas (typically deserts) that are long-110 

distance or difficult access to the electric grid.  111 

Solar photovoltaic panels (PV) provide energy security, reduce medium temperature and avoid 112 

photoinhibition in microalgae cultures [15]. However, building PV also produces greenhouse gas 113 

emissions due to energy consumption during the manufacturing processes. Investment costs on PV 114 

technology are still relatively high [16] but they are constantly decreasing due to both technology 115 

improvements and increases in production scales [17]. The most common PV technology is 116 

Crystalline silicon (single-crystalline sc-Si and multi-crystalline mc-Si), followed by Cadmium-117 

Telluride (CdTe) and Copper Indium Gallium (di) Selenide (CIGS) [17]. Therefore, the viability of PV 118 

panels combined with biomass production strongly depends on the geographical location, on local 119 

sunlight radiation and on electricity costs. 120 

Coupling biomass production with photovoltaic electricity represents an ideal opportunity for 121 

significantly reducing environmental impacts and electrical demands for biodiesel production systems. 122 

Although this solution is technologically appealing, its sustainability can be questionable as there is a 123 

clear trade-off between electricity and biomass production, as a larger photovoltaic panels coverture 124 

would limit microalgae production. The large seasonal variations in biomass production alter the value 125 

chain as well as its environmental impacts.  Quantification of the environmental impacts of algal oil 126 

production is therefore necessary. Life cycle assessment (LCA) is a standardized tool that provides a 127 

quantitative and scientific analysis of the environmental impacts of products and their industrial 128 

systems [18]. The functional unit (FU) considered is 1 MJ of algal methyl ester (biodiesel), used in a 129 

conventional internal combustion automobile engine. The system boundary is defined as a set of 130 

criteria specifying which unit processes are part of a product system, while the life cycle inventory is a 131 

list of input and output components at each step of the production process [19]. 132 

The main objective of this study is to measure, via LCA framework, the energy performance and 133 

environmental impacts of microalgae-based biodiesel produced in a solar greenhouse, alternating 134 

optimal microalgae species and photovoltaic panel coverture percentages, to determine the optimal 135 

energetic environmental configuration. This prospective assessment is carried out with an eco-design 136 
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approach to tackle the main features of the system. In addition, four references cases complying with 137 

similar system boundaries and allocation approaches have been provided, only as benchmarking 138 

systems and not for purposes of comparative assertion. A mathematical model is simulated to 139 

investigate the microalgae productivity in raceways under meteorological conditions in Sophia 140 

Antipolis (south of France) at variable coverture percentages (0% to 90%) of CIGS solar panels on 141 

greenhouses. Biomass productivity and electricity production results are used as input in a process 142 

sequence of a virtual facility for biodiesel production over 145 ha, and thereafter, as input to a life 143 

cycle inventory implemented into SimaPro 8 software [20].  Three aspects of microalgae production 144 

were analyzed: potential environmental impacts, energy and carbon balance.  145 

 146 

Methods 147 

 148 

System description 149 

From a ‘pond to wheel” point of view, the scope of the system encompasses the production of 150 

biomass, process conversion and its combustion in a middle-sized car. The construction, dismantling 151 

and final disposal of the infrastructure and machinery were also included, as well as the production of 152 

chemicals and their transport. The process is divided into six main areas, also called sub-systems. 153 

Figure 1 illustrates the general schematic of the system boundaries and subsystems.  154 

Subsystem 1 considers raceway systems for microalgae biomass production coupled with upstream 155 

inoculum production operations. Subsystem 2 includes harvesting and dewatering steps, which help to 156 

increase the biomass solid content for processing through subsequent conversion operations to obtain 157 

biodiesel: oil extraction (Subsystem 3) and oil conversion (Subsystem 4). The design also includes the 158 

combustion of microalgae biodiesel (Subsystem 6) and photovoltaic electricity production (Subsystem 159 

5). The infrastructure construction and machinery production and dismantling are also considered.  160 

 161 

Figure 1 around here 162 

 163 
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The size of the facility is assessed for a total production area of 145 ha (including inoculum ponds and 164 

downstream processes). The overall site layout assumes that ponds are grouped into unit “modules” of 165 

about 5 ha (50 868 m2) each. Each module represents a standard greenhouse, constructed with low-166 

emissivity (low E) glass (KGlassTM from Pilkington: thickness=4 mm, transmittance=82%, density= 167 

10 kg·m-2, lifespan= 30 years) [21] for walls and roof, supported by a steel frame. Low E is an 168 

essential contributor to energy conservation, since it reflects energy back into the greenhouse, 169 

achieving much lower heat loss than ordinary glass [21], and eventually extending the production 170 

period. The greenhouse structure also includes a climate control system through ventilation. It allows 171 

for medium temperatures to be maintained close to the optimal growth temperature of the microalgae. 172 

The ventilation system consists in favoring air flow by opening and closing the windows (flow rates 173 

fixed to 50 m3·s-1·greenhouse-1 and 500 m3·s-1·greenhouse-1, windows are closed and open, 174 

respectively).  175 

The layout of the greenhouses within the overall facility footprint along with the pipelines and roads 176 

required for on-site circulation and transport of materials is detailed in the Additional material 2.1. 177 

The full facility contains 122 ha of biomass production raceways grouped into 24 individual 178 

greenhouses (including 2 for inoculum ponds) connected via a network of pipelines and roadways. 179 

The greenhouses form a uniform grid of four columns by six rows. The rows comprise the raceway 180 

pond modules as well as the inoculum ponds. The facility also includes a dewatering section, a 181 

nutrient and freshwater storage section, and algal biomass conversion sections. Roads with access to 182 

all modules are 2 m wide between columns and 2 m wide between rows. The module dimensions 183 

include spacing for piping, electricity and roads on the border for access to the ponds. The nutrient 184 

and freshwater storage section provides bulk storage for water and nutrient inputs, while biodiesel is 185 

stored in the esterification section.  186 

The production facility is located in Southern Europe (Sophia Antipolis - France, 43°36′56″N, 187 

7°03′18″E), close enough to the Mediterranean coast to allow access to seawater. The geographic 188 

location of facility has the highest impact on biomass productivity. The climatic conditions of the 189 

chosen location should allow for high biomass productivity throughout the year. The main factors 190 

affecting biomass productivity are the average annual irradiance level and temperature. Ideally, the 191 
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temperature should be around 25°C with minimum diurnal and seasonal variations [8]. Other 192 

considerations also have to be taken into account, such as humidity and rainfall, the possibility of 193 

storms and flood events and the presence of dust and other atmospheric pollutants [8]. Meteorological 194 

data were collected at INRA PACA, Sophia Antipolis in 2015. These data were used to simulate the 195 

dynamics of temperature and light in the cultivation medium, for the various tested designs. 196 

Access to carbon dioxide and water of suitable quality are important. The algae culture and its 197 

transformation should both take place at the same site. The facility is assumed to be established on an 198 

initially shrub land and is modelled as an industrial area with vegetation.  199 

  200 

Co-product consideration in the assessment 201 

If more than one product is delivered from the system processes, all system flows must be weighted 202 

and divided proportionally to the energy content of the products, and to the mass or market value. 203 

This division is called allocation. Another approach consists in substitution, which takes into account 204 

all products that can be replaced by the co-products; the system therefore receives credits for having 205 

cut down on the use of the initial product. The choice of performing co-product management 206 

approaches is a fundamental step in LCA and can lead to completely different results [22]. Several co-207 

products can be generated in the system during three steps: i) oil extraction, ii) transesterification and 208 

iii) photovoltaic shading. The oil extraction process produces high value lipids (algal oil) and residual 209 

dry biomass (oilcake). Transesterification yields glycerine as a co-product while photovoltaic panels 210 

obviously produce electricity. 211 

The impacts of co-products are based on an allocation approach according to their energy content 212 

[23], which is measured by their lower heating values (LHV). The co-products include surplus 213 

electricity, extraction residue (oilcake) and glycerine. Oilcake and glycerine have an energetic content  214 

(Table 1) and can be valorised as a source of energy, animal feed for oilcake and as heat source for 215 

glycerine [9].  Crude oil and oil cake differ in their carbon and energetic content, similarly to 216 

glycerine and biodiesel.  217 

Table 1. Lower heating value (LHV) for co-products 218 

Compound Heating value (MJ/kg) Ref. 
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Biodiesel  37.2 [9]  

