Y. Chisti, Biodiesel from microalgae beats bioethanol, Trends Biotechnol, vol.26, issue.3, pp.126-157, 2008.

R. H. Wijffels and M. J. Barbosa, An outlook on microalgal biofuels, Science, vol.329, issue.5993, pp.796-852, 2010.

L. Lardon, A. Hélias, B. Sialve, J. Steyer, and O. Bernard, Life-Cycle Assessment of Biodiesel 854 Production from Microalgae, Environ Sci Technol, vol.43, issue.17, pp.6475-81, 2009.

Y. Chisti, Biodiesel from microalgae, Biotechnol Adv, vol.25, pp.294-306, 2007.

J. An, S. Sim, J. Lee, and B. Kim, Hydrocarbon production from secondarily treated piggery 857 wastewater by the green alga Botryococcus braunii, J Appl Phycol, vol.15, issue.2-3, pp.185-91, 2003.

J. Sheehan, T. Dunahay, J. Benemann, and P. Roessler, A Look Back at th U.S. Department of 859

, Energy's Aquatic Species Program: Biodiesel from Algae Close-Out report, 1998.

O. Pulz, Photobioreactors: Production Systems for Photoautrophic Microorganisms, Appl 862 Microbiol Biotechnol, vol.57, issue.3, pp.287-93, 2001.

Y. Chisti, Raceways-based production of algal crude oil, Green, vol.3, issue.3-4, pp.195-216, 2013.

P. Collet, L. Lardon, A. Hélias, S. Bricout, I. Lombaert-valot et al., A review on the assessment of stress 868 conditions for simultaneous production of microalgal lipids and carotenoids, Front Microbiol, vol.866, p.11, 2014.

G. Sibi, V. Shetty, and K. Mokashi, Enhanced lipid productivity approaches in microalgae as an 871 alternate for fossil fuels -A review, J Energy Inst, vol.89, p.12, 2016.

P. Singh, S. Kumari, A. Guldhe, R. Mirsra, I. Rawat et al., ?Trends and novel strategies for 873 enhancing lipid accumulation and quality in microalgae, Renew Sust Energ Rev, vol.55, p.13, 2016.

M. Olofsson, T. Lamela, E. Nilsson, J. Bergé, V. Del-pino et al., , p.875

, Lipids and Fatty Acids of the Microalgae Nannochloropsis oculata Grown in Outdoor Large-Scale 876 Photobioreactors Energies, vol.5, pp.1577-92, 2012.

S. Jez, A. Fierro, A. Dibenedetto, M. Aresta, E. Busi et al., Comparative life cycle 878 assessment study on environmental impact of oil production from micro-algae and terrestrial oilseed 879 crops, Bioresour Technol, vol.239, pp.266-75, 2017.

D. Parlevliet and N. R. Moheimani, Efficient conversion of solar energy to biomass and electricity, Aquatic Biosyst, vol.881, issue.1, pp.4-882, 2014.

A. Luque and S. Hegedus, Handbook of Photovoltaic Science and Engineering, pp.884-901, 2011.

A. Calderon, Energy Life Cycle Assessment (LCA) of silicon-based photovoltaic technologies 885 and the influence of where it is manufactured and installed

, Switzerland: International Organization for Standardization, vol.889, p.19, 2006.

M. Morales, J. A. Quintero, R. Conejeros, and G. Aroca, Life cycle assessment of lignocellulosic 890 bioethanol: Environmental impacts and energy balance, LCA software. 892 21. Pilkington. Pilkington Glass Handbook, vol.42, p.22, 2010.

M. Csyrnek-deletre, B. Smyth, and J. Murphy, Beyond carbon and energy: The challenge in setting 894 guidelines for life cycle assessment of biofuels systems, Renew Energ, vol.105, p.23, 2017.

H. Passel, H. Dhaliwal, M. Reno, B. Wu, A. Amotz et al., Algae biodiesel life cycle 896 assessment using current commercial data, J Environ Manage, vol.129, p.24, 2013.

H. Huo, M. Wang, C. Lloyd, and V. Putsche, Life cycle assessment of energy and greenhouse gas 898 effects of soybean-derived biodiesel and renewable fuels, Environ Sci Technol, vol.43, p.25, 2008.

S. Ho, J. Chang, Y. Lai, and C. Chen, Achieving high lipid productivity of a thermotolerant 900 microalga Desmodesmus sp. F2 by optimizing environmental factors and nutrient conditions

, Bioresour Technol, vol.156, p.26, 2014.

C. Adams, V. Godfrey, B. Wahlen, L. Seefeldt, and B. Bugbee, Understanding precision nitrogen 903 stress to optimize the growth and lipid content tradeoff in oleaginous green microalgae, Bioresour 904 Technol, vol.131, pp.188-94, 2013.