Algal oil 38.3  [3]  

Oil cake 0.77* [9]  

Glycerine 18.1 [9]  

* Composed by 95% water, 5% biomass (content around 70% carbohydrates and 30% protein), LHV based in composition.  219 

 220 

A three-stage allocation scheme is carried out: First the impacts on electricity production, from a 221 

photovoltaic system (Subsystem-5) to electricity injected into the facility and exported electricity 222 

(surplus electricity). Secondly, the impacts incurred due to the production of oilcake and algae oil in 223 

the oil extraction subsystem (Subsystem-3) and thirdly the apportioned impacts of glycerine 224 

production in the oil conversion subsystem (subsystem-4). Table 2 presents the average annual 225 

allocations for different photovoltaic coverture ratios and consumption/production of electricity (see 226 

seasonal variations in the Additional file 8). 227 

 228 

Table 2. Allocation factors used for biodiesel and co-products 229 

  Percentage of coverture of photovoltaic panels 

  0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 

Allocation S5 

 

Electricity from 

PV panels into 

facility 

0% 84% 55% 36% 26% 20% 17% 14% 11% 9% 

Electricity 

exported (surplus) 
0% 16% 45% 64% 74% 80% 83% 86% 89% 91% 

Allocation S3 

 

Algal oil 65% 65% 64% 64% 64% 63% 63% 63% 63% 63% 

Oilcake 35% 35% 36% 36% 36% 37% 37% 37% 37% 37% 

Allocation S4 

 

Biodiesel 91% 91% 91% 91% 91% 91% 91% 91% 91% 91% 

Glycerine 9% 9% 9% 9% 9% 9% 9% 9% 9% 9% 

 230 

Substitution is also proposed as an alternative allocation method. Produced oilcake can be employed 231 

as animal feed in the same manner as soymeal can be used as a co-product from biodiesel. The protein 232 

content of soymeal is 48% [24], while it is around 30% in oilcake. Thus, 1 kg oilcake from algae 233 

replaces 0.6 kg of soybean for animal feed. The credits for not having to produce 0.6 kg soymeal for 234 

every kg algae oilcake produced are subtracted from the total upstream processes and emissions 235 

associated with the algal biodiesel production.  Algal oilcake co-product replaces the soymeal 236 

production from a soybean crude oil production plant located in United States. Glycerine and surplus 237 

electricity co-products are respectively assumed to replace petroleum glycerine from an 238 

epichlorohydrine European plant and electricity production from a European mix, respectively. 239 

 240 

Microalgae specification 241 
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The analysis considers Chlorococcum sp. and Desmodesmus sp, since both species can achieve 242 

efficient trade-off between growth rate, lipid accumulation and ease of cultivation [25, 26]. Data are 243 

not consistent enough in the literature to accurately describe the variations in lipid profiles due to 244 

seasonal light and temperature variations. As a consequence, a constant TAG rate for each species is 245 

assumed according to nitrogen starvation conditions [27]. Additional file 1 provides general 246 

information on the biomass as well as compositional details. The analysis considers a 47% and 53.8% 247 

lipid content (of dry basis content biomass), for Chlorococcum sp. and Desmodesmus sp., 248 

respectively. 249 

 250 

Cultivation  251 

Microalgae cultivation in a module consists of 5 raceways of 8348 m2 (2504.5 m3 total volume) mixed 252 

with a paddlewheel (more information in Additional file 2.2). The 5 raceways are grouped into 1 253 

greenhouse; each greenhouse contains feed and harvest pipes between individual raceways and 254 

common headers, with the harvest lines drawn off raceways controlled by slide gates and valves and 255 

delivered to primary de-watering (in –ground gravity settlers). Paddlewheel mixing is considered in 256 

each raceway, which may be viewed as a standard basis for commercial scale facilities [28] (more 257 

information in Additional file 2.3). The inoculum generally represents around 10% of the operating 258 

volume of the raceway. The inoculum grows in the same medium as the production raceway (see 259 

more information in Additional file 2.4). It is produced after an exponential phase prior to 260 

inoculation, within a small-sized raceway [29].  261 

The process begins with algal biomass growth and harvesting from the raceways. Biomass is 262 

harvested at a seasonally variable culture density for processing through primary settling. The 263 

plumbing is a critical factor as it covers a large land footprint. Each pipeline is equipped with a valve 264 

for opening or closing the circulation of water, nutrients and/or inoculum in each raceway and 265 

inoculum pond. The piping and pumping systems involve five independent pipelines, detailed in the 266 

Additional file 3.1.  267 

The residence time is 10 days, harvesting is performed once a day for each raceway, representing 10% 268 

of the total volume (volume extracted by raceway is 218.4 m3·d-1) [1]. The raceway is fed with fresh 269 
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medium at a specified flow rate. The feed point is typically located just before the paddlewheel. 270 

During feeding, the algal culture is either withdrawn or harvested from the raceway at a rate equal to 271 

the feed flow rate. Feeding and harvesting only occur during daylight and stop at night; otherwise the 272 

biomass could flush out the raceway overnight.  273 

CO2 is supplied from a nearby fossil fuel power plant by direct injection of flue gas. Distribution is 274 

ensured thanks to a blower system, under moderate pressure using sufficiently thick HDPE pipes. 275 

Carbon requirements depend on biomass growth rate and concentration. The efficiency of the 276 

microalgae inorganic carbon uptake was assumed to be 75% [30], while, the percentage of C in the 277 

biomass can vary according to the microalgae species (see Additional file 6.2).  278 

In addition to carbon dioxide, algal growth requires nitrogen (N) and phosphorous (P) as principal 279 

nutrients [31]. Nutrient requirements for the inoculum ponds and raceways are assumed to be met 280 

using diammonium phosphate (DAP, 18% N, 20.2% P) for phosphorous requirements, and 281 

ammonium nitrate (NH4NO3, 35%N) for nitrogen requirements at 20% w/w each. Percentages of N 282 

and P in biomass vary depending on the species of microalgae. In the case of N, a fraction of the 283 

element is also provided by DAP. 284 

The fertilizer requirements in the inoculum ponds and raceways were calculated according to the 285 

species. For Chlorococcum sp. the nitrogen and phosphorous fertilizers are 0.0093 kg NH4NO3/kg 286 

algae biomass DW (0.026 kg N/kg algae biomass dry weight) and 0.0030 kg DAP/kg algae biomass 287 

DW (0.0053 kg P/ kg algae biomass dry weight). For Desmodesmus sp. 0.0066 kg NH4NO3/kg algae 288 

biomass DW (0.018 kg N/kg algae biomass dry weight) was assumed and 0.0022 kg DAP/kg algae 289 

biomass DW (0.0038 kg P/ kg algae biomass dry weight). These values (0.026 and 0.018 kg N/kg 290 

algae biomass dry weight), for Chlorococcum sp. and Desmodesmus sp., respectively are similar to 291 

those reported by Collet, Lardon [9] for biodiesel production using Nannochloropsis occulata at 292 

nitrogen starvation (0.04 kg N/kg algae biomass dry weight). The areal fertilizer requirements in the 293 

raceways fluctuate according to the biomass productivity, and thus to the season (detailed in 294 

Additional file 6.1).  295 

Whatever the location, the freshwater supply is insufficient to support any substantial scale production 296 

of algal fuels anywhere. The supply in brackish water is also relatively limited. Therefore, the use of 297 
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seawater and marine algae would be a convenient option for producing algal fuels. Unfortunately, the 298 

use of seawater for algae culture, does not totally eliminate the need for freshwater. Freshwater is still 299 

necessary for compensating evaporative losses and the consequent increase in culture salinity. 300 

Evaporative loss depends on the local climatic conditions, particularly on the irradiance levels, air 301 

temperature, wind velocity and absolute humidity [8]. Water is transported to the facility by pipeline 302 

from a nearby local marine water resource, while freshwater is originates outside of the facility 303 

boundaries. The transport of water used in the facility has been ignored in the study. Seawater is used 304 

in the cultivation and inoculum ponds, while freshwater is used for fertilizer dilution and for 305 

compensating water losses (mainly via pond evaporation). The blowdown volume was assumed to be 306 

equal to the water requirement. For inoculum ponds, there is no blowdown; however dilution water in 307 

the fertilizer varies according to biomass productivity, while the evaporation volume is seasonally 308 

variable (see Additional file 6.1).  309 

 310 

Pond emissions 311 

The volatile compounds emitted by raceways and inoculum ponds are CO2, N2O and NH3. These 312 

emissions highly depend on operating conditions, such as dissolved oxygen concentration, pH, mixing 313 

rate, gas transfer coefficient, nitrate concentrations, etc. [9]. Further experimental data are required to 314 

provide reliable emission factors. Nevertheless, due to lack of information, an average loss emission 315 

for each compound was inferred. These are correlated with other LCA studies [9]. 316 

The efficiency of the CO2 injection system is low in raceways, resulting in re-emission of a large 317 

fraction of flue gas. A 25% emission of injected CO2 was considered (250 g CO2 kg-1 CO2 injected). 318 

Nitrogen emissions (N2O and NH3) to the environment have been scarcely taken into account in the 319 

literature, even though these emissions present harmful effects (causing, amongst others, acidification, 320 

eutrophication and global warming). Indeed, N2O is a greenhouse gas with a much higher GWP 321 

(Global Warming Potential) than CO2 (298 kg CO2eq·kg-1 at a temporal horizon of 100 years). 322 

Especially during nighttime anoxic conditions, microalgae cultures have proved to generate both 323 

direct and indirect N2O emissions.  Direct N2O emissions are related to the denitrification process, 324 

which reduces nitrate (NO3
-) to nitrogen gas through a multistep process, with N2O as an intermediate 325 
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product [32]. Complete denitrification involves the production and consumption of N2O which can be 326 

partially released into the atmosphere. N2O emissions represent 0.003% of the nitrogen fertilizer 327 

applied to a fully oxic culture (raceway case) and 0.4% for a microalgae culture that is anoxic during 328 

dark periods (photobioreactor case) [32]. In the present study a 0.003% emission (0.0298 g N2O·kg-1 329 

N) was considered.  330 

Indirect N2O emissions are the long-term fate of nitrogen fertilizers [33]. Indeed, by providing 331 

substrate for microbial nitrification and denitrification after application in the soil, fertilizers indirectly 332 

generate N2O which then volatilizes [33]. In the present study, an emission of 1.6 g N2O·kg-1 N [33] 333 

and 120 g NH3·kg-1 N was considered [9].  334 

 335 

Algae harvesting 336 

Harvesting refers to the removal of algal biomass from the pond, as well as, occasionally, to the 337 

primary concentration step. Dewatering is a secondary concentration step [28]. As algal biomass 338 

dewatering technologies are still under investigation and development, the best strategy is still  339 

difficult to assess. The present model is based on the technology analysed by NREL [28], offering an 340 

advantageous trade-off between dewatering performance (power demand, retention efficiency, etc.) 341 

and cost (capital and operating costs). Furthermore, this process avoids the addition of chemicals (i.e. 342 

flocculants or metal ions), thus maintaining biomass purity for downstream flexibility.  343 

Biomass is harvested from the ponds and concentrated through three dewatering steps comprising 344 

gravity settlers, membranes and centrifugation to a final concentration of 200 g·L-1. Clarified water 345 

from each step is recycled towards the cultivation raceways, excluding a small fraction that is 346 

removed as blowdown to mitigate the build-up of salts and other inorganics.  347 

The dewatering process begins with the primary settling ponds, for which energy demand is low since 348 

only pumps are required. The settler trenches have a trapezoidal profile with a volume of 364.1 m3 (50 349 

m in length, 1.7 m deep, 8.5 m wide at the top and 0.34 m wide in the bottom). There are a total of 22 350 

settler ponds with a 4 h residence time. The biomass is removed from these trenches by positive 351 

displacement pumps (assuming a negligible energy demand). The material harvested from gravity 352 

settling is transferred to membranes, while clarified effluent is redirected back towards the raceways 353 
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through feed pipes, along with additional recycled water from membranes and centrifuges through 3-354 

inch diameter DI pipelines. The settler ponds concentrate the algal biomass from 0.5 to 10 kg·m-3, 355 

with 90% efficiency (i.e. 10% of the biomass returns to the ponds in the clarified water stream) and 356 

reduce the volume of water by a factor of 20.  357 

The second dewatering process uses hollow fibre membranes. This technology was selected for its 358 

favourable performance and costs at a commercial scales, such as high reliability, direct scalability 359 

and simple thermal, mechanical and chemical management [28]. Maintenance and fouling are not 360 

problematic or costly, based on a daily cleaning protocol for the membrane modules. The hollow fibre 361 

membrane units received biomass at 10 kg·m-3 from the settling ponds and concentrate the biomass to 362 

130 kg·m-3, with an efficiency of biomass retention close to 100% (assumed here at 99.5%).  363 

Centrifugation takes place after the hollow fibre membranes, during the final dewatering step. It leads 364 

to a high biomass concentration [28]. The centrifuge concentrates biomass between 130 kg/m3 and 365 

200 kg/m3, with a dewatering efficiency of 97% (3% of biomass is removed with the clarified water). 366 

The 99.8% of the total water inlet in the subsystem is dewatered during all three steps. Table 3 367 

summarizes the parameters of the selected technologies. 368 

 369 

Table 3.  Various parameters considered for study. 370 
Unit process Assumptions Ref. 

Algae 

cultivation 

Algae growth 

Algae strains: Chlorococcum sp. and Desmodesmus F2 sp: 47% and 

53.8% lipid content for Chlorococcum sp. and Desmodesmus sp.  

Velocity culture: 0.3 m·s-1 for raceways and 0.25 m·s-1 for inoculum 

ponds.  

HRT: 10 days. Raceways: 110 units of 310 m long x 30 m weight x 

0.3 m height (2,184.3 m3 volume medium). Inoculum ponds: 40 units 

of raceways of 160 m long x 15 m weight x 0.35 m height (656 m3 

volume medium).    

Facility: 145 ha area. Operating time facility: 330 days ·year-1 (90%).  

Paddlewheels: 0.11 W/m2, time functioning: 12 h·d-1. One unit per 

raceways and inoculum pond. 

Blower system: 22.2 Wh·kg-1 CO2, time functioning: 12 h·d-1. One 

unit per raceways and inoculum pond. 14% v/v CO2 concentration in 

flue gas. 

Water loss (evaporation): daily variable (ranging between 0.01 and 
0.34 cm·d-1). 

Inoculum input Pumping system: Power: 10 kW, 22 units, time 

functioning: 0.8 h h·d-1 . Electricity consumption: around 0.07 kWh·m-3 

Nutrients/water loss pumping system: 24 units (22 for raceways and 

2 for inoculum ponds), time functioning: 12 h·d-1 . Electricity 

consumption: negligible. 

[26]; [25]; [34]; [35]; 

[36] 

Algae 
Harvesting (De-

Settlers ponds: 22 units, Energy demand: negligible, Efficiency: 90%, 
Outlet concentration: 10 g/L. Capacity: 364.1 m3.  Residence time: 4 

[28]; [36] 
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watering) hours.  

Membranes: 22 units, Power: 2 kW, Energy demand (variable): 0.03 

to 0.2 kWh·m-3, Efficiency: 99.5%, Outlet concentration: 130 g/L. 

Capacity: 2.3 m3·h-1, Time functioning: 12 h·d-1. 

Centrifuges: 22 units, Power: 6 kW, Energy demand (variable): 0.9 to 

5.05 kWh·m-3, Efficiency: 97%, Outlet concentration: 200 g/L. Time 

functioning: 12 h·d-1. 

Overall harvesting process: 20% wt outlet concentration. Efficiency: 

86.9%. Percentage of water volume reduced: 99.9%. 

Harvesting Pumping system: 22 units, Power: 7.7 kW, Energy 

demand: 0.08 kWh·m-3, time functioning: 12 h/day. 

Recirculation pumping system: 22 units, Power: 7.7 kW, Energy 

demand: 0.08 kWh·m-3, time functioning: 12 h/day. 

Oil extraction Sonication: 2 units, Power: 16 kW, Energy demand: 0.013 kWh·kg-1 

algae-DW, Capacity: 12 m3·h-1, Time functioning (variable): 1.5 to 8.8 

h/day. 