N. Anl and P. , Renewable Diesel from Algal Lipids: An Integrated Baseline for Cost, p.906

. Nrel/tp,

, Process Design and Economics for the Production of Algal Biomass: Algal Biomass 910 Production in Open Pond Systems and Processing Through Dewatering for Downstream Conversion

. Golden and . S. Co-u, , vol.913, p.29, 2016912-02.

Y. Chisti, Large-Scale Production of Algal Biomass: Raceway Ponds, Algae Biotechnology Green Energy and Technology. Switzerland Springer, vol.916, p.30, 2016.

J. Rogers, J. Rosemberg, B. Guzman, V. Oh, L. Mimbela et al., A critical analysis 917 of paddlewheel-driven raceway ponds for algal biofuel production at commercial scales, Algal Res, vol.918, p.31, 2014.

Y. Chisti, Constraints to commercialization of algal fuels, J Biotechnol, vol.167, p.32, 2013.

K. Fagerston, Measurement of direct nitrous oxide emissions from microalgae cultivation 921 under oxic and anoxic conditions

F. Collins, , vol.922, p.33, 2011.

. Ipcc and . Chapter, Indirect N2O Emissions from Agriculture. Good Practice Guidance and 923

, Uncertainty Management in National Greenhouse Gas Inventories. Hayama, Japan: Institute of Global 924 Environmental Strategies (IGES), IPCC, vol.925, p.34, 2002.

Y. Li, Q. Zhang, Z. Zang, X. Wu, and W. Cong, Evaluation of power consumption of paddle wheel 926 in an open raceway pond, Bioprocess Biosyst Eng, vol.37, p.35, 2014.

C. Beal, L. Gerber, D. Sills, M. Huntley, S. Machesky et al., Algal biofuel production 928 for fuels and feed in a 100-ha facility: A comprehensive techno-economic analysis and life cycle 929 assessment, Algal Res, vol.10, pp.266-79, 2015.

M. Milnes, AECOM Design build & The Royal 931 Academiy of Engineering, 2017.

M. Haas, A. Mcaloon, W. Yee, and T. Foglia, A process model to estimate biodiesel production 934 costs, Bioresour Technol, vol.97, p.936, 2006.

, Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products. Golden, 2014.

N. Jungbluth, M. Chudacoff, A. Dauriat, F. Dinkel, G. Doka et al., Report No.: 17. 942 40. Stoppato A. Life cycle assessment of photovoltaic electricity generation, Final report ecoinvent data v2.0 Dübendorf: Swiss Centre for Life 941 Cycle Inventories, vol.943, p.41, 2007.

K. Bekkelund, Life Cycle Assessment of Thin Film Solar Panels, vol.946, p.42, 2013.

S. Amarakoon, C. Vallet, M. A. Curran, P. Haldar, D. Metacarpa et al., Life cycle 947 assessment of photovoltaic manufacturing consortium (PVMC) copper indium gallium (di)selenide 948 (CIGS) modules, Int J Life Cycle Ass, vol.949, p.43, 2017.

N. Jungbluth, M. Stucki, K. Flury, R. Frischknecht, S. Busser et al., Resource use efficiency and 952 environmental performance of nine major biofuel crops, processed by first-generation conversion 953 techniques, Biomass Bioenerg, vol.34, p.45, 2010.

M. Goedkoop, R. Heijungs, M. Huijbregts, D. Schryver, A. Struijs et al., A 955 life cycle impact assessment method which comprises harmonised category indicators at the midpoint 956 and the endpoint level, 2008.

, Report No.: I: Characterization, vol.958, p.46, 2009.

Q. Béchet, A. Shilton, J. Park, R. Craggs, and B. Guieysse, Universal Temperature Model for Shalow 959

, Algal Ponds Provides Improved Accurancy, Environ Sci Technol, vol.45, p.47, 2011.

J. Quinn and R. Davis, The potentials and challenges of algae based biofuels: A review of the 961 techno-economic, life cycle, and resource assessment modeling, Bioresour Technol, vol.184, p.48, 2015.

Q. Béchet, N. Coulombier, C. Vasseur, T. Lasserre, L. Dean et al., Full-scale validation 963 of an algal productivity model including nitrogen limitation, Algal Res, vol.31, p.49, 2018.

H. Jian, Y. Jing, and Z. Peidong, Life Cycle Analysis on Fossil Energy Ratio of Algal Biodiesel: 965 Effects of Nitrogen Deficiency and Oil Extraction Technology, Sci World J, vol.2015, p.50

L. Batan, J. Quinn, B. Willson, and T. Bradley, Net energy and greenhouse gas emission evaluation 967 of biodiesel derived from microalgae, Environ Sci Technol, vol.44, issue.20, p.51, 2010.