Static mixer: 1 unit, Power: 6 kW, Energy demand: negligible, 

Efficiency lipid extraction: 90%, Capacity:  12 m3·h-1, time 

functioning: 1.5 to 8.8 h/day. Hexane input: 10:1 mass ratio, 0.05% 

hexane losses. 

Biomass solvent separator: 1 unit, Power: 6 kW, Energy demand: 
0.005 kWh·kg-1 algae-DW, Efficiency: 99.9%. Capacity: 5.7 m3·h-1 

time functioning (variable): 3 to 19 h/day. 

Distillation column: 2 units, Energy demand (variable): 0.09 to 0.55 

kWh·kg-1 oil, Capacity: 15.2 m3·h-1 time functioning (variable): 2.7 to 

16 h/day. 

[30] 

Oil conversion Transesterification reactor: 1 unit, Power: 15 kW, Energy demand: 

0.03 kWh·kg-1biodiesel, Time functioning (variable): 2.7 to 16 h/day. 
Chemical consumption: methanol 1.1 kg·kg-1 biodiesel, Sodium 

methoxide 0.11 kg·kg-1 biodiesel, HCl 0.014 kg·kg-1 biodiesel, NaOH 

0.008 kg·kg-1 biodiesel, Natural gas 0.063 L·kg-1 biodiesel. 

[37] 

 371 

Algae transformation 372 

The extraction step involves addition of hexane that dissolves the oil and strips it from the algae. The 373 

solvent recovery phase recovers the hexane from the oil. The current model is based on the oil 374 

extraction processes documented by Rogers, Rosemberg [30] for a biodiesel plant production at 375 

commercial scale. Yield extraction, hexane volume and associated heat and electricity consumptions 376 

have been adapted to match the data of this analysis. A 16 kW sonicator was used for cell disruption, 377 

processing up to 12 m3/h. The lipid extraction was then performed on the 20% wt slurry in a static 378 

mixer. The static mixer combines the solvent and algal biomass during lipid extraction. A solvent to 379 

algae-DW mass ratio of 10:1 was assumed, with an 80% extraction efficiency and without any 380 

electricity requirement. A daily solvent loss of 0.005% was assumed. In order to separate the oil cake 381 

(biomass + water) from the hexane-oil mix, the current model uses a biomass-solvent separator. This 382 

separator operates at 6 kW, processing 5.7 m3·h-1. In order to recover the solvent, a distillation column 383 

with a maximal capacity of 15.2 m3·h-1 was used. The recovered hexane is re-circulated towards the 384 
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static mixer and is mixed with the new hexane flux to compensate for hexane emission losses, while 385 

the oil continues onwards to the next transesterification subsystem. 386 

Algal oil with higher phospholipid contents are less suitable for biofuel, since phosphorous reduces 387 

the efficiency of the alkaline catalysts used in the transesterification process [37]. Phospholipids are of 388 

primary concern within the polar lipid fraction for their propensity to form gums and deactivate 389 

catalysts. For this reason, it is prudent to include a lipid clean up step to remove these impurities. The 390 

following two assumptions were made for the oil obtained from the distillation column: the 391 

phospholipid and free fatty acid contents are negligible in the algal oil [37], and the oil contains  392 

traces of water and hexane [38]. 393 

Transesterification is assumed for the conversion of algal oil into biodiesel. The current model is 394 

inspired from the process proposed by Haas, McAloon [37], for a production of 37854.1 m3 395 

biodiesel·y-1 (52158.8 ton·y-1). This design was based on the use of crude, degummed soybean oil 396 

with negligible phospholipid and free fatty acid content as feedstock. The process involves three 397 

processing sections: i) transesterification unit where the vegetable oil is subjected to chemical 398 

transesterification to produce fatty acid methyl esters (biodiesel) and co-product glycerol, ii) a 399 

biodiesel purification section where the methyl esters were refined to meet biodiesel specifications 400 

and iii) a glycerol recovery section. The final product obtained is biodiesel with a lower than 0.005% 401 

(v/v) water content. 402 

 403 

Combustion emissions 404 

The emissions associated with combustion are assumed to be equivalent to rapeseed-based biodiesel 405 

emissions. The emission factors refer to a EURO-3 middle-sized vehicle. They are extracted from the 406 

Ecoinvent database [39], assuming a fuel consumption of 0.42 km per MJ of biodiesel. Conventional 407 

diesel engines are considered to have the same consumption (see combustion emissions factors in 408 

Additional file 9). 409 

 410 

Photovoltaic system 411 
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The core of a photovoltaic system is the solar cells converting light energy into electricity. Electricity 412 

then  generates an electromotive force when the radiation reaches a semiconductor plate presenting a 413 

potential gap [40]. Copper indium gallium diselenide (Cu(In,Ga)Se2, CIGS) is a mixed alloy of copper 414 

indium diselenide (CuInSe2,CIS) and copper gallium diselenide (CuGaSe2,CGS) semiconductors [41]. 415 

In comparison to traditional silicon-based technologies, CIGS is appealing because of its competitive 416 

cell efficiency and performance in diverse environments [42]. Furthermore, although current 417 

efficiencies for CIGS cells average 14%, technological advancements presently contribute to the 418 

improvement of cell efficiencies with records up to 23% [42], potentially rendering CIGS increasingly 419 

competitive compared with current silicone-based cells. This study considers a conservative 420 

efficiency of 15% and a 30-year lifespan for 1 m2 area module. The PV production inventory 421 

considers mass and energy flows over the whole production process starting from material extraction 422 

to the final panel assemblage, use and end of life. The CIGS technology data from Wurth Solar 423 

(Germany) was used [43]. Different layers of CIGS thin film cells are necessary. The required 424 

sequence layers are deposited in a number of subsequent production steps. The active layer consists of 425 

a specific copper-indium-selenium configuration deposited by a vaporization process directly over a 426 

large area of window glass (substrate material). It is usually airtight sealed with a second glass plate. 427 

The modules have a size of 1.2 m by 0.6 m and a weight of 12.6 kg [43]. In Additional file 16, the 428 

monthly electricity production is plotted as a function of the percentage coverture of photovoltaic.  429 

These data have been obtained from the Sophia Antipolis meteorological database (France).  430 

 431 

Energy assessment 432 

A cradle-to-gate life cycle energy analysis was performed, including the production of raw materials 433 

and the production process of biodiesel. The Fossil Energy Ratio (FER) and Net Energy Ratio (NER) 434 

were estimated according to the input and output energy for 1 MJ of biodiesel. There are no 435 

allocations in energy balance. FER is defined as:  436 

 437 

𝐹𝐸𝑅 =
𝑅𝑒𝑛𝑒𝑤𝑎𝑏𝑙𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑢𝑡𝑝𝑢𝑡  

𝑓𝑜𝑠𝑠𝑖𝑙 𝑒𝑛𝑒𝑟𝑔𝑦 𝑖𝑛𝑝𝑢𝑡
=  

𝐿𝐻𝑉

𝐶𝐸𝐷
  438 
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 439 

The FER only included fossil (non-renewable) energy in the denominator. NER includes total energy 440 

input in the denominator, including renewable sources of energy, such as wind and solar. NER, rather 441 

than FER, is used as an indicator of energy efficiency [44].  442 

LHV (low heating value) is the life cycle energy output (MJ), determined using the following 443 

equation: 444 

 445 

𝐿𝐻𝑉 = 𝐸𝑃𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 + 𝐸𝑃𝑜𝑖𝑙𝑐𝑎𝑘𝑒 + 𝐸𝑃𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑛 + 𝐸𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 446 

 447 

EP represents the Energy for each co-product (MJ), each being defined as: 448 

 449 

𝐸𝑃𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙 = 1 (Functional unit) 450 

 451 

𝐸𝑃𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑛𝑒 = 𝑀𝑎𝑠𝑠 𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑛𝑒 (
𝑘𝑔

𝑀𝐽 𝑏𝑖𝑜𝑑𝑖𝑒𝑠𝑒𝑙
) ∙ 𝐿𝐻𝑉𝑔𝑙𝑦𝑐𝑒𝑟𝑖𝑛𝑒 (

𝑀𝐽

𝑘𝑔
) 452 

 453 

𝐸𝑃𝑜𝑖𝑙𝑐𝑎𝑘𝑒 = ∑ 𝑃𝑜𝑖𝑙𝑐𝑎𝑘𝑒,𝑛 ∙ 𝐿𝐻𝑉𝑛

𝑖

 454 

 455 

𝐸𝑃𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑖𝑡𝑦 = 𝑠𝑢𝑟𝑝𝑙𝑢𝑠 𝑒𝑙𝑒𝑐𝑟𝑡𝑖𝑐𝑖𝑡𝑦 (𝑒𝑥𝑝𝑜𝑟𝑡𝑒𝑑) 𝑓𝑟𝑜𝑚 𝑝ℎ𝑜𝑡𝑜𝑣𝑜𝑙𝑡𝑎𝑖𝑐 𝑝𝑎𝑛𝑒𝑙𝑠 (MJ) 456 

 457 

Where, 𝑃𝑜𝑖𝑙𝑐𝑎𝑘𝑒,𝑛 is the percentage of component n in the oilcake (%, e.g. carbohydrates, lipids, 458 

proteins, etc.) and 𝐿𝐻𝑉𝑛 is the lower heating value of component n (MJ/kg).  459 

Cumulative energy demand (CED) represents the life cycle total energy consumption (in MJ), which 460 

is represented by the following equation: 461 

 462 

𝐶𝐸𝐷 = ∑ ∑ 𝐸𝐸𝑖,𝑗   ∙
𝑗𝑖

𝑃𝐸𝑗 + ∑ ∑ 𝑀𝑖,𝑛   ∙ 𝑃𝐸𝑛
𝑛𝑖

 463 

 464 
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Where, 𝐸𝐸𝑖,𝑗   is the jth process energy consumption during stage i (MJ), 𝑃𝐸𝑗  is the total energy use for 465 

process j production (MJ/MJ) (renewable and non-renewable for NER and non-renewable for FER) 466 

𝑀𝑖,𝑛   is the nth material consumption during stage i (kg). 𝑃𝐸𝑛 is the life cycle total (renewable and 467 

non-renewable for NER and non-renewable for FER) energy use for material n production 468 

(kg/MJ).Values of CED for material and energy used in the various processes are obtained from the 469 

CED method v1.09 (see Additional file 7). 470 

 471 

Environmental assessment 472 

The standard framework of Life Cycle Assessment (LCA) described by ISO 14040:2006 was selected 473 

to assess the ecological burdens and energy balance. An attributional LCA is used in the analysis, 474 

which considers only physical relationships between each process, different to a consequential LCA 475 

where economic relations are also assessed [9]. LCA software SimaPro v8.3 [18] was used for 476 

modelling the data, by using the characterization factors from the midpoint (H) ReCiPe 2008 method 477 

v1.3 [44]. Full LCI data source are available as supplemental information (Additional file 7) [45]. 478 

The impact categories considered were: Climate Change (CC), Ozone Depletion (OD), Human 479 

Toxicity (HT), Photochemical Oxidation formation (POF), Particulate matter formation (PMF), 480 

Terrestrial Acidification (TA), Freshwater Eutrophication (FE), Marine Eutrophication (ME), 481 

Terrestrial Ecotoxicity (TET), Freshwater Ecotoxicity (FET), Marine Ecotoxicity (MET), Ionising 482 

radiation (IR), Natural land transformation (NLT), Urban Land Occupation (Urban LO), Agricultural 483 

Land Occupation (Agri LO), Water Depletion (WD), Metal depletion (MD) and Fossil Depletion 484 

(FD). The endpoint (H) ReCiPe 2008 method is also used to assess the system at a more aggregated 485 

level through the three areas of protection (AoP): Human Health, Ecosystems and Resources. 486 

 487 

Mathematical model for predicting monthly productivities 488 

The model predicting temperature in the raceway ponds was based on the heat balance presented by 489 

Béchet, Shilton [46], which was initially developed for an open raceway pond and validated at a large 490 

scale [49]. In the Béchet model, a total of eight heat fluxes were considered: 491 
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- Solar radiation;  492 

- Long-wave air radiation;  493 

- Long-wave pond radiation; Convection with the air flowing at the pond top surface;  494 

- Evaporation from the pond surface;  495 

- Conduction with the soil beneath the pond;  496 

- Heat flux associated with the water inflow; and 497 

- Heat flux associated with rain.  498 

The model developed by Béchet, Shilton [46], still needed to be significantly modified as the presence 499 

of the greenhouse significantly impacts the expression of most of these heat fluxes:  500 

- Solar and air radiation are partly shaded by the greenhouse;  501 

- Pond radiation is partly reflected back towards the pond by the greenhouse.  502 

- Convection and evaporation are "natural" in a greenhouse as there is no wind to force these 503 

transfer mechanisms;  504 

- Rain heat flux is obviously inexistent in a closed greenhouse;  505 

- Conduction and inflow heat fluxes were, however, expressed similarly to the case of an open 506 

pond. 507 

The greenhouse is assumed to be of rectangular shape and condensation on the greenhouse walls was 508 

neglected. All opaque surfaces were considered as diffuse grey, except for the greenhouse walls that 509 

were considered as partly transparent. For the reflected radiative heat fluxes, only single reflection 510 

was accounted for. Finally, the temperature and relative humidity in the greenhouse are considered 511 

homogenous.  512 

The air temperatures inside and outside the greenhouse are different. As the air temperature above the 513 

pond impacts both evaporation and convection at the pond surface, the air temperature inside the 514 

greenhouse needs to be assessed in parallel to the pond temperature. A heat balance on the air in the 515 

greenhouse was therefore computed to determine the air temperature at each time step of the 516 

simulation.  The greenhouse walls emit inward long-wave radiation, a fraction of each being absorbed 517 

by the pond. The temperature of the greenhouse walls was therefore evaluated at each simulation time 518 

step through a heat balance on the greenhouse walls.  519 
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This heat balance is relatively complex due to the high number of radiative interactions between the 520 

greenhouse and its surrounding environment. Indeed, the pond, the ground inside the greenhouse and 521 

the ground outside the greenhouse emit long-wave radiations that are partly absorbed by the 522 

greenhouse. The long-wave radiation emitted by a grey body depends on its temperature and as a 523 

result, the temperatures of the inside and outside ground surfaces were determined simultaneously 524 

through two additional heat balances. It is not straightforward to determine the ground surface 525 

temperature as it depends on the conductive properties of the soil. Indeed, ground surface temperature 526 

decreases when the ability of the soil to conduct heat in deeper ground layers increases. This 527 

conductive heat flux is a function of the soil thermal properties but also of the temperature gradient 528 

within the soil. Therefore, to determine the internal and external ground surface temperatures, the 529 

temperature profiles in the soil first need to be assessed. In summary, to determine the pond 530 

temperature in the greenhouse, a total of five different heat balances were solved simultaneously 531 

during the simulations.  532 

 533 

Results and discussion 534 

 535 

Dynamic seasonal growth modeling is an important step that critically impacts results. Monthly 536 

variations in the life cycle inventory depend on the monthly biomass productivity, which in turn 537 

affects lipid and biodiesel productivity. Large differences in assumptions on the productivity potential 538 

have directly contributed to the large variance in LCA results from various studies [47]. The high lipid 539 

yields reported in literature are typically the result of speculation for future productivity potentials 540 

based on the linear scaling of laboratory data [47]. This highlights the importance in developing 541 

realistic dynamic productivity models based on experimentally validated biological models integrated 542 

with local and seasonal meteorological data [48]. Table 4 shows the evolution of the microalgae 543 

biomass productivity, respectively, for each species, obtained from the mathematical model based on 544 

Mediterranean conditions (Sophia Antipolis, France). According to simulation results, Chlorococcum 545 

sp. was chosen for the cold months and Desmodesmus sp. for the warm months, depending on the 546 
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coverture fraction of photovoltaic panels. When the coverture is greater than 60%, only 547 

Chlorococcum sp. was chosen because Desmodesmus sp. had a very low productivity at low light (< 1 548 

g·m-2·d-1). 549 

Ten conditions are detailed in this interpretation: absence of photovoltaic panel (0% coverture), and 550 

greenhouse roof coverage from 10% to 90%. 100% coverture was not considered since it would 551 

hinder any biological productivity.  552 

 553 

Table 4. Monthly biomass productivity (g·m-2·d-1). Chlorococcum and Desmodesmus sp. (bold text). 554 
% PV 

panel 
January February March April May Jun July August September October November December 