F. Yang, W. Xiang, X. Sun, H. Wu, T. Li et al., A novel lipid extraction method from wet 969 microalgae Picochlorum sp. at room temperature. Mar Drugs, vol.12, p.52, 2014.

R. Dones, C. Bauer, R. Bolliger, B. Burger, T. Heck et al., Life cycle Inventories of 971 Energy Systems: Results for Current Systems in Switzerland and others UCTE countries

, Report No.: 973 5, Ecoinvent Report Dübendorf: Swiss Centre for Life Cycle Inventories, vol.974, p.53, 2007.

L. D`avino, R. Dainelli, L. Lazzeri, and P. Spugnoli, The role of co-products in biorefinery 975 sustainability: energy allocation versus substitution method in rapeseed and carinata biodiesel chains, 976 J Clean Prod, vol.94, pp.108-123, 2009.

B. Sialve, N. Bernet, and O. Bernard, Anaerobic digestion of microalgae as a necessary step to 981 make microalgal biodiesel sustainable, Biotechnol Adv, vol.27, p.56, 2009.

P. Collett, A. Hélias, L. Lardon, M. Ras, R. Goy et al., Life-cycle assessment of microalgae 983 culture coupled to biogas production, Bioresour Technol, vol.102, issue.1, pp.207-221, 2011.

J. Quinn, T. Smith, C. Dwones, and C. Quinn, Microalgae to biofuels lifecycle assessment-Multiple 985 pathway evaluation, Algal Res, vol.4, p.58, 2014.

W. Chu, Strategies to enhance production of microalgal biomass and lipids for biofuel 987 feedstock, Eur J Phycol, vol.52, issue.4, p.59, 2017.

J. Xue, S. Balamurugan, D. W. Li, Y. H. Liu, H. Zeng et al., Glucose-6-phosphate 989 dehydrogenase as a target for highly efficient fatty acid biosynthesis in microalgae by enhancing 990 NADPH supply, Metab Eng, vol.41, p.60, 2017.

E. Trentacoste, R. Shrestha, S. Smith, C. Glé, A. Hartmann et al., Metabolic 992 engineering of lipid catabolism increases microalgal lipid accumulation without compromising 993 growth, PNAS, vol.110, issue.49, pp.19748-53, 2013.

D. Li, Y. Zhao, W. Ding, P. Zhao, J. W. Xu et al., A strategy for promoting lipid production 995 in green microalgae Monoraphidium sp. QLY-1 by combined melatonin and photoinduction

, 997 62. Dash A, Banerjee R. Enhanced biodiesel production through phyco-myco co-cultivation of 998 Chlorella minutissima and Aspergillus awamori: an integrated approach, Bioresour Technol, vol.235, p.63, 2017.

Z. Zhang, H. Ji, G. Gong, X. Zhang, and T. Tan, Synergistic effects of oleaginous yeast Rhodotorula 1001 glutinis and microalga Chlorella vulgaris for enhancement of biomass and lipid yields, Bioresour 1002 Technol, vol.164, pp.93-102, 2014.

H. W. Yen, P. W. Chen, and L. J. Chen, The synergistic effects for the co-cultivation of oleaginous 1004 yeast-Rhodotorula glutinis and microalgae-Scenedesmus obliquus on the biomass and total lipids 1005 accumulation, Bioresour Technol, vol.184, pp.148-152, 2015.

D. Nascimento, M. Dublan, M. L. Ortiz-marquez, J. C. Curatti, and L. , , p.1007

, Ankistrodesmus-Rhizobium artificial consortium. Bioresour Technol, vol.146, pp.400-407, 2013.

H. Bonnefond, G. Grimaud, J. Rumin, G. Bougaran, A. Talec et al., Continuous 1009 selection pressure to improve temperature acclimation of Tisochrysis lutea. PloS one, vol.12, p.183547, 1010.

M. Gross, W. Henry, C. Michael, and Z. Wen, Development of a rotating algal biofilm growth 1012 system for attached microalgae growth with in situ biomass harvest, Bioresour Technol, vol.1013, p.68, 2013.

M. E. Huntley, D. G. Redalje, R. R. Narala, S. Garg, K. K. Sharma et al., Comparison of 1017 microalgae cultivation in photobioreactor, open raceway pond, and a two-stage hybrid system, Front 1018 Energy Res, vol.12, issue.4, pp.1-10, 1016.

, Climate change according to areal productivity and PV coverture, p.1035, 1034.