0% 9.79 16.52 26.74 20.59 19.69 22.34 19.40 20.98 15.19 18.49 12.45 9.12 

10% 8.88 15.42 24.79 26.20 18.29 21.14 18.40 19.50 14.18 17.18 11.65 8.26 

20% 7.93 14.08 22.65 26.33 15.94 19.73 17.23 17.87 18.23 15.67 10.81 7.38 

30% 6.83 12.40 19.99 25.11 26.35 17.94 15.76 16.26 18.01 13.96 9.58 6.36 

40% 5.84 10.80 17,46 23.08 26.14 16.16 14.29 18.58 17.66 12.37 8.40 5.44 

50% 4.81 9.12 14,86 20.42 24.21 18.35 12.62 17.25 18.88 10.69 7,16 4.51 

60% 3.74 7.38 15,78 17.31 21.10 20.76 15.61 21.19 16.21 9.41 5.86 3.52 

70% 2.59 5.52 12,53 14.73 17.21 19.02 15.77 17.81 13.25 7.94 4.50 2.54 

80% 1.32 1.85 8,51 10.78 12.20 14.29 12.21 12.10 9.29 5.17 2.80 1.24 

90% 1.00 1.00 3.04 4.85 7.48 8.12 6.99 5.26 4.97 2.41 1.02 1.05 

 555 

Energy flows 556 

The use of energy for each step of the process was derived from algal productivity, dewatering, oil 557 

extraction and transesterification (see Table 3). Figure 2 illustrates the energy requirements in the 558 

different case studies. The main energy requirement is issued from water pumps used for harvesting 559 

and recirculating flows from de-watering processes, followed by paddlewheel engines (more details in 560 

Additional file 2.3, 3.2, 4.2 and 4.3). The biomass productivity decreases when the coverture fraction 561 

of photovoltaic panels increases at a variation rate below 5% and between 0% and 30% photovoltaic 562 

coverture; however, at 70% photovoltaic coverture this variation rate increases to more than 15% 563 

(reaching almost 50% less biomass productivity at 90% with a 80% photovoltaic coverture). 564 

 565 

Figure 2 around here 566 

 567 



 23 

The NER and FER results are depicted in Additional file 17. Allocation issues do not affect this 568 

evaluation, i.e. all production processes are considered as a whole. The total set of products represents 569 

an amount of energy (in terms of LHV) ranging from 1.70 MJLHV without PV up to 9.82 MJLHV with 570 

90% photovoltaic coverture. The total energy investment, CED (renewable + non-renewable energy), 571 

ranges from 0.90 (without PV) up to 9.93 for 90% PV. This implies a favourable NER over the whole 572 

year, i.e. even in the absence of photovoltaic panels: 1.99 and FER: 2.92. Without PV panels, the 573 

electricity should be supplied by the European electricity matrix. In comparison with other similar 574 

LCA studies on algal biodiesel, the NER for biodiesel from microalgae using fossil fuel electricity 575 

sources are usually slightly greater than 1 [3, 49, 50], although some cases can be lesser than 1, as 576 

reported by Lardon, Hélias [3] and Yang, Xiang [51]. 577 

With photovoltaic panels, the highest NER (larger than 5.0) are obtained during the hottest months 578 

(April to September) (see Additional file 10). Indeed, during the summer period, the electricity 579 

production is higher (large electricity production in comparison to the facility requirements). 580 

However, despite optimal energetic performance resulting from the use of photovoltaic panels, the 581 

relevance of renewable biofuels rather becomes a matter of producing storable and renewable energy. 582 

The production of biodiesel from microalgae is an efficient way to store a fraction of renewable 583 

energy. The optimal percentage of photovoltaic panels depends on the month: i.e. during the cold 584 

months (October to March), the optimal coverture is 10%, while for hot months (April to September) 585 

the optimum is 20% coverture. 586 

Comparison of NER and FER between the case studies, first generation biodiesel and conventional 587 

diesel, is illustrated in Figure 3. The reference cases are obtained from the Ecoinvent database for 588 

biodiesel [39] and conventional fossil diesel [52], complying with similar limits for the system and for 589 

the allocation of this study. The biodiesel reference scenarios are soybean diesel (US), palm tree 590 

diesel (Malaysia) and rapeseed diesel (European average) (more details about comparative cases can 591 

be found in Additional file 15). A 10% and 20% coverture fraction of photovoltaic panels are the 592 

most optimal configurations that obtain highest FER and NER, respectively. The presence of 10% and 593 

20% photovoltaic panel favors a higher NER than for first generation and fossil diesel. However, FER 594 
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presents better results in the cases of soybean and palm tree biodiesel, despite the use of photovoltaic 595 

panels to improve the energy balance.  596 

 597 

Figure 3 around here 598 

 599 

Environmental impacts 600 

First generation biodiesels and fossil diesel are compared in Additional file 18, which illustrates the 601 

endpoint characterization results for the combustion of 1 MJ of biodiesel in a medium-sized car for 602 

various fractions of photovoltaic panel coverture.  The lowest impact is obtained for a 50% coverture, 603 

with equivalent performances from 30% to 60%. The main subsystem contributors are the culture, 604 

followed by the photovoltaic subsystem, in the case of human health and resources, or combustion in 605 

the case of ecosystem category. Biodiesel from microalgae has the following characteristics: 606 

- Algal biofuel leads to significant reductions in the Human Health and Ecosystem categories 607 

compared to other biodiesels, but is still higher than conventional diesel.  608 

- Significant reductions in the Resources impact category are obtained relative to conventional 609 

diesel; however, the impact is higher than for soybean diesel and palm tree diesel. 610 

Additional file 19 presents the contribution of each process to climate change, accounting for 611 

production of electricity using PV panels. Results for midpoint categories are detailed in the 612 

Additional file 12. The data in Table 5 make it possible to compare the impact results of algae 613 

biodiesel to those obtained by fossil diesel and first generation biodiesels. These overall results on 614 

comparisons with others scenarios are coherent with the study by Collet, Lardon [9]. It is important to 615 

note that some categories increase for a large coverage of photovoltaic panels (> 80% coverture), such 616 

as POF, PMF, TA, ME, or FET. However, the absence of photovoltaic panels either increases or 617 

reduces certain impacts, such as IR, mainly due to the electricity requirement or MD due to the 618 

production of photovoltaic panels, respectively. 619 

 620 

Table 5. Comparison of LCA results between algae biodiesel and conventional or first-generation biodiesels 621 
 Algae biodiesel in comparison to: 

Impact category Conventional 

fossil Diesel 

Palmtree 

Biodiesel 

Rapeseed 

Biodiesel 

Soybean 

Biodiesel 
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Ozone depletion - + - -/+ 
Human Toxicity + + -/+ + 
Photochemical Oxidation Formation - -/+ - -/+ 
Particulate Matter Formation -/+ -/+ -/+ + 
Terrestrial Acidification -/+ -/+ - + 
Freshwater Eutrophication + + -/+ -/+ 
Marine Eutrophication -/+ - - - 
Ionizing Radiation -/+ + -/+ -/+ 
Water Depletion + + + + 
Metal Resources Depletion + + -/+ + 
Fossil Resources Depletion - + -/+ + 
Natural Land Transformation - - - - 
Agricultural Land Occupation + - - - 
Urban Land Occupation -/+ -/+ - -/+ 
Terrestrial Ecotoxicity + - - - 
Freshwater Ecotoxicity + -/+ - + 
Marine Ecotoxicity + + -/+ + 
 -  Impact reduction for algae biodiesel; + Impact increase for algae biodiesel 622 
-/+ Impact reduction or increase for algae biodiesel, depending of percentage of photovoltaic panel coverture 623 
 624 

The overall results highlight the contribution of the culture, infrastructure production and use. This is 625 

coherent with results from contribution analyses in others studies [3, 9]. Culture (Subsystem-1) is the 626 

main contribution for most of the assessed impacts (CC, PMF, TET, TA, OD, FD, HT, Nat LO, Agri 627 

LO and Urban LO). For the remaining categories, culture is classified as a second contributor, 628 

preceded by the photovoltaic system (Subsystem-5) in the case of FET, MET, IR, FE and MD, or 629 

combustion (Subsystem-6) in POF and ME. 630 

The infrastructure in the culture (Subsystem-1) has a significant effect in terms of CC, PMF, OD, FD, 631 

HT, Nat LO, Agri LO and Urban LO, due to the production of materials (mainly steel, PVC, HDPE, 632 

aluminium and concrete) used in the greenhouse, and to machinery and pipe productions. In addition, 633 

pond emissions from culture mainly contribute to TA and TET through volatilized ammonium and 634 

N2O. Although nitrogen fertilizer requirements are reduced (the culture system works under nitrogen-635 

limiting conditions to improve the lipid contents in microalgae), nitrogen-based fertilizer production 636 

remains the main contributor in these categories.  637 

The different metals and energy used to build the CIGS system highly contribute to the impacts of the 638 

photovoltaic system (Subsystem-5). Silver used for screen manufacturing contributes to MD, CC, TA, 639 

PMF and HT. This is mainly due to the impacts generated by the extraction and processing of silver, 640 

including also its high requirement in fossil energy (which strongly contributes to IR). In addition, 641 

extraction/manufacturing of stainless silver (substrate) essentially impacts OD, while water used for 642 
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washing the substrate affects WD and eutrophication categories. Other metals, such as copper, 643 

indium, gallium and selenium used in the CIGS layer and cabling contribute to eco-toxicity and 644 

eutrophication categories. 645 

Combustion emissions mainly affect POF and ME; and in a lower extend to CC, PMF, TET and TA. 646 

The carbon burned during the biodiesel combustion is biogenic as it originates from photosynthetic 647 

fixation, i.e. zero greenhouse emissions in the form of CO2 is assumed. Hence, the environmental 648 

impacts are due to other compounds and/or fossil carbons that are related to the production of 649 

chemicals, such as methanol for esterification.  650 

The electricity required for the transformation sub-systems (de-watering, oil extraction and oil 651 

transformation) at low percentage of photovoltaic panel coverture has an important impact for most of 652 

the categories. Nevertheless, the presence of photovoltaic panels at a larger percentage of covertures 653 

turns out less important at an environmental impact level. It also becomes a secondary source of 654 

impact for some categories, such as OD, FD and Nat LO, mainly due to chemical production (used in 655 

the esterification) and transports. The considered processing system does not exist at industrial scales. 656 

Hence, this part of the analysis has the most uncertainties and can be subject to errors in the 657 

calculation of energy consumption or waste production. Nevertheless, alternative choices have already 658 

been tested individually in different studies [28, 30, 37]. This represents a reasonable projection of the 659 

processes and avoids over-optimistic or unrealistic assumptions.  660 

One of the main objectives of this study is to scale the expected gains on microalgae biodiesel 661 

production with respect to the reduction of GHG emissions, when a renewable energy source is 662 

considered. In comparison with the cultivation of microalgae without PV, the use of photovoltaic 663 

panels triggers a synergetic effect, acting both as a source of electricity and in reducing climate 664 

change impacts (Additional file 19). Similarly to endpoint category results, the scenario with a 50% 665 

PV coverture points to lower impacts on climate change. From a 0% to 80% coverture, climate 666 

change emissions are lower for algae diesel in comparison to biodiesel (except for soybean biodiesel) 667 

and diesel. A 90% PV coverture leads to highest values in climate change due to the numerous 668 

photovoltaic modules and to the strong decrease in biomass productivity. Additional file 11 669 

comprises monthly GHG emissions for a 50% PV coverture. From April to September, values remain 670 
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below  0.03 kg CO2eq·MJ biodiesel -1, while during the rest of the year, GHG emissions are higher, with 671 

values greater than 0.07 kg CO2eq·MJ biodiesel -1 in winter (December, January). The percentage of 672 

decrease depends on the quantity of electricity produced. The higher electricity production during the 673 

summer months contributes to the strongest decrease in GHG emissions (In the case of a 50% 674 

coverture, emissions reach about 40% less than for the case without PV panels). Nonetheless, the 675 

reduction in GHG emissions is lower in winter (November to February), varying between 4% and 676 

24% (for a 50% PV coverture) compared to the nominal case excluding PV. Figure 4 illustrates the 677 

effect of biomass productivity on GHG emissions. The decrease in GHG emissions is directly 678 

connected to increasing microalgae productivity. Without photovoltaic panels, when biomass 679 

productivities are higher than 20 g biomass ·m-2 d-1, GHG emissions remain within the range of 0.05 to 680 

0.045 kg CO2eq·MJ biodiesel -1. With a 50% PV coverture, the contribution to Climate Change emissions 681 

varies around 0.03 kg CO2eq·MJ biodiesel -1 when the productivity is higher than 12 g biomass ·m-2 d-1.  682 

 683 

Figure 4 around here 684 

 685 

Reaching an optimal trade-off 686 

In addition to trying to identify processes with limited energy requirements, the combination of 687 

biomass production with PV electricity represents an ideal opportunity for significantly reducing 688 

environmental impacts by almost 50% of GHG emissions. However, there is a clear trade-off between 689 

electricity and biomass production, as a larger PV coverture would limit microalgae production. This 690 

trade-off is associated to a series of optimal process designs and operating strategies that are 691 

correlated.  692 

Higher biomass productivity, related to higher biodiesel productivity could be achieved in the absence 693 

of PV panels. Adding photovoltaic panels can enhance productivity for the hottest months, but 694 

reduces biomass productivity on a yearly basis (each 10% PV coverage leads to a decrease of about 695 

5% in the biomass productivity, but the decrease rate is higher for a PV coverage greater than 70%). 696 

However, at low PV coverage, consumption of electricity from the grid affects the energetic ratio 697 

(NER). A 10% coverage of PV increases NER by 48% (1.91 MJ/MJ for 0% PV and 2.83 MJ/MJ for 698 
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10 PV), with a peak value at 20% PV coverage (For a PV coverage > 20% NER decreases due to 699 

lower biomass productivities and higher energetic demands in the infrastructure construction). Thus, 700 

from an energetic point of view, the optimal configuration lies between 10% and 20% of PV 701 

coverage. Nevertheless, from a human health, ecosystem, resources and climate change point of view, 702 

the best option is 50% PV coverage. However, the difference between impact values obtained for 20% 703 

and 50% PV is negligible (difference of 7%; 0.044 kg CO2eq·MJ biodiesel -1 and 0.040 kg CO2eq·MJ 704 

biodiesel -1 for 20% and 50% PV coverage, respectively), while the NER is 48% higher for 20% PV than 705 

for 50% PV coverage. Hence, 20% coverage of photovoltaic panels can be considered as a sound and 706 

optimal energetic environmental configuration.  707 

In addition, two high potential species have been studied with a monthly-optimized strategy.  As 708 

ventilation controls the greenhouse climate, medium temperatures are maintained close to the optimal 709 

growth temperature. The thermal properties depend upon the PV coverage, thus the succession in 710 

cultivated species can vary. The trade-off that needs to be reached is constrained by the local climate 711 

and should therefore strongly depend on the location of the plant. Even though a 20% PV coverage 712 

has been defined as the best option from an energetic and environmental point of view, the complex 713 

and dynamical optimization problems still need to be revisited for any new climate conditions, while 714 

the solutions would depend upon the targeted species, which must be chosen according to these 715 

light/temperature conditions. 716 

The objectives of this study are to reduce environmental impacts, however a techno-economic 717 

analysis should also be undertaken in order to identify the trade-off from an economical point of view. 718 

Microalgal biofuel, which can be stored, has a higher value than PV electricity. It is also associated to 719 

valuable co-products that have a higher economic value. PV contributes to reduce biomass 720 

productivity at a yearly scale, and thus a trade-off at a lower PV coverage can be expected when focus 721 

is put on economic aspects. The photovoltaic greenhouse has another advantage compared to classical 722 

raceways, since it lengthens the production season by modulating the greenhouse climate, hence 723 

favoring a better return on investment.  724 

 725 

Allocation method selection 726 
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The allocation methods, which are, in this case, based on energy, cover the co-products, the emissions 727 

as well as their impact on the functional unit. Allocation factors of co-products strongly reduce the 728 

impacts of biodiesel (see allocations factors in Table 2). Their values reflect each upstream chain 729 

phase benefit from all downstream co-products in the allocation process [53]. In this case, oil 730 

extraction (sub-system 3), oil conversion (sub-system 4) and photovoltaic covertures (sub-system 5) 731 

benefit from seed meals, glycerin and electricity, respectively. However, the energetic allocation does 732 

not highlight the actual use of co-products derived from the biodiesel production chain. The 733 

substitution method highlights the importance of co-product valorization, in which co-products are 734 

considered as amendments. The saved emissions, resulting from the substitution of conventional 735 

products by co-products are reported with a negative value since they tend to reduce the impact.  736 

Even though an energetic substitution method is accepted for biofuel sustainability certification, the 737 

results also need to be evaluated by a substitution method, while “estimates would change if co-738 

products were accounted for using the substitution approach” [54]. To highlight the importance of 739 

considering co-products on the impact of a functional unit, the environmental performance of the 740 

substitution method was evaluated and compared with results produced by the energetic allocation 741 

method (Additional file 20). It is noteworthy that when co-products are taken into account, the 742 

environmental balance is reversed and results are dramatically affected. A 90% PV coverage is 743 

associated to lower environmental impacts on human health, ecosystems, resources and climate 744 

change categories. This is essentially related to the higher surplus electricity production, which 745 

reduces the electricity demand from the European electricity grid. Surplus electricity arises from the 746 

large percentage of photovoltaic panels, while electricity consumption is reduced within the facility 747 

(due to extremely low biomass productivity). Regrettably, the lower environmental impacts assessed 748 

with the substitution method, under conditions of negligible biomass productivity and high 749 

photovoltaic electricity, is not compatible with the production of microalgae biodiesel. The 750 

representation of a co-product by substitution also implies a modification of the addressed question. 751 

The allocation approach (using the energetic content as criterion for partitioning) focuses the study 752 

towards the relevance of microalgae biodiesel as an alternative fuel. However, substitution answers a 753 

much broader issue. Co-product management practice ends up with a choice between fuel and 754 
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electricity productions. Results point out that although electricity production is the main issue, it is 755 

misleading for the eco-design of an efficient alternative fuel production system. 756 

It is crucial to manage co-products appropriately if the energy balance and environmental 757 

performance of the overall system are to be enhanced. Substantial energy is also stored as organic 758 

matter in the oilcake (obtained from oil extraction), and the energetic allocation assumes an energetic 759 

potential for the oilcake. This illustrates how complicated it can be to assess the energy balance and 760 

environmental impact in algal systems. Certain processes developed to extract this energy include 761 

anaerobic digestion and co-digestion, whose digestate can provide the necessary nutrients, thus 762 

reducing the incorporation of external fertilizers. Anaerobic digestion also contributes to recover a 763 

fraction of the energy content in oilcake [9] in the form of biogas. However, most of the studies 764 

dedicated to anaerobic digestion in microalgae point out that external energy is necessary to run the 765 

digester [55-57].  766 

 767 

The sustainability-turn between both allocation methods highlights first the importance of considering 768 

the actual uses of co-products, and secondly how the consequences of substituting conventional 769 

products can strongly modify the sustainability assessment of biofuel. The oil yield and biomass 770 

productivity are therefore not the only parameters that must be taken into account for selecting a 771 

sustainable biodiesel production, since co-products also have a significant role. More details about 772 

substitution method results and comparison with rapeseed, palm tree, soybean and conventional diesel 773 

are described in the Additional file 13, Additional file 14 and Additional file 15. 774 

 775 

Improvement paths 776 

High production costs are the major limitation for the commercialization of algae-based biofuel. It is 777 

expected that the price of algal biofuels drops when the biomass and lipid productivity are improved 778 

[58]. More recent strategies to enhance biomass and lipid productivity in microalgae include genetic 779 

and metabolic engineering [59, 60], addition of phytohormones [61], and co-cultivation of microalgae 780 

with fungi  [62], yeasts [63, 64] and bacteria [65]. By enhancing the performance of microalgae, 781 

which, nowadays, are still wild species, productivity should also increase.  Bonnefond, Grimaud [66] 782 
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have proposed a promising strategy for improving algae efficiency with a lower sensitivity to 783 

temperature fluctuations. Their approach resulted in extending the thermal niche with an enhancement 784 

of the maximal growth rate and lipid content. In addition, the use of additional species all along the 785 

year could probably further improve the process. However, this would also involve more sophisticated 786 

logistics, as well as the capacity to simultaneously maintain the different species destined to be 787 

successively exploited.  788 

This study focuses on classical raceway systems, even though more productive systems could be used, 789 

such as biofilm-based processes [67], which are likely to considerably reduce energy and harvesting 790 

and dewatering costs. Another strategy to optimize algal biomass and lipid production would be to 791 

combine open ponds and photobioreactors (hybrid system) [68, 69]. This hybrid system would first 792 

maximize biomass production in photobioreactors under nutrient-sufficient conditions. The biomass 793 

would then undergo nutrient-depleted conditions in open ponds to enhance lipid accumulation. 794 

Significant PV shadowing could be very beneficial during the hottest periods, although it penalizes 795 

growth during the cold season. The combination of effective light collection for electricity production 796 

with light distribution strategies for microalgae would be an important design criterion. The 797 

adjustment of the PV panels using solar flux tracking mechanisms, are options that could dynamically 798 

adapt the shadows to the needs of the microalgae. In addition, the LCA was based on the conservative 799 

assumption of a 15% PV yield. Improvement of the PV efficiency should mechanically contribute to 800 

reduce the PV coverage for a same electricity production, and thus increase microalgae productivity.  801 

These improvements should lead to an additional reduction in the resources and climate change 802 

impacts. Based on these same criteria, it however remains challenging to reach a better performance 803 

than soybean and palm tree biodiesel. Despite this issue, it should be emphasized that a fair 804 

comparison between the two approaches ought to be carried out under the same climate. The 805 

reference scenario is assessed for hotter climates, under which significantly higher photovoltaic and 806 

biomass productions are expected. A comparison with European rapeseed biodiesel is probably more 807 

relevant for an appropriate assessment of photovoltaic greenhouses that produce algal biofuel.  808 

 809 

Conclusions 810 
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 811 

The combination of microalgae production with photovoltaic panels offers several advantages, 812 

the main one is to utilize the excess energy from sunlight to feed the large energy demand for 813 

biodiesel microalgae. This could therefore counteract the strong external energy requirement of 814 

microalgae. Coupling biomass production with photovoltaic electricity represents an ideal opportunity 815 

for significantly reducing environmental impacts by a factor close to 50% of GHG emissions. 816 

However, there is a clear trade-off between electricity and biomass production, as a larger 817 

photovoltaic panels coverture would limit microalgae production. Thus, from an energetic point of 818 

view, the optimal configuration lies between 10% and 20% of photovoltaic panel coverage. 819 

Nevertheless, from an environmental point of view, the best option is 50% photovoltaic panel 820 

coverage. However, the difference between impact values obtained for 20% and 50% PV is 821 

negligible, while the Net Energy Ratio is 48% higher for 20% PV than for 50% PV coverage. Hence, 822 

20% coverage of photovoltaic panels is a sound and optimal energetic environmental configuration. 823 

Taking economics into account, low photovoltaic panel coverage would probably be more attractive. 824 

However, even with a 10% area of photovoltaic panels, the environmental footprint would already 825 

significantly decrease. This study was carried out with state of the art technologies, but significant 826 

improvements in microalgae productivity or more advanced production processes should rapidly 827 

enhance the performances. The challenge is now to maintain a profitable production from an 828 

economical point of view, despite the increased technicality of the processes. 829 
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Figure 1. System boundaries for LCA of biodiesel production 1024 

 1025 

Figure 2. Annual average net electricity input and biomass productivity depending on PV coverage. 1026 

Note: Monthly biomass productivity average values are indicated above bars. 1027 

 1028 

Figure 3. NER and FER comparison pond-to-wheels life cycle microalgae-based biodiesel with first-1029 

generation biodiesel and conventional diesel. 1030 
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Figure 4. Climate change according to areal productivity and PV coverture. 1032 
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